Advertisement

Der Stoffwechsel von Pesticiden in Säugetieren

  • W. Ernst
Conference paper
Part of the Residue Reviews / Rückstandsberichte book series (RECT, volume 18)

Abstract

Pesticide (Tabelle I) können bei ihrer Herstellung, Handhabung und Anwendung aber auch in Form von Rückständen in oder auf Lebensmitteln in den menschlichen Organismus gelangen. Hier unterliegen sie der Einwirkung verschiedener Enzymsysteme, in deren Verlauf sie in unterschiedlicher Weise biochemisch verändert werden können. Obwohl die mit den Nahrungsmitteln in den Organismus gelangenden Pesticidmengen im allgemeinen relativ klein sind, muss doch mit einer Beeinflussung der normalen Stoffwechselvorgänge durch die Pesticide selbst oder ihre Umwandlungsprodukte gerechnet werden. Aus diesem Grunde bildet bei der toxikologisch-hygienischen Bewertung von Pesticiden die Kenntnis ihres Schicksals im Säugetierorganismus eine wertvolle Ergänzung toxikologischer Prüfungen. Die hierbei gewonnenen Ergebnisse tragen daher nicht nur allgemein zur Vervollständigung unseres Bildes der Biotransformation körperfremder Stoffe bei, sondern besitzen auch eine erhebliche praktische Bedeutung.

Keywords

Mercapturic Acid Organophosphorus Insecticide Aromatic Nitrocompounds Nach Oraler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahmed, M. K., J. E. Casida, u. R. E. Nichols: Bovine metabolism of organophosphorus insecticides: significance of rumen fluid with particular reference to parathion. J. Agr. Food Chem. 6, 740 (1958).CrossRefGoogle Scholar
  2. Bann, J. M., T. Y. De Cino, N. W. Earle, u. Yum Pei Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chem. 4, 937 (1956).CrossRefGoogle Scholar
  3. Betts, J. J., S. P. James, u. W. V. Thorpe: The metabolism of pentachloronitrobenzene and 2,3,5,6-tetrachloronitrobenzene and the formation of mercapturic acids in the rabbit. Biochem. J. 61, 611 (1955).PubMedGoogle Scholar
  4. Block, W. D., u. H. H. Cornish: Metabolism of biphenyl and 4-chlorobiphenyl in the rabbit. J. Biol. Chem. 234, 3301 (1959).Google Scholar
  5. Bohme, C., u. F. Bär: Im Druck (1966).Google Scholar
  6. Bohme, C., u. W. Ernst: Über den Stoffwechsel von Harnstoffherbiciden in der Ratte. 2. Mitteilung. Diuron und Afalon. Food, Cosmetic, Toxicol. J. 3, 797 (1965).CrossRefGoogle Scholar
  7. Bray, H. G., Z. Hybs, S. P. James, u. W. Y. Thorpe: The formation of a mercapturic acid from 2,3,5,6-tetrachloronitrobenzene in the rabbit. Biochem. J. 52, XVIII (1952).Google Scholar
  8. Bray, H. G., Z. Hybs, S. P. James, u. W. Y. Thorpe: The metabolism of 2,3,5,6- and 2,3,4,5-tetrachloronitrobenzene in the rabbit and the reduction of aromatic nitrocompounds in the intestine. Biochem. J. 53, 266 (1953).PubMedGoogle Scholar
  9. Brindley, W. A., u. P. A. Dahm: Identification of the in vitro anticholinesterase metabolite of methylparathion. J. Econ. Entomol. 57, 47 (1964).Google Scholar
  10. Bull, D. L., u. D. A. Lindquist: Metabolism of 3-hydroxy-N,N-dimethylcrotonamide dimethyl phosphate by cotton plants, insects, and rats. J. Agr. Food Chem. 12, 310 (1964).CrossRefGoogle Scholar
  11. Bull, D. L., u. D. A. Lindquist: Metabolism of 3-hydroxy-N-methylciscrotonamide dimethylphosphat (Azodrin) by insects and rats. J. Agr. Food Chem. 14, 105 (1966).CrossRefGoogle Scholar
  12. Carpenter, C. P., C. S. Weil, P. E. Palm, M. W. Woodside, J. H. Nair, u. H. F. Smyth: Mammalian toxicity of 1-naphthyl-N-methylcarbamate. J. Agr. Food Chem. 9, 30 (1961).CrossRefGoogle Scholar
  13. Casida, J. E., P. E. Gatterdam, J. B. Knaak, R. D. Lánce, u. R. P. Niedermeier: Bovine metabolism of organophosphate insecticides. Subacute feeding studies with O,O-Dimethyl-l-carbomethoxy-l-propen-2-ylphosphate. J. Agr. Food Chem. 6, 658 (1958).CrossRefGoogle Scholar
  14. Casida, J. E., L. McBride, u. R. P. Niedermeier: Metabolism of 2,2-dichlorovinyl-dimethyl- phosphate in relation to residues in milk and mammalian tissues. J. Agr. Food Chem. 10, 370 (1962).CrossRefGoogle Scholar
  15. Chamberlain, W. F.: The metabolism of 32P-labeled Shell SD-4294 in a lactating ewe. J. Econ. Entomol. 57, 119 (1964 a).Google Scholar
  16. Chamberlain, W. F.: The metabolism of 32P-labeled Ciodrin in a lactating goat. J. Econ. Entomol. 57, 329 (1964 b).Google Scholar
  17. Chamberlain, W. F., P. E. Gatterdam, u. D. E. Hopkins: The metabolism of 32P-labeled dimethoate in sheep. J. Econ. Entomol. 54, 733 (1961).Google Scholar
  18. Clark, D. E., J. E. Young, R. L. Younger, L. M. Hunt, U. J. K. McLaran: The fate of 2,4-dichlorophenoxyacetic acid in sheep. J. Agr. Food Chem. 12, 43 (1964).CrossRefGoogle Scholar
  19. Datta, P. R., E. P. Laug, J. O. Watts, A. K. Klein, u. M. J. Nelson: Metabolites in urine of rats on diets containing aldrin or dieldrin. Nature 208, 289 (1965).CrossRefGoogle Scholar
  20. Dauterman, W. C, J. E. Casida, J. B. Knaak, u. T. Kowalczyk: Bovine metabbolism or organophosphorus insecticides. Metabolism and residues associated with oral administration of dimethoate to rats and three lactating cows. J. Agr. Food Chem. 7, 188 1959).CrossRefGoogle Scholar
  21. Davidow, B., u. J. L. Radomski: Isolation of an epoxide metabolite from fat tissues of dogs fed heptachlor. J. Pharmacol. Expt. Therap. 107, 259 (1953).Google Scholar
  22. Deema, P., E. Thompson, u. G. W. Ware: Metabolism, storage, and excretion of endosulfan-l4C in the mouse. J. Econ. Entomol. 59, 546 (1966).PubMedGoogle Scholar
  23. Dorough, H. W., N. C. Leeling, u. J. E. Casida: Nonhydrolytic pathway in metabolism of N-methylcarbamate insecticides. Science 140, 170 (1963).PubMedCrossRefGoogle Scholar
  24. Dorough, H. W., u. J. E. Casida: Nature of certain carbamate metabolites of the insecticide Sevin. J. Agr. Food Chem. 12, 294 (1964).CrossRefGoogle Scholar
  25. Ernst, W.: Umwandlung und Ausscheidung von 2-Hydroxydiphenyl bei der Ratte. Arzneimittel-Forsch. 15, 632 (1965).Google Scholar
  26. Ernst, W., u. F. Bär: Die Umwandlung des 2,4-Dinitro-6-sec.-butylphenols und seiner Ester im tierischen Organismus. Arzneimittel-Forsch. 14, 81 (1964).Google Scholar
  27. Ernst, W., u. C. Böhme: Über den Stoffwechsel von Harnstoff-Herbiciden in der Ratte. 1. Mitteilung. Monuron und Aresin. Food, Cosmetic, Toxicol. J. 3, 789 (1965).CrossRefGoogle Scholar
  28. Esser, H. O., u. P. W. Müller: Metabolism of GS 13005, a new insecticide. Experienta 22, 36 (1966).CrossRefGoogle Scholar
  29. Fang, S. G, M. George, u. T. C. Yu: Metabolism of 3-amino-l,2,4-triazole-14C by rats. J. Agr. Food Chem. 12, 219 (1964).CrossRefGoogle Scholar
  30. Fao-Who Report: Evaluation of the toxicity of pesticide residues in food. Report of a joint meeting of the FAO Committee on Pesticides in Agriculture and the WHO Expert Committee on Pesticide Residues. Geneva 30 Sept.-7 Oct. 1963.Google Scholar
  31. Fingerhut, M., B. Schmidt, u. K. Lang: Über den Stoffwechsel der l-14C-Sorbin- säure. Biochem. Z. 336, 118 (1962).Google Scholar
  32. Fukuto, T. R., R. L. Metcalf, R. B. March, u. M. G. Maxon: Chemical behavior of Systox isomers in biological systems. J. Econ. Entomol. 48, 347 (1955).Google Scholar
  33. Funckes, A. J., G. R. Hayes. Jr., u. W. V. Harwell: Urinary excretion of paranitrophenol by volunteers following dermal exposure to parathion at different ambient temperatures. J. Agr. Food Chem. 11, 455 (1963).CrossRefGoogle Scholar
  34. Gaines, T. B.: The acute toxicity of pesticides to rats. Toxicol. Applied Pharmacol. 2 88 (1960).CrossRefGoogle Scholar
  35. Gardocki, J. F., u. L. W. Hazleton: Urinary excretion of the metabolic products of parathion following its intravenous injection. J. Amer. Pharm. Assoc. 40, 491 (1951).CrossRefGoogle Scholar
  36. Ghazal, A., W. Koransky, J. Portig, H. W. Vohland, u. J. Klempau: Beschleunigung von Entgiftungsreaktionen durch verschiedene Insecticide. Naunyn-Schmiedeberg’s Arch. expt. Pathol, u. Pharmakol. 249, 1 (1964).Google Scholar
  37. Grover, P. L., u. P. Sims: The metabolism of 2,3,4,5,6-pentachloro-l-cyclohexen and γ-hexachlorocyclohexane in rats. Biochem. J. 96, 521 (1965).PubMedGoogle Scholar
  38. Hart, L. G., R. W. Shultice, u. J. R. Fouts: Stimulatory effects of Chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Applied Pharmacol. 5, 371 (1963).CrossRefGoogle Scholar
  39. Hasegawa, T.: Eine experimentelle Untersuchung der Vergiftung durch Parathion. Seine natürliche Zersetzung, die Ausscheidung im Harn und die Verteilung in verschiedenen Organen bei vergifteten Kaninchen. Fukuoka Acta med. 50, 1900 (1959).Google Scholar
  40. Hassan, A., S. M. A. D. Zayed, u. S. Hashish: Metabolism of organophosphorus insecticides. VI. Mechanism of detoxification of Dipterex in the rat. Biochem. Pharmacol. 14, 1692 (1965).PubMedCrossRefGoogle Scholar
  41. Herok, J., u. H. Götte: Radiometrische Untersuchungen über das Verhalten von Triphenylzinnacetat in Pflanze und Tier. Internat. J. Applied Radiation and Isotopes 14, 461 (1963).CrossRefGoogle Scholar
  42. Hladka, A.: Metabolism of metathione in rats. Prakovni Lekar. 18, 8 (1960).Google Scholar
  43. John, L. E. S., D. G. Wagner, u. D. J. Lisk: Fate of Atrazine, Kuron, Silvex, and 2,4,5-T in the dairy cow. J. Dairy Sei. 47, 1267 (1964).CrossRefGoogle Scholar
  44. Kamil, F. A., F. N. Smith, u. R. T. Williams: Studies in detoxication. 41. A study of the optical rotation of the amides and triacetylmethylesters of some biosynthetic substituted phenylglucuronides. Biochem. J. 50, 235 (1951).PubMedGoogle Scholar
  45. Kaplanis, J. N., W. E. Robbins, D. I. Darrow, D. E. Hopkins, R. E. Monroe, u. G. Treiber: The metabolism of dimethoate in cattle. J. Econ. Entomol. 52, 1190 (1959).Google Scholar
  46. Kaplanis, J. N., S. J. Louloudes, u. C. C. Roan: Verteilung und Ausscheidung von 32P-Diazinon bei Meerschweinchen. Trans. Kansas Acad. Sei. 65, 70 (1962).CrossRefGoogle Scholar
  47. Knaak, J. B., u. R. D. O’Brien: Insecticide potentiation. Effect of O-ethyl-O-(p-nitrophenyl)-phenylthionophosphonate upon the in vivo metabolites of malathion with rats and dogs. J. Agr. Food Chem. 8, 198 (1960).CrossRefGoogle Scholar
  48. Knaak, J. B., J. Marilyn, M. J. Tallant, W. J. Bartley, u. L. J. Sullivan: The metabolism of carbaryl in the rat, guinea pig, and man. J. Agr. Food. Chem. 13, 537 (1965).CrossRefGoogle Scholar
  49. Koransky, W., J. Portig, u. G. Münch: Resorption, Verteilung und Ausscheidung von α- und γ-Hexachlorcyclohexan. Naunyn-Schmiedeberg’s Arch. expt. Pathol. Pharmakol. 244, 564 (1963).Google Scholar
  50. Korte, F., u. H. Arent: Metabolism of insecticides. IX. Isolation and identification of dieldrin metabolites from urine of rabbits after oral administration of dieldrin-14C Life Sei. 4, 2017 (1965).Google Scholar
  51. Krueger, H. R., R. D. O’Brien, u. W. C. Dauterman: Relationship between metabolism and differential toxicity in insects and mice of diazinon, dimethoate, parathion and Acethion. J. Econ. Entomol. 53, 25 (1960).Google Scholar
  52. Laws, E. R.: The route of absorption of DDVP after oral administration to rats. Toxicol. Applied Pharmacol. 8, 193 (1966).CrossRefGoogle Scholar
  53. Leeling, N. C, u. J. E. Casida: Metabolites of carbaryl (1-naphthyl-methylcarba-mate) in mammals and enzymic systems for their formation. J. Agr. Food Chem. 14, 281 (1966).CrossRefGoogle Scholar
  54. March, R. B., R. L. Metcalf, T. R. Fukuto, u. M. G. Maxon: Metabolism of Systox in the white mouse and American cockroach. J. Econ Entomol. 48, 355 (1955).Google Scholar
  55. Marco, G. J., u. E. G. Jaworski: Metabolism of O-Phenyl-O-(4-nitrophenyl) methylphosphonothionate (Colep) in plants and animals. J. Agr. Food Chem. 12, 305 (1964).CrossRefGoogle Scholar
  56. Masri, M. S., F. T. Jones, R. E. Lundin, G. F. Bayley, u. F. De Eds: Metabolic fate of two chrysanthemum esters barthrin and dimethrin. Toxicol. Applied Pharmacol. 6, 711 (1964).CrossRefGoogle Scholar
  57. McMahon, R. E., u. R. H. Sullivan: The metabolism of the herbicide diphenamid in rats. Biochem. Pharmacol. 14, 1085 (1965).PubMedCrossRefGoogle Scholar
  58. Mendel, J. L., u. M. S. Walton: Conversion of p,p’-DDT to p,p’-DDD by intestinal flora of the rat. Science 151, 1527 (1966).PubMedCrossRefGoogle Scholar
  59. Menzer, R. E., u. J. E. CASIDA: Nature of toxic metabolites formed in mammals, insects, and plants from 3- (dimethoxyphosphinyloxy) -N,N-dimethyl-cis--croton-amide and its N-methyl analog. J. Agr. Food Chem. 13, 102 (1965).CrossRefGoogle Scholar
  60. Morsdorf, K, G. Ludwig, J. Vogel, u. F. Korte: Die Ausscheidung von Aldrin-C14 und Dieldrin-C14 sowie ihrer Metaboliten durch die Galle. Med. Exp. 8, 90 (1963).Google Scholar
  61. Moss, J. A., u. D. E. Hathway: Transport von organischen Verbindungen in Säugetieren. Verteilung von Dieldrin und Telodrin zwischen Zellkomponenten und löslichen Proteinen des Blutes. Biochem. J. 91, 384 (1964).PubMedGoogle Scholar
  62. Murano, T., Y. Yasuda, u. J. Ueda: Metabolie fate of 2,4-dinitrophenol (DNP). Osaka City Med. J. 4, 197 (1958).Google Scholar
  63. Murano, T., H. Namba, u. J. Ueda: The metabolic fate of 2,4-dinitrophenol. Osaka City Med. J. 6, 79 (1960).Google Scholar
  64. Nakatsugawa, T., M. Ishida, u. P. A. Dahm: Microsomal epoxidation of cyclodiene insecticides. Biochem. Pharmacol. 14, 1853 (1965).PubMedCrossRefGoogle Scholar
  65. Parker, V. H.: Enzymic reduction of 2,4-dinitrophenol by rat-tissue homogenates. Biochem. J. 51, 363 (1952).PubMedGoogle Scholar
  66. Peterson, J. E., u. W. H. Robison: Metabolic products of p,p’-DDT in the rat. Toxicol. Applied Pharmacol. 6, 321 (1964).CrossRefGoogle Scholar
  67. Poonawalla, N. H., u. F. Korte: Metabolism of insecticides. VIII. Excretion, distribution, and metabolism of α-chlordan-14C by rats. Life Sci. 3, 1497 (1964).PubMedCrossRefGoogle Scholar
  68. Radomski, J. L., U. B. Davidow: The metabolite of heptachlor; its estimation, storage, and toxicity. J. Pharmacol. Expt. Therap. 107, 266 (1953).Google Scholar
  69. Robbins, W. E., T. L. Hopkins, u. G. W. Eddy: Metabolism and exretion of phos- phorus-32-labeled diazinon in a cow. J. Agr. Food Chem. 5, 509 (1957).CrossRefGoogle Scholar
  70. Smith, J. N., R. H. Smithies, u. R. T. Williams: Studies in detoxication. 48. Urinary metabolites of 4,6-dinitro-o-cresol in the rabbit. Biochem. J. 54, 225 (1953).PubMedGoogle Scholar
  71. Stohlman, E. F., u. M. I. Smith: Toxicological action and metabolic fate of chlordane. Adv. Chem. Series 1, 228 (1950).CrossRefGoogle Scholar
  72. Uchida, T., W. C. Dauterman, u. R. D. O’Brien: The metabolism of dimethoate by vertebrate tissues. J. Agr. Food Chem. 12, 48 (1964).CrossRefGoogle Scholar
  73. Uchida, T., J. Zschintzsch, u. R. D. O’Brien: Relation between synergism and metabolism of dimethoate in mammals and insects. Toxicol. Applied Pharmacol. 8, 259 (1966).CrossRefGoogle Scholar
  74. Vardamis, A., U. L. G. Crawford: Comparative metabolism of O,O-dimethyl-O-p- nitrophenyl phosphorothioate (methylparathion) and O,O-dimethyl-O-(3-methyl-4-nitrophenyl) phosphorothioate (Sumithion). J. Econ. Entomol. 57, 136 (1964).Google Scholar
  75. Vigne, J. P., J. Chouteau, R. L. Tabau, P. Rancien, u. A. Karamanian: Metabolism of the insecticide diazinon in goats. Bull. Acad. vét. Fr. 30, 85 (1957).Google Scholar
  76. West, H. D., J. R. Lawson, I. H. Miller, u. G. R. Mathura: The fate of diphenyl in the rat. Arch. Biochem. Biophys. 60, 14 (1956).PubMedCrossRefGoogle Scholar
  77. White, W. C., u. T. R. Sweeney: The metabolism of 2,2-bis-(p-chlorphenyl)-1,1,1-trichloroethane (DDT). I. A metabolite from rabbit urine, di-(p-chlor-phenyl)acetic acid: its isolation, identification, and synthesis. U.S. Public Health Reports. 60, 66 (1945). 157Google Scholar
  78. Williams, E., R. W. Meikle, u. C. T. Redemann: Identification of metabolites of Zectran insecticide in dog urine. J. Agr. Food Chem. 12, 457 (1964).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • W. Ernst
    • 1
  1. 1.Institut für Meeresforschung285 Bremerhaven-GGermany

Personalised recommendations