Skip to main content

The metabolism of herbicides by plants and soils

  • Conference paper
Residue Reviews / Rückstands-Berichte

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RERERU,volume 3))

Abstract

The importance of the ability of organisms to metabolize exogenous chemicals is gaining increasing recognition. It is now demonstrated that such metabolism is of fundamental significance not only in the mode of action of such chemicals, the plants resistance to effect of applied chemicals but also determines the amount of such chemical that may be left on crops harvested for human utilization (Freed et al. 1961). In addition, the wide scale of utilization of chemicals as pesticides, and the wholesale discharge of organic chemicals such as detergents or effluents from manufacturing plants into the atmosphere or water results in wide scale contamination of man’s environment. Metabolism of these contaminants by plants and micro-organisms of the soil provides a means of reducing the level of exposure to man. For the foregoing reasons, then, an understanding of the metabolism of such chemicals by plant and soil takes on a greater importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, W. A., and N. E. Good: Studies on 3-indoleacetic acid metabolism IV. Conjugation with aspartic acid and amonia as processes in the metabolism of carboxyllic acid. Plant Physiol. 32, 566 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Andreae, W. A., and M. W. van Ysselstein: Studies of 3-indoleacetic acid metabolism VI. 3-indoleacetic acid uptake in metabolism by pea roots and epicotyls. Plant Physiol. 35, 225 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Andersen, R. N., A. J. Linck, and R. Behrens: Absorption, translocation and fate of dalapon in sugar beets and yellow foxtail. Weeds 10, 1 (1962).

    Article  CAS  Google Scholar 

  • Ashton, F. M.: Degradation of amitrole in soil. Proceedings Annual meeting Weed Soc. of Amer., St. Louis, Mo., p. 48 (1961).

    Google Scholar 

  • Audus, L. J.: The biological detoxication of 2,4-D in soil. Plant and Soil 2, 31 (1949).

    Article  CAS  Google Scholar 

  • Audus, L. J.: Biological detoxication of 2,4-D in soils; isolation of an elffective organism. Nature 166, 356 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Audus, L. J.: The biological detoxication of hormone herbicide in soil. Plant and Soil 3, 170 (1951).

    Article  CAS  Google Scholar 

  • Audus, L. J.: The decomposition of 2,4-dichlorophenoxyacetic and 2 methyl 4 chlorophenoxy- acetic in soil. J. Sei. Agr. 3, 268 (1952).

    Article  CAS  Google Scholar 

  • Audus, L. J.: Plant Growth Substances, 2nd ed. London: Leonard Hill 1959.

    Google Scholar 

  • Audus, L. J., and Symonds: Further studies on the breakdown of 2,4-D by a soil bacterium. Ann. Appl. Biol., Proceedings Jubilee Meeting 42, 174 (1955).

    Article  CAS  Google Scholar 

  • Bach, M. K.: Metabolites of 2,4-D acid from bean stems. Plant Physiol. 36, 558

    Google Scholar 

  • Baker, J. E.: An investigation of the mechanism of maleic hydrazide in tobacco and other plants. Doctoral Dissertation, North Carolina State College, Raleigh, North Carolina, 1958.

    Google Scholar 

  • Blanchard, F. A.: Uptake, distribution and metabolism of carbon14 labeled tri-chloroacetate in corn and pea plants. Weeds 3, 274 (1954).

    Article  Google Scholar 

  • Bollen, W. B.: Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol. 15, 69 (1961).

    Article  CAS  Google Scholar 

  • Burnside, O. C., E. L. Schmidt, and R. Behrens: Dissipation of simazine from soil. Weeds 9, 477 (1961).

    Article  Google Scholar 

  • Burschel, P.: Untersuchungen iiber das Verhalten von Simazin im Boden. Weed Res. 1, 131 (1961).

    Article  CAS  Google Scholar 

  • Burschel, P., and V. H. Freed: The decomposition of herbicides in soils. Weeds 7, 157 (1959).

    Article  CAS  Google Scholar 

  • Butts, J. S., and S. C. Fang: Tracer studies on the mechanism of action of hormonal herbicides. Atomic Energy Commission Report No. TID 7512, p. 209 (1956).

