Skip to main content

Toxic effects of phosphamidon to insects and mites

  • Conference paper
Phosphamidon

Part of the book series: Residue Reviews / Rückstands-Berichte ((RECT,volume 37))

  • 31 Accesses

Abstract

Research on the toxicity of an insecticide to insects and mites can have two major goals. One of them is to develop reproducible criteria of poisonous effects by applying exact methods of dosing and evaluation. The resulting data can serve as a basis for a variety of comparative investigations. The other goal is to predict a poisonous effect under practical conditions, with a high degree of reliability, by exploiting reliable analogies or by exact reproduction of criteria which are decisive for the toxic effect in practice. Both trends in entomological work are interesting, the first for a solid foundation of knowledge on a pesticide, the second for its use. The ways in which to reach both aims differ mainly in the methods of experimentation. Classical toxicological work is based on the dosage- or time-response of test animals to doses of a poison which are measured out exactly and applied to the candidate. Criteria of intoxication are commonly LD50 or LT50 values. In entomological practice the standardized method of topical application anwers to these specifications. As an equivalent in mite work the slide-dip technique has become the method of choice. It produces an unknown, but constant dosage of the toxicant as a deposit on immobilized individuals. Greater variability than with the above methods must be expected when insects are tested on living plants, because secondary contact through movement on residues or feeding on poisoned parts make the dosage response dependent on individual behaviour patterns of test animals. The further the imitation of field conditions goes, the greater is the variability to be expected. For example, it is very difficult to establish a dosage-mortality relationship between different quantities of granulated insecticide in soil and the response of aphids on a plant rooting in the treated soil sample. Thus, with increasing realism of testing arrangements, the judgement of results becomes a problem requiring statistical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, B. R.: The contact toxicity of some pesticide residues to hymenopterous parasites and coccinellid predators. J. Econ. Entomol. 56, 694 (1963).

    CAS  Google Scholar 

  • Bartlett, B. R.: Toxicity of some pesticides to eggs, larvae, and adults of the green lacewing, Chrysopa carnea. J. Econ. Entomol. 57, 366 (1964).

    CAS  Google Scholar 

  • Bartlett, B. R.: The toxicity of some pesticide residues to adult Amblyseius hibisci, with a compilation of the effect of pesticides upon phytoseiid mites. J. Econ. Entomol. 57, 559 (1964).

    CAS  Google Scholar 

  • Beran, F.: Selektivität einiger Phosphorinsektizide mit besonderer Berücksichtigung ihrer Bienentoxizität. Pflanzenschutzber. 23, 37 (1965).

    Google Scholar 

  • Brown, A. W. A.: Insecticide resistance-genetic implications and applications. World Rev. Pest. Control 6, 104 (1967).

    CAS  Google Scholar 

  • Dittrich, V.: A comparative study of toxicological test methods on a population of the two-spotted spider mite. J. Econ. Entomol. 55, 644 (1962).

    CAS  Google Scholar 

  • Eldefrawi, M. E., A. H. Hosny, A. Toppazada, and S. Hassan: Susceptibility to acaricides of the mite Tetranychus cinnabarinus infesting cotton in Egypt. J. Econ. Entomol. 58, 1106 (1965).

    CAS  Google Scholar 

  • Ghobrial, A., V. Dittrich, M. Hafiz, H. Attiah, and G. Voss: Population analyses of resistance patterns in spider mites of the Tetranychus telarius complex (red and green forms) occuring in Egypt. J. Econ. Entomol. 62, 1262 (1969).

    Google Scholar 

  • Hall, W. E., and Y.-P. Sun: Mechanism of detoxication and synergism of Bidrin insecticide in houseflies and soil. J. Econ. Entomol. 58, 845 (1965).

    PubMed  CAS  Google Scholar 

  • Hough, W. S.: Toxicity of some insecticides to larvae of codling moth after they enter apples. J. Econ. Entomol. 55, 378 (1962).

    CAS  Google Scholar 

  • Jaycox, E. R.: Effect on honey bess of nectar from systemic insecticide-treated plants. J. Econ. Entomol. 57, 31 (1964).

    CAS  Google Scholar 

  • Kojima, K.: Studies on the selective toxicity of organophosphorus compounds. Special Rept. Inst. Agr. Chem. Toa Noyaku Co, pp. 1–126 (1961).

    Google Scholar 

  • Kojima, K., and Y. Nagae: Reports on the biological effects of phosphamidon, Ciba 885 and other organophosphorus insecticides. Special Rept. Inst. Agr. Chem. Toa Noyaku Co, pp. 1–28 (1958).

    Google Scholar 

  • Kooy, H. J., JR. (to Hoffmann-La Roche), Dutch Pat. No. 6601-926 (Aug. 17, 1966 ).

    Google Scholar 

  • Lindgren, P. D., and R. L. Ridgway: Toxicity of five insecticides to several insect predators. J. Econ. Entomol. 60, 1639 (1967).

    Google Scholar 

  • Loewe, S., and H. Muischnek: Über Kombinationswirkungen. Arch. exp. Path. Pharmak. 114, 313 (1929).

    Google Scholar 

  • Metcalf, R. L.: Mode of action of insecticide synergists. Ann. Rev. Entomol. 12, 229 (1967).

    Article  CAS  Google Scholar 

  • Mittler, T. E., and R. H. Dadd: Gustatory discrimination between liquids by the aphid Myzus persicae (Sulzer). Ent. Exp. & Appl. 7, 315 (1964).

    Article  Google Scholar 

  • Moorefield, H. H.: Synergism of the carbamate insecticides. Contrib. Boyce Thompson Inst. 19, 501 (1958).

    CAS  Google Scholar 

  • Müller, P.: Der Einfluß von Piperonylbutoxid auf die Wirkung einiger substituierter Phenyl-N-Methyl-Carbamate. Angew. Parasitol. 8, 101 (1967).

    Google Scholar 

  • Parry, W. H., and J. B. Ford: The artificial feeding of phosphamidon to Myzus persicae: II. The effects of phosphamidon on liquid uptake through a Parafilm membrane. Ent. Exp. & Appl. 12, 1 (1969).

    Article  CAS  Google Scholar 

  • Sacher, R. M., R. L. Metcalf, and T. R. Fuxuro: Propynyl naphthyl ethers as selective carbamate synergists. J. Agr. Food Chem. 5, 779 (1968).

    Article  Google Scholar 

  • Shaw, R. D., M. Cook, and R. E. Carson: Developments in the resistance status of the southern cattle tick to organophosphorus and carbamate insecticides. J. Econ. Entomol. 61, 1590 (1968).

    PubMed  CAS  Google Scholar 

  • Sun, Y.-P.: Toxicity index — An improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol. 43, 45 (1950).

    CAS  Google Scholar 

  • Sun, Y.-P., and E. R. Johnson: Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. J. Agr. Food Chem. 4, 261 (1960).

    Article  Google Scholar 

  • Sun, Y.-P., and E. R. Jofnson: Integration of physico-chemical and biological techniques in specific bioassay, with special reference to Bidrin insecticide. J. Econ. Entomol. 58, 838 (1965).

    PubMed  CAS  Google Scholar 

  • Sun, Y.-P., and E. R. Jofnson: Relationship between structure of several Azodrin® insecticide homologues and their toxicities to houseflies, tested by injection, infusion, topical application, and spray methods with and without synergists. J. Econ. Entomol. 62, 1130 (1969).

    CAS  Google Scholar 

  • Tammes, P. M. L.: Isoboles, a graphic representation of synergism in pesticides. Neth. J. Plant Pathol. 70, 73 (1964).

    Article  CAS  Google Scholar 

  • Voss, G.: Weitere Untersuchungen zum Verhalten von Dimecron, Carbicron und Nuvacron in und auf Pflanzen. Unpublished report CIBA, Agr. Chem. Div., Basle, Switzerland (1968).

    Google Scholar 

  • Wiesmann, R.: Neue Mittel und Methoden zur Fliegenbekämpfung im Stall. Schweiz. Arch. Tierheilkde. 102, 134 (1960).

    CAS  Google Scholar 

  • Zschintzsch, J.: Der Einfluß von Piperonylbutoxid und anderen Pyrethrum-Synergisten auf die insektizide Wirkung einiger organischer Phosphorsäure-Derivate. Arzneimittelforsch. 11, 579 (1961).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag New York Inc.

About this paper

Cite this paper

Dittrich, V. (1971). Toxic effects of phosphamidon to insects and mites. In: Gunther, F.A., Gunther, J.D. (eds) Phosphamidon. Residue Reviews / Rückstands-Berichte, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-8473-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8473-5_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-8475-9

  • Online ISBN: 978-1-4615-8473-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics