Advertisement

The metabolism of diene-organochlorine (cyclodiene) insecticides

  • G. T. Brooks
Conference paper
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 27)

Abstract

Following the emergence of insect resistance to the cyclodiene insecticides, and on account of residue problems leading to questions concerning their effects on man, on wildlife, and on the environment, the fate of these compounds in living organisms has come under increasingly close scrutiny. As a result of this concern much effort has been directed toward investigations of the dynamics of their behaviour in the environment and of their metabolic fate, especially since about 1960. Until then it was generally assumed that apart from the already well known epoxidation reactions of chemicals such as aldrin,1 these compounds were rather inert biologically.

Keywords

Liver Microsome Mosquito Larva Epoxide Ring Epoxidation Reaction Heptachlor Epoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Wahab, A. M., R. J. Kuhr, and J. E. Casida; Fate of C14-carbonyl-labelled aryl methylcarbamate insecticide chemicals in and on bean plants. J. Agr. Food Chem. 14, 290 (1966).Google Scholar
  2. Andrews, A. K., C. C. Van Valin, and B. E. Stebbings: Some effects of heptachlor on bluegills (Lepomis machrochirus). Trans. Amer. Fisheries Soc. 95, 297 (1966).Google Scholar
  3. Ballschmiter, K., and G. Tolg: Metabolismus des Thiodans in Insekten. Angew. Chem. 78, 775 (1966).Google Scholar
  4. Bann, J. M., T. J. DeCino, N. W. Earle, and Y. P. Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chem. 4, 937 (1956).Google Scholar
  5. Barnes, W., and G. W. Ware: The absorption and metabolism of C14-endosulfan in the housefly. J. Econ. Entomol. 58, 286 (1965).PubMedGoogle Scholar
  6. Bishop, J. L., and J. T. Huber: Secretion of telodrin in the milk of cows fed varying levels of telodrin. J. Dairy Sci. 47, 552 (1964).Google Scholar
  7. Boush, G. M., and F. Matsumura: Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60, 918 (1967).Google Scholar
  8. Bowman, M. C., F. Acree, Jr., C. S. Lofgren, and M. Beroza: Chlorinated insecticides: Fate in aqueous suspensions containing mosquito larvae. Science 146, 1480 (1964).PubMedGoogle Scholar
  9. Boyle, H. W., R. H. Burttschell, and A. A. Rosen: Infrared identification of chlorinated insecticides in tissues of poisoned fish. In Gould, R. F., ed.: Organic pesticides in the environment, p. 207. Adv. Chem. Series (1966).Google Scholar
  10. Bridges, W. R.: Disappearance of endrin from fish and other materials of a pond environment. Trans. Amer. Fisheries Soc. 90, 332 (1961).Google Scholar
  11. Brodte, B. B., and R. P. Maickel: Comparative biochemistry of drug metabolism. Proc. 1st Internat. Pharm. Meeting 6, p. 299. New York-London: Pergamon (1962).Google Scholar
  12. Brooks, G. T.: The synthesis of 14C-labelled l:2:3:4:10:10-hexachloro-6:7-epoxy-l:4:4a:5:6:7:8:8a-octahydro-exo-1:4-exo-5:8-dimethanonaphthalene (endrin). J. Chem. Soc. p. 3693 (1958).Google Scholar
  13. Brooks, G. T.: Mechanisms of resistance of the adult housefly (Musca domestica) to ‘cyclodiene’ insecticides. Nature 186, 96 (1960).PubMedGoogle Scholar
  14. Brooks, G. T.:Progress in metabolic studies of the cyclodiene insecticides and its relevance to structure-activity correlations. World Review Pest Control 5, 62 (1966).Google Scholar
  15. Brooks, G. T.: Mechanisms of resistance to chlorohydrocarbon insecticides. World Review Pest Control 7, 127 (1968 a).Google Scholar
  16. Brooks, G. T.: Perspectives of cyclodiene metabolism. In: Proceedings of a symposium on the science and technology of residual insecticides in food production with special reference to aldrin and dieldrin, pp. 89–101. New York: Shell Chemical Company; Library of Congress Cat. No. 68–27527. June (1968 b).Google Scholar
  17. Brooks, G. T., and A. Harrison: Relations between structure, metabolism and toxicity of the ‘cyclodiene’ insecticides. Nature 198, 1169 (1963).Google Scholar
  18. Brooks, G. T., and A. Harrison: The effect of Pyrethrin synergists, especially sesamex, on the insecticidal potency of hexachlorocyclopentadiene derivatives (‘cyclodiene’ insecticides) in the adulthousefly, Musca domestica L. Biochem. Pharmacol. 13, 827 (1964 a).Google Scholar
  19. Brooks, G. T., and A. Harrison: The metabolism of some cyclodiene insecticides in relation to dieldrin resistance in the adult housefly, Musca domestica L. J. Insect. Physiol. 10, 633 (1964b).Google Scholar
  20. Brooks, G. T., and A. Harrison: Structure-activity relationships among insecticidal compounds derived from chlordene. Nature 205, 1031 (1965).Google Scholar
  21. Brooks, G. T., and A. Harrison: Metabolism of aldrin and dihydroaldrin by houseflies (M. domestica L.) in vivo and by housefly and pig liver microsomes. Life Sci. 5, 2315 (1966).PubMedGoogle Scholar
  22. Brooks, G. T., and A. Harrison: The metabolism of dihydrochlordene and related compounds by housefly (M. domestica L.) and pig liver microsomes. Life Sci. 6, 681 (1967 a).PubMedGoogle Scholar
  23. Brooks, G. T., and A. Harrison: The toxicity of α-dihydroheptachlor and related compounds to the housefly (M. domestica L.) and their metabolism by housefly and pig liver microsomes. Life Sci. 6, 1439 (1967 b).PubMedGoogle Scholar
  24. Brooks, G. T., and A. Harrison, and J. T. Cox: Significance of the epoxidation of the isomeric insecticides aldrin and isodrin by the adult housefly in vivo Nature 197, 311 (1963).Google Scholar
  25. Brown, A. W. A.: Mechanisms of resistance against insecticides. Ann. Rev. Entomol. 5, 301 (1960).Google Scholar
  26. Brown, A. W. A., and A. D. Tomlin: Personal communication (1966).Google Scholar
  27. Bruce, W. N., R. P. Link, and G. C. Decker: Storage of heptachlor epoxide in the body fat and its excretion in milk of dairy cows fed heptachlor in their diets. J. Agr. Food Chem. 13, 63 (1965).Google Scholar
  28. Bruce, W. N., G. C. Decker, and J. G. Wilson: The relationship of levels of insecticide contamination of crop seeds to their fat content and soil concentration of aldrin, heptachlor, and their epoxides. J. Econ. Entomol. 59, 179 (1966).Google Scholar
  29. Büchel, K. H., A. E. Ginsberg, and R. Fischer: Synthese und Struktur von Heptachlor-methano-tetrahydroindanen. Chem. Ber. 99, 405 (1966 a).Google Scholar
  30. Büchel, K. H., A. E. Ginsberg, and R. Fischer: Cyclodien-Insektizide. IV. Synthese und Struktur von Isomeren des Chlordans. Chem. Ber. 99, 421 (1966 b).Google Scholar
  31. Büchel, K. H., A. E. Ginsberg, and R. Fischer, and F. Körte: β-Dihydro-heptachlor, ein Insektizid mit sehr niedriger Warmblüter-toxizität. Tetrahedron Letters, p. 2267 (1964).Google Scholar
  32. Buhler, D. R., and M. E. Rasmusson: The oxidation of drugs by fishes. Comp. Biochem. Physiol. 25, 223 (1968).PubMedGoogle Scholar
  33. Butler, P. A., A. J. Wilson, and A. J. Rick: Effect of pesticides on oysters. Proc. Nat. Shellfisheries Assoc. 51, 23 (1960).Google Scholar
  34. Butler, T. C.: Duration of action of drugs as affected by tissue distribution. Proc. 1st Internat. Pharm. Meeting. 6, 193. New York-London: Pergamon (1962).Google Scholar
  35. Chacko, C. I., J. L. Lockwood, and M. Zabik: Chlorinated hydrocarbon pesticides: Degradation by microbes. Science 154, 893 (1966).Google Scholar
  36. Chambers, P. L., G. C. Hunter, J. Robinson, and D. E. Stevenson: Studies on the toxicity of β-dihydroheptachlor. Med. Pharmacol. Exp. 12, 289 (1965).Google Scholar
  37. Chan, T. M., J. W. Gillett, and L. C. Terriere: Interactions between microsomal electron transport systems of trout and male rat in cyclodiene epoxidation. Comp. Biochem. Physiol. 20, 731 (1967).Google Scholar
  38. Claborn, H. V., J. W. Bowers, R. W. Wells, R. D. Radeleff, and W. J. Nickerson: Meat contamination from pesticides. Agr. Chemicals 8(8), 119 (1953).Google Scholar
  39. Cohen, A. J., and J. N. Smith: Fate of aldrin and dieldrin in locusts. Nature 189, 600 (1961).Google Scholar
  40. Coulson, D. M., and E. M. McCarthy: Effects of pesticides on animals and human beings. Stanford Research Inst. Rept. No. 13, 37 pp. (1963).Google Scholar
  41. Creaven, P. J., D. V. Parke, and R. T. Williams: A fluorimetric study of the hydroxylation of biphenyl in vitro by liver preparations of various species. Biochem. J. 96, 879 (1965).PubMedGoogle Scholar
  42. Creaven, P. J., W. H. Davies, and R. T. Williams: Dealkylation of alkoxybiphenyls by trout and frog liver preparations. Life Sci. 6, 105 (1967).PubMedGoogle Scholar
  43. Cueto, C., and W. J. Hayes, Jr.: The detection of dieldrin metabolites in human urine. J. Agr. Food Chem. 10, 367 (1962).Google Scholar
  44. Cueto, C., and W. J. Hayes, Jr., Effect of phenobarbital on the metabolism of dieldrin. Toxicol. Applied Pharmacol. 7, 481 (1965).Google Scholar
  45. Czech, M.: Die Wirkung der neuartigen Insectizide Thiodan und Alodan auf Warmbluter und Insekten. Medizin Chem. 6, 574 (1957).Google Scholar
  46. Datta, P. R., E. P. Laug, J. O. Watts, A. K. Klein, and M. J. Nelson: Metabolites in urine of rats on diets containing aldrin or dieldrin. Nature 208, 289 (1965).Google Scholar
  47. Davidow, B., E. Hagan, and J. L. Radomski: A metabolite of chlordane in tissues of animals. Federation Proc. 10, 291 (1951).Google Scholar
  48. Davidow, B., and J. L. Radomski: Isolation of an epoxide metabolite from fat tissues of dogs fed heptachlor. J. Pharmacol. Expt. Therap. 107, 259 (1953).Google Scholar
  49. Davidow, B., and J. L. Radomski, and R. Ely: Excretion of heptachlor epoxide in milk of a dairy cow fed heptachlor. Science 118, 383 (1953).PubMedGoogle Scholar
  50. Deema, P., E. Thompson, and G. W. Ware: Metabolism, storage and excretion of C14-endosulfan in the mouse. J. Econ. Entomol. 59, (1966).Google Scholar
  51. Dewitt, J. B.: Pesticide — wildlife relationship. In Chichester, C. O., ed.: Research in pesticides, p. 147. New York-London: Academic Press (1965).Google Scholar
  52. Dewitt, J. B., and J. L. George: Bureau of sport fisheries and wildlife-pesticide wildlife review, 1959. U.S. Fish and Wildlife Service Circ. 84, 36 pp. (1960).Google Scholar
  53. Dewitt, J. B., D. G. Crabtree, R. B. Finley, J. L. George, O. B. Cope, and P. A. Butler; Effects of pesticides on fish and wildlife in 1960. U.S. Fish and Wildlife Service Circ 143, 52 pp. (1962).Google Scholar
  54. Durham, W. F.: The interaction of pesticides with other factors. Residue Reviews 18, 21 (1967).PubMedGoogle Scholar
  55. Earle, N. W.: The fate of cyclodiene insecticides administered to susceptible and resistant houseflies. J. Agr. Food Chem. 11, 281 (1963).Google Scholar
  56. Ely, R. E., L. A. Moore, P. E. Hubanks, R. H. Carter, and F. W. Poos: Excretion of heptachlor epoxide in the milk of dairy cows fed heptachlor-sprayed forage and technical heptachlor. J. Dairy Sci. 38, 669 (1955).Google Scholar
  57. Ernst, W.: Der Stoffwechsel von Pesticiden in Säugetieren. Residue Reviews 18, 131 (1967).PubMedGoogle Scholar
  58. Frensch, H.: Entwicklung und Chemie der Diengruppe, einer neuem Klasse biocider Wirkstoffe. Medizin Chem. 6, 556 (1957).Google Scholar
  59. Gakstatter, J. H., and C. M. Weiss: The uptake from water by several species of freshwater fish of p,p’-DDT, dieldrin and lindane; their tissue distribution and elimination rate. Trans. Amer. Fisheries Soc. 96, 301 (1967).Google Scholar
  60. Gannon, N., and J. H. Bigger: The conversion of aldrin and heptachlor to their epoxides in soil. J. Econ. Entomol. 51, 1 (1958).Google Scholar
  61. Gannon, N.and G. C. Decker: The conversion of heptachlor to its epoxide on plants. J. Econ. Entomol. 51, 3 (1958 a).Google Scholar
  62. Gannon, N., and G. C. Decker: The conversion of aldrin to dieldrin on plants. J. Econ. Entomol. 51, 8 (1958 b).Google Scholar
  63. Gaudette, L. E., R. P. Maickel, and B. B. Brodie: Oxidative metabolism of drugs by vertebrates. Federation Proc. 17, 370 (1958).Google Scholar
  64. Gerolt, Ph.: The fate of dieldrin in insects. J. Econ. Entomol. 58, 849 (1965).PubMedGoogle Scholar
  65. Giannotti, O.: Estudos sobre o mecanismo de acão do aldrin, dieldrin, isodrin e endrin em Periplaneta americana (L.). Archos Inst. biol. S. Paulo 25, 253 (1958).Google Scholar
  66. Giannotti, O., R. L. Metcalf, and R. B. March: The mode of action of aldrin and dieldrin in Periplaneta americana (L.). Ann. Entomol. Soc. Amer. 49, 588 (1956).Google Scholar
  67. Gillett, J. W., T. M. Chan, and L. C. Terriere: Interactions between DDT analogues and microsomal epoxidase systems. J. Agr. Food Chem. 14, 540 (1966).Google Scholar
  68. Glasser, R., R. G. Blenk, J. E. Dewey, B. D. Hilton, and M. H. J. Weiden: Occurrence of a toxic non-aldrin residue in carrots grown on aldrin treated soil. J. Econ. Entomol. 51, 337 (1958).Google Scholar
  69. Gösswald, K., E. F. Schulze, and W. Kloft: Problems of application and action of thiodan studied with S35-labelled insecticide. Proc. Internat. Conference (International Atomic Energy Agency) on ‘Radiation and isotopes applied to insects of agricultural importance’ (Vienna), p. 241 (1963).Google Scholar
  70. Goodwin, E. S., R. Goulden, and J. G. Reynolds: Rapid identification and determination of residues of chlorinated pesticides in crops by gas-liquid chromatography. Analyst 86, 697 (1961).Google Scholar
  71. Gorbach, S. G.: Untersuchungen uber Thiodan im Stoffwechsel von Milchschafen. Növényvédelmi Tudományos értekezlet 1966, Februer 22–25. 88/1–7. A Magyar Agrartudomanyi Egvesülët Es Az Agrotröszt Kiadványa, Budapest (1966).Google Scholar
  72. Hamilton, E. W.: Metabolism of aldrin and dieldrin by the american cockroach. Dissertation, Iowa State Univ., Ames (1961).Google Scholar
  73. Hart, L. G., and J. R. Fours: Effects of acute and chronic DDT administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. Expt. Biol. Med. 114, 388 (1963).Google Scholar
  74. Hart, L. G., R. W. Shultice, and J. R. Fours: Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Applied Pharmacol. 5, 371 (1963).Google Scholar
  75. Hayes, W. J. Jr.: Review of the metabolism of chlorinated hydrocarbon insecticides especially in mammals. Ann. Review Pharmacol. 5, 27 (1965).Google Scholar
  76. Hayes, W. J. Jr., W. F. Durham, and C. Cueto, Jr.: The effect of known repeated oral doses of DDT in man. J. Amer. Med. Assoc. 162, 890 (1956).Google Scholar
  77. Hayes, W. J. Jr., G. E. Quinby, K. C. Walker, and W. M. Upholt: Storage of DDT and DDE in people with different degrees of exposure to DDT. Arch. Ind. Health 18, 398 (1958).Google Scholar
  78. Heath, D. F.: Cl36-dieldrin in mice. In: Radioisotopes and radiation in entomology. Proc. Bombay Symposium 1960 (International Atomic Energy Agency, Vienna), p. 83 (1962).Google Scholar
  79. Heath, D. F., and M. Vandekar: Toxicity and metabolism of dieldrin in rats. Brit. J. Ind. Med. 21, 269 (1964).Google Scholar
  80. Heine, W.: Alugan zur Bekampfung von Ektoparasiten bei Muriden. Deut, tierärztl. Wochschr. No. 19, 474 (1966).Google Scholar
  81. Hoffman, R. A., and A. W. Lindquist: Absorption and metabolism of DDT, toxaphene and chlordane by resistant houseflies as determined by bioassay. J. Econ. Entomol. 45, 232 (1952).Google Scholar
  82. Hohorst, W., and Bauer, F.: Alodan, ein neues Insekticid zur Bekämpfung tierischer Ektoparasiten. Deut. tierärztl. Wochschr. 65, 93 (1958).Google Scholar
  83. Hunter, C. G., and J. Robinson: Pharmacodynamics of dieldrin (HEOD). I. Ingestion by human subjects for 18 months. Arch. Environ. Health 15, 614 (1967).Google Scholar
  84. Hunter, C. G., A. Rosen, R. T. Williams, J. G. Reynolds, and A. N. Worden: Studies on the fate of aldrin, dieldrin and endrin in the mammal. Mededel. Landbou-whogeschool Opzoekingssta. Staat Gent. 25, 1296 (1960).Google Scholar
  85. Ingle, L.: A monograph on chlordane. Chicago: Velsicol Chemical Corp. (1965).Google Scholar
  86. Isselbacher, K. J., and J. Axelrod: Enzymatic formation of corticosteroid glucuronides. J. Amer. Chem. Soc. 77, 1070 (1955).Google Scholar
  87. Khgemagi, U., R. G. Sprowls, and L. C. Terriere: Endrin content of milk and body tissues of dairy cows receiving endrin daily in their diet. J. Agr. Food Chem. 6, 518 (1958).Google Scholar
  88. Körte, F.: Metabolism of 14C-labelled insecticides in microorganisms, insects and mammals. Botyu-kagaku 32, 46 (1967 a).Google Scholar
  89. Körte, F., Metabolism of chlorinated insecticides. Paper submitted I.U.P.A.C. Commission on Terminal Pesticide Residues, Appendix VI of Proceedings of the Commission (Vienna). August (1967 b).Google Scholar
  90. Körte, F., and H. Arent; Metabolism of insecticides. IX; Isolation and identification of dieldrin metabolites from urine of rabbits after oral administration of dieldrin-14C. Life Sci. 4, 2017 (1965).PubMedGoogle Scholar
  91. Körte, F., and W. Kochen: Insektizide im Stoffwechsel. XI. Ausscheidung, Verteilung und Umwandlung von Aldrin-14C und Dieldrin-14C in der Ratte. Med. Pharmacol. exp. 15, 404 (1966 a).Google Scholar
  92. Körte, F., and W. Kochen, Insektizide im Stoffwechsel. XII. Isolierung und Identifizierung von Metaboliten des Aldrin-14C aus dem Urin von Kaninchen. Med. Pharmacol. exp. 15, 409 (1966 b).Google Scholar
  93. Körte, F., and M. Stiasni: Umwandlung von Telodrin-14C durch Mikroorganismen und Mosquito-larven. Ann. 673, 146 (1964).Google Scholar
  94. Körte, F., and G. Rechmeier: Insektizide im Stoffwechsel. I. Mikrosynthese von Aldrin-[14C] und Dieldrin-[14C]. Ann. 656, 131 (1962).Google Scholar
  95. Körte, F., G. Ludwig, and J. Vogel: Insektizide im Stoffwechsel. II. Umwandlung von Aldrin-14C und Dieldrin-14C durch Mikroorganismen, Leberhomogenate und Moskito-larven. Ann. 656, 135 (1962).Google Scholar
  96. Krieger, R. L, and C. F. Wilkinson: Microsomal epoxidation in the Southern Armyworm (Prodenia eridania) Annual Meeting Amer. Entomol. Soc. Nov. (1967).Google Scholar
  97. Kuhr, R. J., and J. E. Casida: Persistent glycosides of metabolites of methylcar-bamate insecticide chemicals formed by hydroxylation in bean plants. J. Agr. Food Chem. 15, 814 (1967).Google Scholar
  98. Kunze, F. M., and E. P. Laug: Toxicants in tissues of rats on diets containing dieldrin, aldrin, endrin and isodrin. Federation Proc. 12, 339 (1953).Google Scholar
  99. Laug, E. P., A. A. Nelson, O. G. Fitzhugh, and F. M. Kunze: Liver cell alteration and DDT storage in the fat of the rat induced by dietary levels of 1 to 50 p.p.m. DDT. J. Pharmacol. Expt. Therap. 98, 268 (1950).Google Scholar
  100. Levine, W. G., P. Mellburn, R. L. Smith, and R. T. Williams: The effect of ‘phenobarbitone on the biliary excretion of foreign compounds by the rat. Proc. 484th Meeting Biochem. Soc. (Cambridge), Abstr. 26. July (1968).Google Scholar
  101. Lewis, S. E.: Effect of carbon monoxide on metabolism of insecticides in vivo. Nature 215, 1408 (1967).PubMedGoogle Scholar
  102. Lewis, S. E., G. T. Brooks, and A. Harrison: Enzymic cleavage of the epoxide ring in some cyclodiene insecticides. In: Pest infestation research 1967, Annual Rept. Pest Infestation Lab., Agr. Research Council, p. 68. London: Her Majesty’s Stationery Office (1968 b).Google Scholar
  103. Lewis, S. E., J. W. Ray, R. J. Kuhr, and C. A. Greenfield: Effect of light on microsomal metabolism. In: Pest infestation research 1967, Annual Rept. Pest Infestation Lab., Agr. Research Council, p. 67. London: Her Majesty’s Stationery Office. (1968 a).Google Scholar
  104. Lewis, S. E., C. F. Wilkinson, and J. W. Ray: The relationship between microsomal epoxidation and lipid peroxidation in houseflies and pig liver and the inhibitory effect of derivatives of 1,3-benzodioxole (methylenedioxybenzene). Biochem. Pharmacol. 16, 1195 (1967).PubMedGoogle Scholar
  105. Lichtenstein, E. P., and K. R. Shulz: Translocation of some chlorinated hydrocarbon insecticides into the aerial parts of pea plants. J. Agr. Food Chem. 8, 452 (1960 a).Google Scholar
  106. Lichtenstein, E. P., and K. R. Shulz: Epoxidation of aldrin and heptachlor in soils as influenced by autoclaving, moisture, and soil types. J. Econ. Entomol. 53, 192 (1960 b).Google Scholar
  107. Lichtenstein, E. P., and K. R. Shulz: Residues of aldrin and heptachlor in soils and their translocation into various crops. J. Agr. Food Chem. 13, 57 (1965).Google Scholar
  108. Lichtenstein, E. P., G. R. Myrdal, and K. R. Schulz: Effect of formulation and mode of application of aldrin on the loss of aldrin and its epoxide from soils and their translocation into carrots. J. Econ. Entomol. 57, 133 (1964).Google Scholar
  109. Lichtenstein, E. P., K. R. Schulz, and G. T. Cowley: Inhibition of the conversion of aldrin to dieldrin in soils with methylenedioxyphenyl synergists. J. Econ. Entomol. 56, 485 (1963).Google Scholar
  110. Lotlikar, P. D., E. C. Miller, J. A. Miller, and J. E. Halver: Metabolism of the carcinogen 2-acetylaminofluorene by rainbow trout. Proc. Soc. Expt. Biol. Med. 124, 160 (1967).Google Scholar
  111. Ludwig, G., J. Weis, and F. Korte: Excretion and distribution of aldrin-14C and its metabolites after oral administration for a long period of time. Life Sci. 3, 123 (1964).PubMedGoogle Scholar
  112. Ludwig, G., H. Arent, W. Kochen, N. Poonawalla, G. Rechmeier, M. Stiasni, J. Vogel, and F. Korte: Metabolism of chlorinated insecticides by living organisms. Scientific Plant Protection Conference (Budapest). Feb. (1966).Google Scholar
  113. Maier-Bode, H.: Versuche über die Persistenz des Insektizides Endosulfan im pflanzlichen und tierischen Organismus. Mededel. Landbouwhogeschool Opzoekingsta. Staat Gent 31, 506 (1966).Google Scholar
  114. Maier-Bode, H., Properties, effect, residues and analytics of the insecticide endosulfan. Residue Reviews 22, 1 (1968).PubMedGoogle Scholar
  115. March, R. B.: The resolution and chemical and biological characterization of some constituents of technical chlordane. J. Econ. Entomol. 45, 452 (1952).Google Scholar
  116. Marth, E. H.: Residues and some effects of chlorinated hydrocarbon insecticides in biological material. Residue Reviews 9, 1 (1965).Google Scholar
  117. Mason, H. S., J. C. North, and M. Vanneste: Microsomal mixed function oxidations: The metabolism of xenobiotics. Federation Proc. 24, 1172 (1965).Google Scholar
  118. Matsumura, F., and G. M. Boush: Dieldrin: Degradation by soil microorganisms. Science 156, 959 (1967).PubMedGoogle Scholar
  119. McKinney, R. M., and G. W. Pearce: Synthesis of carbon-14-labelled aldrin and dieldrin. J. Agr. Food Chem. 8, 456 (1960).Google Scholar
  120. Menzie, C. M.: Metabolism of pesticides. Special scientific report, Wildlife No. 96, U.S. Department of Interior, Fish and Wildlife Service, Washington, D.C. (1966).Google Scholar
  121. Metcalf, R. L.: Mode of action of insecticide synergists. Ann. Review Entomol. 12, 229 (1967).Google Scholar
  122. Metcalf, R. L., and G. P. Georghiou: Cross tolerances of dieldrin-resistant flies and mosquitoes to various cyclodiene insecticides. Bull. World Health Organization 27, 251 (1962).Google Scholar
  123. Morley, H. V., and M. Chiba: Dieldrin uptake from soil by wheat plants. Canad. J. Plant Sci. 45, 209 (1965).Google Scholar
  124. Morsdorf, K., G. Ludwig, J. Vogel, and F. Korte: Die Ausscheidung von Aldrin-C14 und Dieldrin-C14 sowie ihrer Metaboliten durch die Galle. Med. Exptl. 8, 90 (1963).Google Scholar
  125. Mount, G. A., C. S. Lofgren, M. C. Bowman, and F. Acree, Jr.: Fate of dieldrin applied topically to stable flies susceptible and resistant to dieldrin. J. Econ. Entomol. 59, 1352 (1966).PubMedGoogle Scholar
  126. Murphy, R. T., J. E. Fahey, and R. D. Jackson: Residues from 1-bromochlordene against European corn borer on corn. J. Econ. Entomol. 58, 371 (1965).Google Scholar
  127. Nakatsugawa, T., M. Ishida, and P. A. Dahm: Microsomal epoxidation of cyclodiene insecticides. Biochem. Pharmacol. 14, 1853 (1965).PubMedGoogle Scholar
  128. O’Brien, R. D.: Insecticides: Action and metabolism, p. 303. New York-London: Academic Press (1967).Google Scholar
  129. Oonnithan, E. S., and R. Miskus: Metabolism of C14-dieldrin by dieldrin-resistant Culex pipiens quinquefasciatus mosquitoes. J. Econ. Entomol. 57, 425 (1964).Google Scholar
  130. Perry, A. S.: Metabolism of insecticides by various species. J. Agr. Food Chem. 8, 266 (1960).Google Scholar
  131. Perry, A. S., A. M. Mattson, and A. J. Buckner: The metabolism of heptachlor by resistant and susceptible houseflies. J. Econ. Entomol. 51, 346 (1958).Google Scholar
  132. Perry, A. S., G. W. Pearce, and A. J. Buckner: The absorption, distribution, and fate of C14-aldrin and C14-dieldrin by susceptible and resistant houseflies. J. Econ. Entomol. 57, 867 (1964).Google Scholar
  133. Polen, P. B.: Terminal residues of chlordane. Appendix IV, Proc. I.U.P.A.C. Commission on Terminal Pesticide Residues, Vienna. Aug. (1967).Google Scholar
  134. Poonawalla, N. H., and F. Korte: Metabolism of insecticides. VIII; Excretion, distribution and metabolism of α-chlordan-14C. Life Sci. 3, 1497 (1964).PubMedGoogle Scholar
  135. Poonawalla, N. H., and F. Korte: Microsynthesis of 14C-β-dihydroheptachlor. J. Agr. Food Chem. 16, 13 (1968 a).Google Scholar
  136. Poonawalla, N. H., and F. Korte: Metabolism of β-dihydroheptachlor-14C in soil and by microorganisms. J. Agr. Food Chem. 16, 15 (1968 b).Google Scholar
  137. Porter, P. E.: A summary of metabolism and decomposition of cyclodiene insecticides in plants and animals. Appendix VII, I.U.P.A.C. Commission on Terminal Pesticide Residues, Vienna. Aug. (1967).Google Scholar
  138. Potter, J. L., and R. D. O’Brien: Parathion activation by livers of aquatic and terrestial vertebrates. Science 144, 55 (1964).PubMedGoogle Scholar
  139. Price, G. M., R. J. Kuhr, and B. S. Jeffs: The metabolism of carbaryl and aldrin. In: Pest infestation research 1967, Annual Rept. Pest Infestation Lab., Agr. Research Council, p. 64. London: Her Majesty’s Stationery Office (1968).Google Scholar
  140. Quaife, Mary L., J. S. Winbush, and O. G. Fitzhugh: Survey of quantitative relationships between ingestion and storage of aldrin and dieldrin in animals and man. Food Cosmet. Toxicol. 5, 39 (1967).Google Scholar
  141. Radeleff, R. D., H. V. Claborn, R. W. Wells, and W. J. Nickerson: Effects on beef cattle of prolonged treatment with a DDT spray. Vet. Med. 47, 94 (1952).Google Scholar
  142. Radomski, J. L., and B. Davidow: The metabolite of heptachlor, its estimation, storage and toxicity. J. Pharmacol. Expt. Therap. 107, 266 (1953).Google Scholar
  143. Rahn, H. W.: Uber den Nachweis chlorieter Bicycloheptene und ihrer im Stoffwechsel entstehenden Umwandlungsproducke. Arch. Internat. Pharcodynam. Therap. 144, 126 (1963).Google Scholar
  144. Ray, J. W.: Insecticide absorbed by the central nervous system of susceptible and resistant cockroaches exposed to dieldrin. Nature 197, 1226 (1963).Google Scholar
  145. Ray, J. W., The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide. Biochem. Pharmacol. 16, 99 (1967).Google Scholar
  146. Richardson, A., M. K. Baldwin, and J. Robinson: Metabolites of dieldrin (HEOD) in the urine and faeces of rats. Chem. Ind. 588 (1968).Google Scholar
  147. Richardson, A., J. R. Lane, W. S. Gardner, J. T. Peeler, and J. E. Campbell: Relationship of dietary intake to concentration of dieldrin and endrin in dogs. Bull. Environ. Contamination Toxicol. 2, 207 (1967).Google Scholar
  148. Robinson, J.: The pharmacodynamics of HEOD (dieldrin). VIth Internat, Congress Plant Protection, Vienna (1967 a).Google Scholar
  149. Robinson, J.: Dynamics of organochlorine insecticides in vertebrates and ecosystems. Nature 215, 33 (1967 b).PubMedGoogle Scholar
  150. Robinson, J.: Residues of organochlorine insecticides in dead birds in the United Kingdom.Chem. Ind. p. 1974 (1967 c).Google Scholar
  151. Robinson, J., and C. G. Hunter: Organochlorine insecticides: Concentrations in human blood and adipose tissue. Arch. Environ. Health 13, 558 (1966).PubMedGoogle Scholar
  152. Robinson, J., and A. R. Richardson: The distribution, storage and elimination of ‘telodrin’ in rats fed this insecticide in their diet. Internal Rept. R(T)-l-63, Tunstall Lab., Shell Research Ltd., Sittingbourne, Kent, England (1963).Google Scholar
  153. Robinson, J., and A. R. Richardson, and V. K. H. Brown: Pharmacodynamics of dieldrin in pigeons. Nature 213, 734 (1967 a).PubMedGoogle Scholar
  154. Robinson, J., and A. R. Richardson, A. N. Crabtree, J. C. Coulson, and G. R. Potts: Organochlorine residues in marine organisms. Nature 214, 1307 (1967 b).PubMedGoogle Scholar
  155. Robinson, J., and A. R. Richardson, C. G. Hunter, A. N. Crabtree, and H. J. Rees: Organochlorine insecticide content of human adipose tissue in south eastern England. Brit. J. Ind. Med. 22, 220 (1965).Google Scholar
  156. Robinson, J., and A. R. Richardson, B. Bush, and K. E. Elgar: A photoisomerisation product of dieldrin. Bull. Environ. Contamination Toxicol. 1, 127 (1966).Google Scholar
  157. Robinson, J., and M. Roberts: The accumulation, distribution and ehmination of organochlorine insecticides by vertebrates. In symposium on Physico-chemical and biophysical factors affecting the activity of pesticides, London, Apr. (1967).Google Scholar
  158. Rosen, J. D., D. J. Sutherland, and G. R. Lipton: The photochemical isomerisation of dieldrin and endrin and effects on toxicity. Bull. Environ. Contamination Toxicol. 1, 133 (1966).Google Scholar
  159. Rowlands, D. G.: The metabolism of contact insecticides in stored grains. Residue Reviews 17, 105 (1967).PubMedGoogle Scholar
  160. Rusoff, L. L., R. S. Temple, R. G. Myers, L. D. Newsom, E. C. Burns, W. F. Barthel, C. Corley, and A. Allsman: Residues in fatty tissues and meat of cattle grazing on pastures treated with granular heptachlor. J. Agr. Food Chem. 11, 239 (1963).Google Scholar
  161. Barthel, C. Corley, W. H. Waters, J. H. Gholson, J. B. Frye, Jr., L. D. Newsom, E. C. Burns, W. F. Barthel, and R. T. Murphy: Residues of heptachlor epoxide in butter fat of dairy cows grazing pastures treated with granular heptachlor. J. Agr. Food Chem. 10, 377 (1962).Google Scholar
  162. Saha, J. G., and H. McDonald: Insecticide residues in wheat grown in soil treated with aldrin and dieldrin. J. Agr. Food Chem. 15, 205 (1967).Google Scholar
  163. Schaefer, C. H., and Y. P. Sun: A study of dieldrin in the house fly central nervous system in relation to dieldrin resistance. J. Econ. Entomol. 60, 1580 (1967).Google Scholar
  164. Schonbrod, R. D., and L. C. Terriere: Abstr. 69. Bull. Entomol. Soc. Amer. 11, 158 (1965).Google Scholar
  165. Schonbrod, R. D., J. W. Gillett, and L. C. Terriere: Abstr. 49. Bull. Entomol. Soc. Amer. 11, 157 (1965).Google Scholar
  166. Shell Chemical Company, Agricultural Chemicals Division: Aldrin, dieldrin and endrin (a status report), pp. 31 and 32. Sept. (1967).Google Scholar
  167. Soloway, S. B.: Correlation between biological activity and molecular structure of the cyclodiene insecticides. Adv. Pest Control Research 6, 85 (1965).Google Scholar
  168. Spynu, E. I., and E. I. Makovskaya: Toxic properties of the new insecticide, aUodan. Gigiena i Sanit. 25, 29 (1960).Google Scholar
  169. Steiner, P., and W. Gruch: Zur Toxikologie von Insektizide. I. Dien-Gruppe. Mitt. Biol. Bundesanst. Land u. Forstwirtsch. (Berlin-Dahlem), No. 95, 118pp. (1959).Google Scholar
  170. Stiasni, M.: Synthese von Telodrin-14C und dessen Umwandlung durch Mikroorganismen, Mosquito-larven und Ratten. Dissertation, Rheinischen Friedrich-Wilhelms-Universitat, Bonn (1962).Google Scholar
  171. Stoddard, G. E., G. Q. Bateman, J. L. Shupe, J. R. Harris, H. L. Bahler, L. E. Harris, and D. A. Greenwood: Effects of feeding dieldrin and heptachlor treated alfalfa hay to dairy cows. Proc. Ann. Meeting, W. Div. Amer. Dairy Science Assoc. Progress Rept. 35, 295 (1954).Google Scholar
  172. Stohlman, E. F., and M. I. Smith: Toxicological action and metabolic fate of chlordan. Adv. Chem. Series 1, 228 (1950).Google Scholar
  173. Street, J. C.: Organochlorine insecticides and the stimulation of liver microsome enzymes. N.Y. Acad. Sci. conference: Biological effects of pesticides in mammalian systems, May (1967).Google Scholar
  174. Street, J. C., and R. W. Chadwick: Stimulation of dieldrin metabolism by DDT. Toxicol. Applied Pharmacol. 11, 68 (1967)Google Scholar
  175. Street, J. C., and R. W. Chadwick, M. Wang, and R. L. Phillips: Insecticide interactions, affecting residue storage in animal tissues. J. Agr. Food. Chem. 14, 545 (1966 a).Google Scholar
  176. Street, J. C., M. Wang, and A. D. Blau: Drug effects on dieldrin storage in rat tissue. Bull. Environ. Contamination Toxicol. 1, 6 (1966 b).Google Scholar
  177. Sun, Y. P.: Dynamics of insect toxicology — A mathematical and graphical evaluation of the relationship between insect toxicity and rates of penetration and detoxication of insecticides. Annual Meeting Amer. Entomol. Soc. Nov. (1967).Google Scholar
  178. Sun, Y. P., and E. R. Johnson: Synergistic and antagonistic actions of insecticide — synergist combinations and their mode of action. J. Agr. Food Chem. 8, 261 (1960).Google Scholar
  179. Sun, Y. P., C. H. Schaefer, and E. R. Johnson: Effects of application methods on the toxicity and distribution of dieldrin in house flies. J. Econ. Entomol. 60, 1033 (1967).Google Scholar
  180. Taylor, A.: The rapid determination of seed-dressing insecticide residues in animal relicta. Analyst 87, 824 (1962).Google Scholar
  181. Terranova, A. C., and G. W. Ware: Studies of endosulfan in bean plants by paper and gas chromatography. J. Econ. Entomol. 56, 596 (1963).Google Scholar
  182. Terriere, L. C., U. Khgemagi, and D. C. England: Endrin content of body tissues of steers, lambs and hogs receiving endrin in their daily diet. J. Agr. Food Chem. 6, 516 (1958).Google Scholar
  183. Terriere, L. C., G. H. Arscott, and U. Khgemagi: The endrin content of eggs and body tissue of poultry receiving endrin in their daily diet. J. Agr. Food Chem. 7, 502 (1959).Google Scholar
  184. Thomas, D. J., and A. E. Kilner: The synthesis of the insecticides aldrin and dieldrin labelled with carbon-14 at high specific activity. Internat. J. Applied Radiation Isotopes 9, 146 (1960).Google Scholar
  185. Treon, J. F., and F. P. Cleveland: Toxicity of certain chlorinated hydrocarbon insecticides for laboratory animals, with special reference to aldrin and dieldrin. J. Agr. Food Chem. 3, 402 (1955).Google Scholar
  186. Tsukamoto, M., and J. E. Casida: Metabolism of methylcarbamate insecticides by the NADPH2 requiring enzyme system from houseflies. Nature 213, 49 (1967).Google Scholar
  187. Tu, C. M., J. R. W. Miles, and C. R. Harris: Soil microbial degradation of aldrin. Life Sci. 7, 311 (1968).PubMedGoogle Scholar
  188. Turtle, C. E., A. Taylor, E. N. Wright, R. J. P. Thearle, H. Egan, W. H. Evans, and N. M. Soutar: The effects on birds of certain chlorinated insecticides used as seed dressings. J. Sci. Food Agr. 14, 567 (1963).Google Scholar
  189. Ulfvarsson, U.: Mercury, aldrin and dieldrin in pheasants. Svensk Kem. Tidskr. 77, 235 (1965).Google Scholar
  190. U.S. Public Health Service, Communicable Disease Center, Atlanta, Georgia: Technology Branch Summary of Investigations, No. 1, 45 (Jan.-Mar.) (1953).Google Scholar
  191. Whaley, W. G., H. H. Mollenhaver and J. H. Leech: The ultrastructure of the meristematic cell. Amer. Jour. Bot. 47, 409 (1960).Google Scholar
  192. Wheeler, W. B., D. E. H. Frear, R. O. Mumma, R. H. Hamilton, and R. C. Cotner: Absorportion and translocation of dieldrin forage crops. J. Agr. Food Chem. 15, 231 (1967).Google Scholar
  193. Winteringham, F. P. W., and J. M. Barnes: Comparative response of insects and mammals to certain halogenated hydrocarbons used as insecticides. Physiol. Rev. 35, 701 (1955).PubMedGoogle Scholar
  194. Winteringham, F. P. W., and A. Harrison: Mechanisms of resistance of adult houseflies to the insecticide dieldrin. Nature 184, 608 (1959).PubMedGoogle Scholar
  195. Wong, D. T., and L. C. Terriere: Epoxidation of aldrin, isodrin and heptachlor by rat liver microsomes. Biochem. Pharmacol. 14, 375 (1965).PubMedGoogle Scholar
  196. Wright, B. S.: Woodcock reproduction in DDT-sprayed areas of New Brunswick. J. Wildlife Management 24, 419 (1960).Google Scholar
  197. Wright, B. S.: Some effects of heptachlor and DDT on New Brunswick woodcocks. J. Wildlife Management 29, 172 (1965).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1969

Authors and Affiliations

  • G. T. Brooks
    • 1
  1. 1.Biochemistry Department, Pest Infestation LaboratoryAgricultural Research CouncilSloughEngland

Personalised recommendations