Skip to main content

Metabolism of organophosphorus insecticides in animals and plants

  • Conference paper

Part of the book series: Residue Reviews / Rückstands-Berichte ((RECT,volume 43))

Abstract

Increasing emphasis is being placed on the research into and development of alternative methods of pest control; however, it is apparent that the use of pesticide chemicals as the major means of protecting plants and animals from many arthropodous pests will continue in the foreseeable future. The probable trend in chemical control will be toward more effective uses of the nonpersistent pesticides that are currently available and the development of new chemicals that have different modes of action and are somewhat selective for a particular pest species. Research with new pesticides and the necessary reevaluation of certain pesticides currently in use will require extensive studies of their complete fates and effects in the environment and in the living organisms that they contact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, M. K., J. E. Casida, and R. E. Nichols: Bovine metabolism of organo-phosphorus insecticides: significance of rumen fluid with particular reference to parathion. J. Agr. Food Chem. 6, 740 (1958).

    Article  CAS  Google Scholar 

  • Aldridge, W. N.: Serum esterases. 1. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem. J. 53, 110 (1953 a).

    Google Scholar 

  • Aldridge, W. N.: Serum esterases. 2. An enzyme hydrolyzing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 53, 117 (1953 b).

    Google Scholar 

  • Andrawes, N. R., H. W. Dorough, and D. A. Lindquist: Degradation and elimination of Temik in rats. J. Econ. Entomol. 60, 979 (1967).

    PubMed  CAS  Google Scholar 

  • Arthur, B. W., and J. E. Casida: Metabolism and selectivity of O,O-dimethyl 2,2,2,-trichloro-l-hydroxyethyl phosphonate and its acetal and vinyl deriva-tives. J. Agr. Food Chem. 5, 186 (1957).

    Article  Google Scholar 

  • Binning, A., F. J. Darby, M. P. Heenan, And J. N. Smrrh: The conjugation of phenols with phosphate in grass grubs and flies. Biochem. J. 103, 42 (1967).

    PubMed  CAS  Google Scholar 

  • Bull, D. L.: Metabolism of Disyston by insects, isolated cotton leaves, and rats. J. Econ. Entomol. 58, 249 (1965).

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N.: Metabolism of 0,0-dimethyl phosphorodithioate S-ester with 4(mercap- tomethyl) -2-methoxy-OZ-1,3,4-thiadiazolin-5-one (Geigy GS-13005) in plants and animals. J. Agr. Food Chem. 16, 610 (1968).

    Article  Google Scholar 

  • Aldridge, W. N.:, and D A. Lindquist. Metabolism of 3-hydroxy-N,N-dimethylcrotonamide dimethyl phosphate by cotton plants, insects, and rats. J. Agr. Food Chem. 12, 310 (1964).

    Article  Google Scholar 

  • Aldridge, W. N.: Metabolism of 3-hydroxy-N-methyl-cis-crotonamide dimethyl phosphate

    Google Scholar 

  • R. L. Ridgway: Metabolism of trichlorfon in animals and plants J. Agr. Food Chem. 17, 837 (1969).

    Article  Google Scholar 

  • Aldridge, W. N.:, D. A. Lindquist, and R. R. Grabbe: Comparative fate of the geometric isomers of phosphamidon in plants and animals. J. Econ. Entomol. 60, 332 (1967).

    Google Scholar 

  • Aldridge, W. N.:, and R. A. Stokes. Metabolism of dimethyl p-(methylthio)phenyl phosphate in animals and plants. J. Agr. Food Chem. 18, 1134 (1970).

    Article  Google Scholar 

  • Aldridge, W. N.:, and C. J. WurrrsN: Factors influencing organophosphorus insecticide re-

    Google Scholar 

  • sistance in tobacco budworms. J. Agr. Food Chem., in press (1971 a). The metabolism of BAY-93820 (isopropyl salicylate O-ester with 0-methyl phosphoramidothioate) in cotton plants. J. Econ. Entomol., submitted (1971 b).

    Google Scholar 

  • Casida, J. E.: Insect microsomes and insecticide chemical oxidations In J. R. Gillette et al. (eds.): Microsomes and drug oxidations, pp. 517–531. New York and London: Academic Press. (1968).

    Google Scholar 

  • aldridge, W. N.:Mixed-function oxidase involvement in the biochemistry of insecticide syner- gists. J. Agr. Food Chem. 18, 753 (1970).

    Google Scholar 

  • Aldridge, W. N.:, and L. Lykken: Metabolism of organic pesticide chemicals in higher plants. Ann. Rev. Plant Physiol. 20, 607 (1969).

    Article  Google Scholar 

  • Chen, P. R., W. P. Tucker, and W. C. Dauterman: Structure of biologically produced malathion monoacid. J. Agr. Food Chem. 17, 86 (1969).

    Article  CAS  Google Scholar 

  • Clemons, G. P., and R. E. Menzer: Oxidative metabolism of phosphamidon in rats and a goat. J. Agr. Food Chem. 16, 312 (1968).

    Article  CAS  Google Scholar 

  • Cook, J. W., and G. Yip: Malathionase. II. Identity of a malathion metabolite. J. Assoc. Official Agr. Chemists 41, 407 (1958).

    CAS  Google Scholar 

  • Daiim, P. A.: Some aspects of the metabolism of parathion and diazinon In R. D. O’Brien and I. Yamamoto (eds.): Biochemical toxicology of insecticides, pp. 51–63. New York and London: Academic Press (1970).

    Google Scholar 

  • Donninger, C., H. D. Hutson, and B. A. Pickering: Oxidative cleavage of phosphoric acid triesters to diesters. Biochem. J. 102, 26 (1966).

    Google Scholar 

  • Dorough, H. W.: Metabolism of N-methylcarbamates in animals J Agr. Food Chem. 18, 1015 (1970).

    Article  CAS  Google Scholar 

  • Douch, P. G. C., C. E. R. Hook, and J. N. Smith: Metabolism of Folithion (dimethyl 4-nitro-3-methylphenyl) phosphorothionate. Australasian J. Pharmacy 49, Suppl. 66 (1968).

    Google Scholar 

  • Dutton, G. J.: Comparison of glucuronide synthesis in developing mammalian and avian liver. Ann. N. Y. Acad. Sci. 111, 259 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Aldridge, W. N.: The biosynthesis of glucuronides. In G. J. Dutton (ed.): Glucuronic acid, free and combined, pp. 185–299. New York and London: Academic Press (1966).

    Google Scholar 

  • Dyte, C. E., and D. G. Rowlands: The effects of some insecticide synergists on the potency and metabolism of Bromophos and fenitrothion in Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae). J. Stored Prod. Research 6, 1 (1970). Metabolism of organophosphorus insecticides 19

    Google Scholar 

  • Bashm, S., and F. J. Oppenoorth: Microsomal oxidations of organophosphate insecticides in some resistant strains of house flies. Nature 223, 210 (1969).

    Article  Google Scholar 

  • Folsom, M. D., L. G. Hansen, R. M. Philpot, R. S. H. Yang, W. C. Dauterman, and E. Hodgson: Biochemical characteristics of microsomal preparations from diazinon-resistant and -susceptible house flies. Life Sciences 9, 869 (1970).

    CAS  Google Scholar 

  • Fouts, J. R., and T. E. Gram: The metabolism of drugs by subfractions of hepatic microsomes: The case for microsomal heterogeneity. In J. R. Gillette et al. (eds.): Microsomes and drug oxidations, pp. 81–91. New York and London: Academic Press (1969).

    Google Scholar 

  • Freak, D. S.: Herbicide metabolism in plants. 1. Purification and properties of UDP-glucose:arylamine N-glucosyl-transferase from soybean. Phytochem. 7, 381 (1968).

    Article  Google Scholar 

  • Aldridge, W. N.:, H. R. Swanson, and F. S. Tanaka. N.demethylation of substituted 3-(phenyl)-1-methylureas: Isolation and characterization of a microsomal mixed-function oxidase from cotton. Phytochem. 8, 2157 (1969).

    Google Scholar 

  • Fukami, J., and T. Shishmo: Studies on the selective toxicities of organic phosphorus insecticides. III. The characters of the enzyme system in cleavage of methyl parathion to desmethyl parathion in the supernatant of several species of homogenates (part I). Botyu-Kagaku 28, 77 (1963).

    CAS  Google Scholar 

  • Aldridge, W. N.: Nature of a soluble, glutathione-dependent enzyme system active

    Google Scholar 

  • Cleavage of methyl parathion to desmethyl parathion. J. Econ. Entomol. 59, 1338 (1966).

    CAS  Google Scholar 

  • Fukunaga, K., J. Fukami, and T. Shishido• The in vitro metabolism of organophosphorus insecticides by tissue homogenates from mammal and insect. Residue Reviews 25, 223 (1969).

    CAS  Google Scholar 

  • Gillette, J. R., A. H. Conney, G. J. Cismides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering (eds.): Microsomes and drug oxidations. York and London: Academic Press (1969).

    Google Scholar 

  • Gram, T. E., and J. R. Fouts: Studies on the intramicrosomal distribution of hepatic enzymes which catalyze the metabolism of drugs and other foreign compounds. In E. Hodgson (ed.): Enzymatic oxidations of toxicants, pp. 47–64. Carolina State Univ. (1968).

    Google Scholar 

  • Hassen, A. S., S. M. A. D. Zayed, and F. M. Abde-Hamid: Metabolism of O,O-dimethyl 2,2,2,-trichloro-1-hydroxyethyl phosphonate (dipterex) in mammalian nervous tissue and kinetics involved in its reaction with acetylcholinesterase. Can. J. Biochem. 43, 1263 (1965).

    Article  Google Scholar 

  • Heath, D. F. Organophosphorus Poisons. New York: Pergamon Press (1961).

    Google Scholar 

  • Hitchcock, M., and S. D. Murphy: Enzymatic reduction of 0,O-diethyl O-(4nitrophenyl)phosphorothioate, 0,0-diethyl O-(4-nitrophenyl)phosphate, and 0-ethyl O-(4-nitrophenyl)benzene thiophosphonate by tissues from mammals, birds, and fishes. Biochem. Pharmacol. 16, 1801 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, E. (ed.): Enzymatic oxidations of toxicants. N. Carolina State Univ. (1968).

    Google Scholar 

  • Aldridge, W. N.:, and F. W. Plapp, jr.: Biochemical characteristics of insect microsomes. J. Agr. Food Chem. 18, 1048 (1970).

    Article  Google Scholar 

  • Hollingworth, R. M.: Dealkylation of organophosphorus esters by mouse liver enzymes in vitro and in vivo. J. Agr. Food Chem. 17, 987 (1969).

    Article  CAS  Google Scholar 

  • R. D. O’brien and I. Yamamoto (eds.): Biochemical toxicology of insecticides, pp. 75–92. New York and London: Academic Press (1970).

    Google Scholar 

  • Aldridge, W. N.:, R. L. Metcalf, and T. R. Fuxuro: The selectivity of Sumithion compared with methyl parathion. Metabolism in the white mouse. J. Agr. Food Chem. 15, 242 (1967).

    Article  Google Scholar 

  • Hook, G. E. R., T. W. Jordan, and J. N. Smith: Factors affecting insect microsomal oxidations. In E. Hodgson (ed.): Enzymatic oxidations of toxicants, pp. 27–46. N. Carolina State Univ. (1968).

    Google Scholar 

  • Hutson, D. H., B. A. Pickering, and C. Donninger: Phosphoric acid triester: glutathione alkyl transferase. Biochem. J. 106, 20 (1967).

    Google Scholar 

  • Aldridge, W. N.:Nonhydrolytic detoxification of insecticidal phosphate triesters. Abstr. 5th Meeting Fed. European Biochem. Soc., Prague (1968).

    Google Scholar 

  • Jarczyk, H. J.: The influence of esterases in insects on the degradation of organophosphates of the E605 series. Pflanzenschutz-Nachr. Bayer 19, 1 (1966).

    CAS  Google Scholar 

  • Kojima, K., T. Ismzui I, A. Shrno, and S. Kitakata: Studies on metabolism of parathion in parathion susceptible and resistant larvae of the rice stem borer. Japan J. Applied Entomol. Zool. 7, 63 (1963).

    Article  Google Scholar 

  • Krueger, H. R., and R. D. O’brien: Relationship between metabolism and differential toxicity of malathion in insects and mice. J. Econ. Entomol. 52, 1063 (1959).

    CAS  Google Scholar 

  • Kimm, R. J.: Metabolism of carbamate insecticidal chemicals in plants and insects. J. Agr. Food Chem. 18, 1023 (1970).

    Article  Google Scholar 

  • Lewis, J. B.: Detoxification of diazinon by subcellular fractions of diazinon-resistant and susceptible house flies. Nature 224 917 (1969).

    Google Scholar 

  • Lindquist, D. A., and D. L. Bull: Fate of 3-hydroxy-N-methyl-cis-crotonamide dimethyl phosphate in cotton plants. J. Agr. Food Chem. 15, 267 (1967).

    Article  CAS  Google Scholar 

  • Lucier, G. W., and R. E. Menzer: Metabolism of dimethoate in bean plants in relation to its mode to action. J. Agr. Food Chem. 16, 936 (1968). Nature of oxidative metabolites of dimethoate formed in rats, liver microsomes, and bean plants. J. Agr. Food Chem. 18, 698 (1970).

    CAS  Google Scholar 

  • Aldridge, W. N.: Nature of neutral phosphorus ester metabolites of phosphamidon formed in rats and liver microsomes. J. Agr. Food Chem. 19, 1249 (1971).

    Article  Google Scholar 

  • Lykken, L and J. E. Casida: Metabolism of organic insecticide chemicals. Can. Med. Assoc. J. 100, 145 (1969).

    Google Scholar 

  • Main, A. R., and P. E. Braid: Hydrolysis of malathion by aliesterases in vitro and in vivo Biochem. J. 84 255 (1962).

    Google Scholar 

  • Matsumura, F., and C. J. Hogendijk: The enzymatic degradation of parathion in organophosphate-susceptible and -resistant house flies. J. Agr. Food Chem. 12, 447 (1964).

    Article  CAS  Google Scholar 

  • Menzer, R. E., and J. E. Casida: Nature of toxic metabolites formed in mammals, insects, and plants from 3- (dimethoxy phosphinyloxy)-N,N-dimethyl-ciscrotonamide and its N-methyl analog. J. Agr. Food Chem. 13, 102 (1965).

    Article  CAS  Google Scholar 

  • W. C. Dauterman. Metabolism of some organophosphorus insecticides. J. Agr. Food Chem. 18, 1031 (1970).

    Article  Google Scholar 

  • Menzie, C. M.: Metabolism of pesticides. Spec. Scient. Rept. Wildlife No. 127 (1969).

    Google Scholar 

  • Metcalf, R. L., T. R Fuxuto, and R. B. March: Plant metabolism of dithiosystox and thimet J Econ. Entomol. 50, 338 (1957).

    Google Scholar 

  • Aldridge, W. N.: Toxic action of dipterex and DDVP to the house fly. J. Econ. Entomol. 52, 44 (1959).

    Google Scholar 

  • Miyamoto, J.: Mechanism of action of dipterex. I. Nonenzymic transformation of dipterex into DDVP and its inhibitory effect on enzymes. Botyu-Kagaku 24, 130 (1959).

    Google Scholar 

  • Morello, A., A. Vardanis, and E. Y. Spencer: Mechanism of detoxication of some organophosphorus compounds: the role of glutathione-dependent demethylation. Can. J. Biochem. 46, 885 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Mücke, W., K. O. ALT, and H. O. Esser: Degradation of “C-labeled diazinon in the rat. J. Agr. Food Chem. 18, 208 (1970).

    Article  Google Scholar 

  • Nakatsugawa, T., and P. A. Dahm: Parathion activation enzymes in the fat body microsomes of the American cockroach. J. Econ. Entomol. 58, 500 (1965).

    Google Scholar 

  • Aldridge, W. N.: Microsomal metabolism of parathion. Biochem. Pharmacol. 16, 25 (1967).

    Article  Google Scholar 

  • N. M. Tolman, and P. A. Dahm: Metabolism of S35-parathion in the house fly. J. Econ. Entomol. 62, 408 (1969 a).

    Google Scholar 

  • Aldridge, W. N.: Oxidative degradation of diazinon by rat liver microsomes. Biochem. Pharmacol. 18, 685 (1969 b).

    Google Scholar 

  • Aldridge, W. N.: Degradation of parathion in the rat. Biochem. Pharmacol. 18, 1103 (1969 c).

    Google Scholar 

  • Neal, R. A.: Studies of the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro Biochem. J. 103, 183 (1967 a).

    PubMed  CAS  Google Scholar 

  • Aldridge, W. N.: Enzyme mechanism of the metabolism of diethyl 4-nitrophenyl phosphoro-thionate (parathion) by rat liver micromomes. Biochem. J. 105, 289 (1967 b).

    Google Scholar 

  • Nolan, J., and R. D. O’brien: Biochemistry of resistance to paraoxon in strains of house flies. J. Agr. Food Chem. 18, 802 (1970).

    Article  CAS  Google Scholar 

  • O’brien, R. D.: Toxic phosphorus esters. New York and London: Academic Press (1960).

    Google Scholar 

  • Aldridge, W. N.: Insecticides, action and metabolism. New York and London: Academic Press (1967).

    Google Scholar 

  • Pardue, J. R., E. A. Hansen, R. P. Barron, and J-Y. T. Chen • Diazinon residues on field-sprayed kale. Hydroxydiazinon—a new alteration product of diazinon. J. Agr. Food Chem. 18, 405 (1970).

    Article  CAS  Google Scholar 

  • Plapp, F. W., and J. E. Casida: Hydrolysis of the alkyl-phosphate bond in certain dialkyl arly phosphorothioate insecticides by rats, cockroaches, and alkali. J. Econ. Entomol. 51, 800 (1958).

    CAS  Google Scholar 

  • Aldridge, W. N.: Genetic control of house fly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance. J. Econ. Entomol. 62, 1174 (1969).

    Google Scholar 

  • Schwarz, H., and W. Dedek: Untersuchungen über den Abbau and die Ausscheidungen von 32P-markiertem Trichlorphon beim Schwein. Zentbl. Vet. Med. 12, 653 (1965).

    Article  CAS  Google Scholar 

  • Shishmo, T., and J. Fukami: Studies on the selective toxicities of organic phosphorus insecticides. II. The degradation of ethyl parathion, methyl parathion, methyl paraoxon, and sumithion in mammal, insect, and plant. Botyu-Kagaku 28, 69 (1963).

    Google Scholar 

  • Smith, J. N.: The comparative metabolism of xenobiotics. Adv. Comp. Physiol. Biochem. 3, 173 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Smrrh, R. L., and R. T. Williams: Implications of the conjugation of drugs and other exogenous compounds. In G. J. Dutton (ed.): Glucuronic acid, free and combined, pp. 457–491 New York and London: Academic Press (1966).

    Google Scholar 

  • Stenerson, J.: Demethylation of the insecticide Bromophos by a glutathione-dependent liver enzyme and by alkaline buffers. J. Econ. Entomol. 62, 1043 (1969).

    Google Scholar 

  • Aldridge, W. N.: Thin-layer chromatography of diesters and some monoesters of phosphoric

    Google Scholar 

  • acid. J. Chromatog., submitted (1971).

    Google Scholar 

  • Trivelloni, J. C.: A study of the formation of p-glucosides in the locust (Schistocerca cancellata). Enzymologia 26, 329 (1964).

    PubMed  CAS  Google Scholar 

  • Tsukamoto, M., and J. E. Casida: Albumin enhancement of oxidative metabolism of methylcarbamate insecticidal chemicals by the house fly microsomenadphz system. J. Econ. Entomol. 60, 617 (1967 a).

    Google Scholar 

  • Aldridge, W. N.: Metabolism of methylcarbamate insecticides by the NADPH2-requiring enzyme system from house flies. Nature 213, 49 (1967 b).

    Google Scholar 

  • T., W. C. Dauterman, and R. D. O’brien: The metabolism of di-methoate by vertebrate tissues. J. Agr. Food Chem. 12, 48 (1964).

    Article  Google Scholar 

  • R. D. O’brien: Dimethoate degradation by human liver and its signifi-cance for oral toxicity. Toxicol. Applied Pharmacol. 10, 89 (1967).

    Article  Google Scholar 

  • Welling, W., P. Blaakmeer, G. J. Vine, and S. Voerman: In vitro hydrolysis of paraxon by parathion resistant house flies. Pesticide Biochem. Physiol. 1, 61 (1971).

    CAS  Google Scholar 

  • Wendel, L. E., and D. L. Bull: Systemic activity and metabolism of dimethyl p-(methylthio)phenyl phosphate in cotton. J. Agr. Food Chem. 18, 420 (1970).

    Article  CAS  Google Scholar 

  • W.Liams, R. T.: Detoxication mechanisms, 2nd ed. London: Chapman. Hall (1959).

    Google Scholar 

  • Aldridge, W. N.: Metabolism of phenolics in animals. In J. B. Harborne (ed.): Biochemistry of phenolic compounds, pp. 205–248. New York and London • Academic Press (1964).

    Google Scholar 

  • Williamson, R. L., and M. S. Schechter: Microsomal epoxidation of aldrin in lepidopterous larvae. Biochem. Pharmacol. 19, 1719 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Yang, R. S. H., E. Hodgson, and W. C. Dauterman: Metabolism in vitro of diazinon and diazoxon in rat liver. J. Agr. Food Chem. 19, 10 (1971 a).

    Google Scholar 

  • Aldridge, W. N.: Metabolism in vitro of diazinon and diazoxon in susceptible and resistant house flies. J. Agr. Food Chem. 19, 14 (1971 b).

    Google Scholar 

  • Aldridge, W. N.: Manuscript received October 4, 1971; accepted October 22, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag New York Inc.

About this paper

Cite this paper

Bull, D.L. (1972). Metabolism of organophosphorus insecticides in animals and plants. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews / Rückstands-Berichte, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-8485-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8485-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-8487-2

  • Online ISBN: 978-1-4615-8485-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics