Advertisement

Advances in gas chromatographic detectors illustrated from applications to pesticide residue evaluations

  • W. E. Westlake
  • F. A. Gunther
Conference paper
Part of the Residue Reviews / Rückstandsberichte book series (RECT, volume 18)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, K., K. Lanneau, and R. K. Stevens: Response characteristics of a new “stacked” flame ionization detector. J. Assoc. Official Agr. chemists 49, 1022 (1966).Google Scholar
  2. Amy, J. W., E. M. Chait, W. E. Baitinger, and F. W. McLafferty: A general technique for collecting gas chromatographic fractions for introduction into the mass spectrometer. Anal. Chem. 37, 1265 (1965).CrossRefGoogle Scholar
  3. Bache, C. A., and D. J. Lisk: Determination of organophosphate insecticide residues using the emission spectrometric detector. Anal. Chem. 37, 1477 (1965).PubMedCrossRefGoogle Scholar
  4. Bache, C. A., and D. J. Lisk: Low pressure emission spectrometric determination of part-per-billion residue levels of organophosphorus pesticides. Anal. Chem. 38, 1757 (1966).CrossRefGoogle Scholar
  5. Beard, W. E.: Personal communication (1966).Google Scholar
  6. Beckman, H., and W. O. Gauer: The characteristics and operation parameters of a thermionic emission detector, selective and sensitive to phosphorus. Bull. Environ. Contamination and Toxicol. 1, 149 (1966).CrossRefGoogle Scholar
  7. Bellet, E. M., W. E. Westlake, and F. A. Gunther: Unpublished data (1966).Google Scholar
  8. Blinn, R. C., and F. A. Gunther: The promising utility of infrared assay of pesticides and their residues. S.R.I. Pesticide Research Bull. 2(3), 1 (1962 a).Google Scholar
  9. Blnn, R. C., and F. A. Gunther: The promising utility of infrared assay of pesticides and their residues. S.R.I. Pesticide Research Bull. 2(4), 3 (1962 b).Google Scholar
  10. Blnn, R. C., and F. A. Gunther: The promising utility of infrared assay of pesticides and their residues. S.R.I. Pesticide Research Bull. 3(1), 5 (1963).Google Scholar
  11. Braman, R. S.: Flame emission and dual flame emission—flame ionization detectors for gas chromatography. Anal. Chem. 38, 734 (1966).CrossRefGoogle Scholar
  12. Brody, S. S., and J. E. Chaney: Flame photometric detector. The application of a specific detector for phosphorus and for sulfur compounds—sensitive to microgram quantities. J. Gas Chromatog. 4, 42 (1966).Google Scholar
  13. Burchfield, H. P., D. E. Johnson, J. W. Rhoades, and R. J. Wheeler: Selective detection of phosphorus, sulfur, and halogen compounds in the gas chromatography of drugs and pesticides. J. Gas Chromatog. 3, 28 (1965 a).Google Scholar
  14. Burchfield, H. P., J. W. Rhoades, and R. J. Wheeler: Simultaneous and selective detection of phosphorus, sulfur, and halogen in pesticides by microcoulometric gas chromatography. J. Agr. Food Chem. 13, 511 (1965 b).CrossRefGoogle Scholar
  15. Burchfield, H. P., and R. J. Wheeler: Analysis by microcoulometric gas chromatography. J. Assoc. Official Agr. Chemists 49, 651 (1966).Google Scholar
  16. Cassil, C. C.: Pesticide residue analysis by microcoulometric gas chromatography. Residue Reviews 1, 37 (1962).Google Scholar
  17. Cassil, C. C.: Personal Communication (1966).Google Scholar
  18. Cavanagh, L. A.: Mass spectrometry of pesticides. S.R.I. Pesticide Research Bull. 3(1), 1 (1963).Google Scholar
  19. Challacombe, J. A., and J. A. McNulty: Applications of the microcoulometric titrating system as a detector in gas chromatography of pesticide residues. Residue Reviews 5, 57 (1963).Google Scholar
  20. Chen, J. T., and W. R. Benson: Characteristic infrared absorption spectra and frequencies of carbamate pesticides. J. Assoc. Official Agr. Chemists 49, 412 (1966).Google Scholar
  21. Clark, S. J.: Quantitative determination of pesticide residues by electron absorption chromatography: Characteristics of the detector. Residue Reviews 5, 32 (1964).PubMedGoogle Scholar
  22. Coahran, D. R.: A sodium flame detector of increased stability for phosphoruscontaining pesticides. Bull. Environ. Contamination and Toxicol. 1, 141 (1966).CrossRefGoogle Scholar
  23. Conkin, R. A.: Personal communication (1966).Google Scholar
  24. Coulson, D. M.: Gas chromatography of pesticides. Adv. Pest Control Research 5, 153 (1962).Google Scholar
  25. Coulson, D. M.: Electrolytic conductivity for gas chromatography. J. Gas Chromatog. 3, 134 (1965).Google Scholar
  26. Coulson, D. M.: Selective detection of nitrogen compounds in electrolytic conductivity gas chromatography. J. Gas Chromatog. 4, 285 (1966 a).Google Scholar
  27. Coulson, D. M.: An evaluation of electrolytic conductivity, electron capture, and microcoulometric detectors for pesticide residue analysis. Presented Ann. Meeting Chem. Inst, of Canada, Saskatoon, Saskatchewan, June (1966 b).Google Scholar
  28. Coulson, D. M.: Electrolytic conductivity detection for gas chromatography. Adv. in Chromatog. 3, 197 (1966 c).Google Scholar
  29. Coulson, D. M., and L. A. Cavanagh: Automatic chloride analyzer. Anal. Chem. 32, 1245 (1960 a).CrossRefGoogle Scholar
  30. Coulson, D. M., J. E. De Vries, and B. Walther: Microcoulometric gas chromatography of pesticides. J. Agr. Food Chem. 8, 399 (1960 b).CrossRefGoogle Scholar
  31. Coulson Instruments Co.: Bull. 5–66-1 (1966).Google Scholar
  32. Damico, J. N.: The mass spectra of some organophosphorus pesticide compounds. J. Assoc. Official Agr. Chemists 49, 1027 (1966).Google Scholar
  33. Damico, J. N., and W. R. Benson: The mass spectra of some carbamate pesticides. J. Assoc. Official Agr. Chemists 48, 344 (1965).Google Scholar
  34. Fish, D. W., and D. G. Crosby: Personal communication (Oct. 1966).Google Scholar
  35. F & M Scientific Division of Hewlett-Packard: New flame detector with extended linear dynamic range. Facts & Methods 7(1), 1 (1966).Google Scholar
  36. Gaston, L. K.: Gas chromatography using an electron absorption detector. Residue Reviews 5, 21 (1964).PubMedGoogle Scholar
  37. Giuffrida, L.: A flame ionization detector highly selective and sensitive to phosphorus—a sodium thermionic detector. J. Assoc. Official Agr. Chemists 47, 293 (1964).Google Scholar
  38. Goodwin, E. S., and J. G. Reynolds: Rapid identification and determination of residues of chlorinated pesticides by gas-liquid partition chromatography. Analyst 86, 697 (1961).CrossRefGoogle Scholar
  39. Goodwin, E. S., R. Goulden, A. Richardson, and J. G. Reynolds: The analysis of crop extracts for traces of chlorinated pesticides by gas-liquid partition chromatography. Chem. & Ind., p. 1220 (1960).Google Scholar
  40. Gunther, F. A.: Instrumentation in pesticide residue determination. Adv. Pest Control Research 5, 191 (1962).Google Scholar
  41. Gunther, F. A.: Advances in analytical detection of pesticides. In: Scientific aspects of pest control, Publ. 1402, Nat. Acad. Sci. Nat. Research Council, Washington, D. C. (1966).Google Scholar
  42. Gunther, F. A., R. G. Blinn, and D. E. Ott: Gas chromatography of pesticide residues: New methods of detection of organohalogen compounds and of “cleanup” of stripping solutions. Presented 139th meeting Amer. Chem. Soc., St. Louis, Mar. (1961).Google Scholar
  43. Gunther, F. A., R. G. Blinn, and D. E. Ott: Beilstein flame method of detection of organohalogen compounds emerging from a gas chromatograph. Anal. Chem. 34, 302 (1962).CrossRefGoogle Scholar
  44. Gunther, F. A., R. G. Blinn, M. J. Kolbezen, C. W. Wilson, and R. A. Conkin: Evaluating concentrations of spectrally absorbing vapors in dynamic systems. Anal. Chem. 30, 1089 (1958).CrossRefGoogle Scholar
  45. Gunther, F. A., and D. E. Ott: Automated pesticide residue analysis and screening. Residue Reviews 14, 12 (1966).PubMedGoogle Scholar
  46. Harley, J., W. Nel, and V. Pretorius: Flame ionization detector for gas chromatography. Nature 181, 177 (1958).CrossRefGoogle Scholar
  47. Hartmann, C. H.: Phosphorus detector for pesticide analysis. Bull Environ. Contamination and Toxicol. 1, 159 (1966).CrossRefGoogle Scholar
  48. Johns, T.: Personal communication (1966).Google Scholar
  49. Johns, T., and C. H. Braithwaite. Jr.: Selective detection and identification of pesticide residues. Residue Reviews 5, 45 (1964).PubMedGoogle Scholar
  50. Juvet, R. S., Jr., and R. P. Durbin: Characterization of flame photometric detector for gas chromatography. Anal. Chem. 38, 565 (1966).CrossRefGoogle Scholar
  51. Kantner, T. R., and R. O. Mumma: Application of mass spectroscopy to pesticide residue analysis. Residue Reviews 16, 138 (1966).Google Scholar
  52. Karmen, A.: Specific determination of halogen and phosphorus by flame ionization. Anal. Chem. 36, 1416 (1964).CrossRefGoogle Scholar
  53. Karmen, A., and L. Giuffrida: Enhancement of the response of the hydrogen flame detector to compounds containing halogens and phosphorus. Nature 201, 1204 (1964).PubMedCrossRefGoogle Scholar
  54. Lovelock, J. E., and S. R. Lipsky: Electron affinity spectroscopy—A new method for identification of functional groups in chemical compounds separated by gas chromatography. J. Amer. Chem. Soc. 82, 431 (1960).CrossRefGoogle Scholar
  55. McCaulley, D. F., and J. W. Cook: The infrared spectra of organic phosphate pesticides and their application to some problems in phosphate pesticide analysis. J. Assoc. Official Agr. Chemists 43, 710 (1960).Google Scholar
  56. McCormack, A. J., S. C. Tong, and W. D. Cooke: Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds. Anal. Chem. 37, 1470 (1965).CrossRefGoogle Scholar
  57. McNulty, J. A., and A. R. Myers: An advanced automatic microcoulometer for trace sulfur and halogen analysis. Pittsburgh Anal. Conf., Instrument Soc. of Amer., Mar. (1964).Google Scholar
  58. Martin, R. L.: Fast and sensitive method for determination of nitrogen. Anal. Chem. 38, 1209 (1966).CrossRefGoogle Scholar
  59. Mestres, R.: Personal communication (Sept. 1966).Google Scholar
  60. Morris, W. W. Jr., and E. O. Haenni: Infrared spectra of pesticides. J. Assoc. Official Agr. Chemists 46, 964 (1963).Google Scholar
  61. Mumma, R. O., and T. R. Kantner: Identification of halogenated pesticides by mass spectroscopy. J. Econ. Entomol. 59, 491 (1966).Google Scholar
  62. Ryhage, R.: Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal. Chem. 36, 759 (1964).CrossRefGoogle Scholar
  63. Stevens, R. K.: Persoanl communication (1966).Google Scholar
  64. Sutherland, G. L.: Residue analytical limit of detectability. Residue Reviews 10, 85 (1965).PubMedGoogle Scholar
  65. Sweeley, C. C., W. H. Elliott, I. Fries, and R. Ryhage: Mass spectrometric determination of unresolved components in gas chromatographic effluents. Anal. Chem. 38, 1549 (1966).PubMedCrossRefGoogle Scholar
  66. Watson, J. T., and K. Blemann: High resolution mass spectra of compounds emerging from gas chromatograph. Anal. Chem. 36, 1135 (1964).CrossRefGoogle Scholar
  67. Westlake, W. E.: Unpublished data (1966).Google Scholar
  68. Westlake, W. E., R. T. Murphy, and F. A. Gunther: Confusion of identification of o,p’-Kelthane as heptachlor in orange rind extractives. Bull. Environ. Contamination and Toxicol. 1, 29 (1966).CrossRefGoogle Scholar
  69. Zado, F. M., and R. S. Juvet. Jr.: A new selective-nonselective flame photometric detector for gas chromatography. Anal. Chem. 38, 569 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • W. E. Westlake
    • 1
  • F. A. Gunther
    • 1
  1. 1.Department of EntomologyUniversity of California Citrus Research Center and Agricultural Experiment StationRiversideUSA

Personalised recommendations