    Google Scholar 

  • Canny, M. J., and K. Markus: Breakdown of 2,4-dichlorophenoxyacetic acid in shoots and roots. Australian J. Biol. Sci. 13, 486 (1960).

    CAS  Google Scholar 

  • Cantarow, A., and B. Shepartz: Biochemistry, 3rd ed. Philadelphia: 1962.

    Google Scholar 

  • Carter, M. C., and A. W. Naylor: The formation, in vivo, of a complex between 3-amino 1,2,4-triazole and a glycine-serine derivative. Plant Physiol, (suppl. vol., 1959 ).

    Google Scholar 

  • Carter, M. C., and A. W. Naylor: Metabolism of 3-amino-l,2,4-triazole 5-C14 in plants. Botan. Gaz. 112, 138 (1960).

    Article  Google Scholar 

  • Carter, M. C., and A. W. Naylor: Studies on an unknown metabolic product of 3-amino-l,2,4-triazole. Physiol. Plantarum 16, 20 (1961).

    Article  Google Scholar 

  • Castelfranco, P., C. L. Fay, and D. B. Deutsch: Non-enzymic detoxification of 2-chloro-4,6-bis(ethylamino)-s-triazine by extracts of Zea mays. Weeds 9, 580 (1961)

    Article  CAS  Google Scholar 

  • Comes, R. D., D. W. Bohmont, and H. P. Alley: Movement and persistence of endothal (3,6-endoxohexohydrophthalic acid) as influenced by soil texture, temperature, and moisture levels. Amer. Soc. Sugar Beet Technol. 4, 287 (1961).

    Article  Google Scholar 

  • Davis, D. E., H. H. Funderburk, and N. G. Sansing: The absorption and translocation of C14 labeled simazine by corn, cotton and cucumber. Weeds 7, 300 (1959).

    Article  CAS  Google Scholar 

  • Day, B. E., J. S. Jordan, and R. T. Hendrixson: The decomposition of amitrole in California soils. Weeds 9, 443 (1961).

    Article  Google Scholar 

  • Dhillon, A. S., and E. H. Ludas: Absorption, translocation and persistence of 2,4-dichlorophenoxyacetic acid in some plants. Botan. Gaz. 112, 199 (1950).

    Article  Google Scholar 

  • De Rose, H. R., and A. S. Newman: The comparison of the persistence of certain plant growth regulators when applied to soil. Proc. Soil. Sci. Soc. Amer. 12, 222 (1947).

    Article  Google Scholar 

  • De Rose, H. R., and A. S. Newman: Persistence of some plant growth regulators when applied to the soil in herbicide treatments. Botan. Gaz. 107, 583 (1946).

    Article  Google Scholar 

  • Evans, R. A., W. H. Parr, and W. C. Evans: The bacterial oxidation of aromatic compounds. Biodiem. J. 44, V III (1949).

    CAS  Google Scholar 

  • Evans, W. C., and P. Moss: The metabolism of the herbicide p-chlorophenoxy- acetic acid by a soil microorganism; the formation of a 3-chloromuconic acid or fission. Biochem. J. 65, 8 (1957).

    Google Scholar 

  • Evans, W. C., and B. S. W. Smith: The photo chemical inactivation and microbial metabolism of chlorophenoxyacetic acid herbicide. Biochem. J. 57, X XX (1954).

    Google Scholar 

  • Fang, S. C., and J. S. Butts: Studies in plant metabolism III. Adsorption and metabolism of radioactive 2,4-D in corn and wheat plants. Plant Physiol. 29, 56 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Fang, S. C., V. H. Freed, R. H. Johnson, and D. R. Coffee: Absorption, translocation and metabolism of radioactive 3-(p-chlorophenyl)-l,l-dimethyl urea (CMU) by bean plants. J. Agr. Food Chem. 3, 400 (1955).

    Article  CAS  Google Scholar 

  • Fang, S, C., E. G. Jaworski, A. V. Logan, V. H. Freed, and J. S. Butts: The absorption of radioactive 2,4-dichlorophenoxyacetic acid and the translocation of C14 by bean plants. Arch. Biochem. Biophys. 32, 249 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Fang, S, C., and T. C. Yu: Absorption of EPTC-S35 by seeds and its metabolic fate during early stages of germination. Res. Progress Rept., Western Weed Control Conference, p. 91 (1959).

    Google Scholar 

  • Faulkner, J. K., and D. Woodcock: Metabolism of chlorop’henoxyacetic acids by aspergillus niger. Chem. Ind. 34, 1366 (1961).

    Google Scholar 

  • Fawcett, C. H., R. C. Seeley, F. Taylor, R. L. Wain, and F. Wightman: Alpha oxidation of omega (2,4-dichlorophenoxy) alkane nitriles and 3 indolylaceto nitrile within plant tissues. Nature 176, 1026 (1955).

    Article  CAS  Google Scholar 

  • Fawcett, C. H., H. T. Taylor, R. L. Wayne, and F. Wightman: The metabolism of certain acids, amides and nitriles within plant tissues. Proc. Roy. Soc. 145 B, 543 (1957).

    Google Scholar 

  • Fawcett, C. H., R. L. Wain, and F. Wightman: Beta oxidation of omega (3-indolyl) alkane carboxylic acid in plant tissues. Nature 181, 1387 (1958).

    Article  CAS  Google Scholar 

  • Fawcett, C. H., R. L. Wain, and F. Wightman: Metabolism of 3-indolyl alkane carboxycyclic and their amides, nitriles an methyl esters in plant tissues. Proc. Roy. Soc. 152, 231 (1960).

    Article  CAS  Google Scholar 

  • Fernely, H. N., and W. C. Evans: Metabolism of 2,4-dichlorophenoxyacetic acid by soils pseudomona. Isolation of a chloromuconic acid as an intermediate. Biochem. J. 73, 22 (1959).

    Google Scholar 

  • Foy, C. L.: Absorption, distribution and metabolism of 2,2-dichloropropionic acid in relation to phototoxicity II. Distribution and metabolic fate during early stages of germination. Plant Physiol. 36, 698 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Frederick, J. F., and A. C. Gentile: The formation of the glucose derivative of 3-amino-l,2,4-triazole under physiological conditions. Physiol. Plantarum 13, 761 (1960).

    Article  Google Scholar 

  • Freed, V. H., M. Montgomery, and M. M. Kief: The metabolism of certain herbicides by plants. — A factor in their biological activity. Proc. Northeastern Weed Control Conference 15, 6 (1961).

    CAS  Google Scholar 

  • Galston, A. W.: Riboflavin sensitized photo-oxidation of indole acetic acid and related compounds. Proc. Nat. Acad. Sci. 35, 361 (1949).

    Article  Google Scholar 

  • Hamilton, R. H., and D. E. Moreland: Simazine: degradation by corn seedlings. Science 135, 373 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Herett, R. A.: Metabolism of 3-amino-l,2,4-triazole in canada thistle. Proc. Weed Soc. Amer. p. 44 (1961).

    Google Scholar 

  • Herett, R. A., and A. J. Linck: The metabolism of 3-amino-l,2,4-triazole by canada thistle and bindweed. Physiol. Plantarum 14, 767 (1961).

    Article  Google Scholar 

  • Hill, G. D., J. W. McGahen, H. M. Baker, D. W. Finnerty, and C. W. Bingeman: The fate of substituted urea herbicides in agricultural soils. Agron. J. 47, 93 (1955).

    Article  CAS  Google Scholar 

  • Hiltibran, R. C.: Duration of toxicity of endothal in water. Weeds 10, 17 (1962).

    Article  CAS  Google Scholar 

  • Holley, R. W.: Studies of the fate of radioactive 2,4-D acid in bean plants II. A water soluble transformation product of 2,4-D. Arch. Biochem. Biophys. 35, 171 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Holley, R. W., F. P. Boyle, and D. B. Hand: Studies of the fate of radioactive 2,4-D acid in bean plants. Arch. Biochem. Biophys. 27, 143 (1950).

    CAS  Google Scholar 

  • Holstun, J. T., and W. E. Loomis: Leaching and decomposition of 2,2-dichloro¬propionic acid in several Iowa soils. Weeds 4, 205 (1956).

    Article  CAS  Google Scholar 

  • Kief, M. M.: The fate of 4-(2,4-dichlorophenoxy)butyric acid in fat metabolizing systems. Thesis, Oregon State University (1961).

    Google Scholar 

  • Klingman, G. C.: Weed control as a science. New York-London: Wiley 1961.

    Google Scholar 

  • Jaworski, E. G., and J. S. Butts: Studies in plant metabolism II. The metabolism of C14-labeled 2,4-dichlorophenoxyacetic acids in bean plants. Arch. Biochem. Biophys. 38, 207 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Jaworski, E. G., S. C. Fang, and V. H. Freed: Studies in plant metabolism V. The metabolism of radioactive 2,4-D in etiolated bean plants. Plant Physiol. 30, 272 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Leafe, E. L.: Metabolism and selectivity of growth regulator herbicides. Nature 193, 485 (1962).

    Article  CAS  Google Scholar 

  • Leaper, J. M. F., and J. R. Bishop: Relation of halogen position to physiological properties in the mon, di, and trichlorophenoxyacetic acids. Bot. Gazette 112, 250 (1950).

    Article  Google Scholar 

  • Leopold, A. C.: Auxins and plant growth. Univ. of Cal. Press, Berkeley (1955).

    Google Scholar 

  • Leopold, A. C.: The fate of 2,4-D in plants and soils. Proc. No. Central Weed Control Conf. 13th, 4 (1956).

    Google Scholar 

  • Linscott, E. L., and M. K. McCarty: Absorption, translocation and degradation of 2,4-D in iron weed. 1961 Meeting of the Weed Society of America, St. Louis, Mo., 42.

    Google Scholar 

  • Linscott, E. L., and M. K. McCarty: Absorption, translocation and degradation of 2,4-D in ironweed. Weeds 10, 65 (1962).

    Article  CAS  Google Scholar 

  • Luckwill, L. C., and C. P. Lloyd-Jones: Metabolism of plant growth regulators I. 2,4-Dichlorophenoxyacetic acid (2,4-D) in leaves of red and of black: currant. Ann. Appl. Biol. 48, 613 (1960).

    Article  CAS  Google Scholar 

  • Massini, A. P.: The movement of 2, 6-dichlojrobenzonitrile in soils and in plants in relation to its physical properties. Weed Res. 1, 142 (1961).

    CAS  Google Scholar 

  • Massini, P.: Synthesis of 3-amino-l,2,4-triazolyl alanine, from 3-amino-l,2,4- triazole in plants. Biodiim. et Biophys. Acta 36, 548 (1959).

    CAS  Google Scholar 

  • McIlrath, W. J., and D. R. Irgle: Further evidence of the persistence of 2, 4-D stimulaeous in cotton. Plant Physiol. 28, 693 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. S., and W. C. Hall: Absorption and metabolism of aminotriazole in cotton. J. Agric. Food Chem. 9, 210 (1961).

    Article  CAS  Google Scholar 

  • Miller, L. P.: Decomposition of ethylene chlorohydrin in potatoe tubers. Contrib. Boyce Thompson Inst. 8, 479 (1937).

    CAS  Google Scholar 

  • Miller, L. P.: Formation of β-(2-chloroethyle)-d-glucoside by gladiolus corns from absorbed ethylene chlorohydrin. Contrib. Boyce Thompson Inst. 9, 425 (1938).

    CAS  Google Scholar 

  • Miller, L. P.: Synthesis of β-(2-chloroethyl)-d-glucoside by potatoes treated with ethylene chlorohydrin. Contrib. Boyce Thompson Inst. 10, 139 (1939).

    CAS  Google Scholar 

  • Montgomery, M., and V. H. Freed: The metabolism of atrazine by expressed juice of corn. Res. Prog. Rept. Western Weed Control Conf. 71 (1960).

    Google Scholar 

  • Montgomery, M., and V. H. Freed: The uptake, translocation and metabolism of simazine and atrazine by corn plants. Weeds 9, 231 (1961).

    Article  CAS  Google Scholar 

  • Newman, A. S., and J. R. Thomas: Decomposition of 2,4-dichlorophenoxyacetic acid in soil and liquid media. Soil. Sci. Soc. Amer. Proc. 14, 160 (1950).

    Article  CAS  Google Scholar 

  • Nutman, P. S., H. G. Thornton, and J. H. Quastel: Inhibition of plant growth by 2,4-D and other plant growth substances. Nature 155, 498 (1945).

    Article  CAS  Google Scholar 

  • Ogle, R. E., and G. F. Warren: Fate and activity of herbicides in soils. Weeds 3, 257 (1954).

    Article  Google Scholar 

  • Racusen, D.: The metabolism and translocation of 3-aminotriazole in plants. Arch. Biochem. Biophys. 74, 106 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Ragab, M. T., and J. P. McCollum: Degradation of C14 labeled simazine by plants and soil microorganisms. Weeds 9, 72 (1961).

    Article  Google Scholar 

  • Ray, P. M.: The destruction of indoleacetic acid II. Spectrophotometric study of the enzymatic reaction. Arch. Biochem. Biophys. 64, 193 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Ray, P. M., and K. V. Thimann: The destruction of indoleacetic acid I. Action of an enzyme from Omphalia flavida. Arch. Biochem. Biophys. 64, 175 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Richards, R. R.: Responses of representative fungi to certain growth-regulating substances. Bot. Gaz. 110, 4 (1949).

    Article  Google Scholar 

  • Riepma, P.: Preliminary observations on the breakdown of 3-amino-l,2,4-triazole in soil. Weed Res. 2, 41 (1962).

    Article  CAS  Google Scholar 

  • Roadhouse, F. E. B., and L. A. Birk: Penetration of and persistence in soil of the herbicide 2-dbloro-4, 6-bis(ethylamino)-s-triazine. Can. J. Plant Sci. 41, 252 (1961).

    Article  CAS  Google Scholar 

  • Robbins, W. W., A. S. Crafts, and R. N. Raynor: Weed Control, 2nd ed. New York: McGraw-Hill 1952.

    Google Scholar 

  • Rogers, B. J.: The action of 3-amino-l,2,4-triazole in plants. Hormolog. 1, 10

    Google Scholar 

  • Rogers, B. J.: Translocation and fate of Amino Triazole in plants. Weeds 5, 5 (1957 a).

    Article  Google Scholar 

  • Rogoff, M. H., and J. Reid: Biological decomposition of 2, 4-D. Bact. Proc. 54, 21 (1954).

    CAS  Google Scholar 

  • Rogoff, M. H., and J. Reid: Bacterial decomposition of 2, 4-dichlorophenoxyacetic acid. J. Bact. 71, 303 (1956).

    PubMed  CAS  Google Scholar 

  • Roth, W., and E. Knülsi: Beitrag zur Kenntnis der Resistenzphänoneme einzelner Pflanzen gegenüber dem phytotoxisdien Wirkstoff Simazin. Experientia 17, 312 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Sheets, T. J., and A. S. Crafts: The phototoxicity of four phenylurea herbicides in soil. Weeds 5, 93 (1957).

    Article  CAS  Google Scholar 

  • Slade, R. E., W. G. Templeman, and W. A. Sexton: Plant growth substances as selective weed killers. Nature 155, 497 (1945).

    Article  CAS  Google Scholar 

  • Slife, F. W., J. L. Key, S. Yamaguchi, and A. S. Crafts: Penetration translocation in metabolism of 2, 4-D and 2, 4, 5-T in wild and cultivated cucumber plants. Weeds 10, 29 (1962).

    Article  CAS  Google Scholar 

  • Smith, A. E., J. W. Zukel, G. M. Stone, and J. A. Riddell: Factors aiffecting and performance of maleic hydrazide. J. Agr. Food Chem. 7, 341 (1959).

    Article  CAS  Google Scholar 

  • Steenson, P. I., and N. Walker: The pathway of breakdown of 2, 4-dichloro-4-chloro-2-methyl-phenoxyacetic acid by bacteria. J. Gen. Microbiol. 16, 146 (1957).

    PubMed  CAS  Google Scholar 

  • Sutherland, M. L.: The recovery of C14 amiben from a typical greenhouse type soil. Proc. Northeast Weed Control Conference, 16th Meeting, p. 546 (1962).

    Google Scholar 

  • Synerholm, M. E., and P. W. Zimmerman: Preparation of a series of W-f(2,4-dichlorophenoxy)-Aliphatic Acids and some related compounds with a consideration of their biochemical role as plant-growth regulators. Contrib. Boyce Thompson Inst. 14, 369 (1947).

    CAS  Google Scholar 

  • Tang, Y. W., and J. Bonner: The enzymatic inactivation of indoleacetic acid I. Arch. Biochem. Biophys. 13, 11 (1947).

    CAS  Google Scholar 

  • Taylor, H. F., and R. L. Wain: α-Oxidation of indoleacetonitrile. Nature 184, 1142 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Towers,G.H., and A.Hutchinson: Formation of a glycoside of maleic hydracide in plants. Nature 181, 1535 (1958).

    Article  CAS  Google Scholar 

  • Vlitos, A. J.: Biological activation of sodium 2 (2,4-dichlorophenoxy) ethyl sulfate. Contrib. Boyce-Thompson Inst. 17 (No. 2), 127 (1953).

    CAS  Google Scholar 

  • Wain, R. L., and F. Wightman: Growth-regulating activity of certain omega substituted alkyl carboxylic acids in relation to their beta oxidation within the plant. Proc. Roy. Soc. B 142, 525 (1954).

    Article  CAS  Google Scholar 

  • Walker, K., and W. C. Evans: Pathways in the metabolism of monohydroxy-benzoic acid by soil bacteria. Biochem. J. 52, xxiii (1952).

    PubMed  CAS  Google Scholar 

  • Wangerin, R. R.: CDAA-controls weed grasses in grass family crops. Farm. Chem. 118, 47 (1905).

    Google Scholar 

  • Wayne, R. L.: Herbicidal selectivity through specific action of plants on compounds. J. Agr. Food Chem. 3, 128 (1955).

    Article  Google Scholar 

  • Webley, D. M., R. B. Duff, and Y. C. Farmer: Formation of β-hydroxy acid has an intermediate in the microbiological version of monochlorophenoxy-butyric acids to corresponding substituted acetic acids. Nature 179, 1130 (1957).

    Article  CAS  Google Scholar 

  • Webley, D. M., R. B. Duff, and Y. C. Farmer: The influence of chemical structure β-oxidation by soil nocardias. J. Gen. Microbiol. 18, 733 (1958).

    PubMed  CAS  Google Scholar 

  • Webley, D. M., R. B. Duff, and Y. C. Farmer: Effect of substitution in side-chain on β-oxidation of aryloxy-alkyl carboxylic acids by nocardia opaca. Nature 183, 748 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, R. L.: 2, 4-D mechanisms of action. J. Agr. Food Chem. 1, 250 (1953).

    Article  CAS  Google Scholar 

  • Weintraub, R. L., J. W. Brown, M. Fields, and J. Rohan: Reduction of C1402 from labeled 2,4-dichlorophenoxyacetic acids by plants. Amer. J. Bot. 37, 682 (1950).

    Google Scholar 

  • Weintraub, R. L., J. W. Brown, A. Fields, and J. Rohan: Metabolism of 2,4-dichlorophenoxy-acetic acid I. C1402 production by plants treated with labeled 2,4-dichlorophenoxyacetic acid. Plant Physiol. 27, 293 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, R. L., J. H. Reinhart, R. A. Scherff, and L. Schisler: Metabolism of 2,4-D III. Metabolism and persistence in dorman plant tissue. Plant Physiol. 29, 303 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, R. L., J. N. Yeatman, J. A. Lockhart, J. H. Reinhart, and M. Fields: Metabolism of 2,4-D acid II. Metabolism of the side-chain by bean plants. Arch. Biochem. Biophys. 40, 277 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. P.: Detoxication Mechanisms, 2nd ed. New York: Wiley 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag OHG Berlin · Göttingen · Heidelberg

About this paper

Cite this paper

Freed, V.H., Montgomery, M.L. (1963). The metabolism of herbicides by plants and soils. In: Gunther, F.A. (eds) Residue Reviews / Rückstands-Berichte. Reviews of Environmental Contamination and Toxicology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-8377-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8377-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-8379-0

  • Online ISBN: 978-1-4615-8377-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics