Advertisement

The utilization of infrared and ultraviolet spectrophotometric procedures for assay of pesticide residues

  • Roger C. Blinn
  • Francis A. Gunther
Conference paper
  • 52 Downloads
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 2)

Abstract

In the United States, the field of residue analytical chemistry has recently emerged from its infancy. This gestation logically can be divided into that period preceding the introduction of DDT1 in 1942 and that period extending from the introduction of DDT until the enactment of Public Law 518 (the Miller Pesticide Residue Amendment to the Federal Food, Drug, and Cosmetic Act) in 1954 and of Public Law 929 (the Food Additives Amendment to the Federal Food, Drug, and Cosmetic Act) in 1958. The first portion of this infancy, the pre-DDT period, was devoted principally to the elucidation of analytically scrutinizable factors pertaining to the field performance of available pest-control chemicals, e.g., the effects of stickers, spreaders, and other adjuvants on depositing efficiencies and residue longevities. Awakening interest as to the amounts of pest-control agent present at the time of consumption, as associated with possible hazards to the public health, was apparent at this time. The post-DDT period was evidenced by ever increasing concern with the hazards to health that might result from some penetrated pesticide residues, with associated concern about the possible risks to be associated with metabolites of pesticides that might be formed either during residual existence or after mammalian ingestion.

Keywords

Pesticide Residue Methyl Parathion Ultraviolet Spectrophotometry Spectrophotometric Procedure Infrared Spectrophotometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, W.: The determination of warfarin in rodenticidi. Chem. Ind. 154 (1959).Google Scholar
  2. Bann, J. M., T. J. de Cino, N. W. Earle, and Y. P. Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chem. 4, 937 (1956).Google Scholar
  3. Barrette, J. P., and R. Payfer: The determination of rotenone in liquid and aerosol formulations. J. Assoc. Official Agr. Chemists 44, 581 (1961).Google Scholar
  4. Bates, A. N.: Analysis of endrin residues in flour by infrared spectroscopy. J. Sci. Food Agr. 11, 751 (1960).Google Scholar
  5. Bellamy, L. J.: The infrared spectra of complex molecules. 2ed. London: Methuen, and New York: Wiley 1958.Google Scholar
  6. Beroza, M., N. Green, S. I. Gertler, L. F. Steiner, and D. H. Miyashita: New attractants for the Mediterranean fruit fly. J. Agr. Food Chem. 9, 361 (1961).Google Scholar
  7. Biggs, A. I.: The spectrophotometric identification and determination of parathion. Analyst 80, 279 (1955).Google Scholar
  8. Blinn, R. C: The utility of ultraviolet spectrophotometry in determining pesticide residues in foodstuiffs. In Instrumental Methods of Analysis of Food Additives. New York—London: Interscience 1961.Google Scholar
  9. Blinn, R. C, and F. A. Gunther: Determination of residues of O,O-diethyl O-(2-isopropyl-6-methyl-4-pyrimidyl) phosphorothioate in milk. J. Agr. Food Chem. 3, 1013 (1955).Google Scholar
  10. Blinn, R. C, and F. A. Gunther: Indirect ultraviolet determination of sulfur dioxide by means of plumbous ion. Analyst 88, 675 (1961).Google Scholar
  11. Blinn, R. C, R. W. Dorner, J. H. Barkley, L. R. Jeppson, F. A. Gunther, and C. C. Cassil: Locale of aged Tedion residues on citrus fruits. J. Econ. Entomol. 52, 723 (1959).Google Scholar
  12. Blinn, R. C, F. A. Gunther, and M. J. Kolbezen: Microdetermination of the acaricide ethyl p,p-dichlorobenzilate (Chlorobenzilate). J. Agr. Food Chem. 2, 1080 (1954).Google Scholar
  13. Blinn, R. C, and M. S. Mulla: Infrared determination of aldrin and dieldrin in aldrin-treated soil. J. Econ. Entomol. 53, 1129 (1960).Google Scholar
  14. Bombaugh, K. J., and W. C. Bull: Assay of Barban, 4-chloro-2-butynyl-N-(3-chlorophenyl)carbamate. J. Agr. Food Chem. 9, 386 (1961).Google Scholar
  15. Bottini, E., and C. Sapetti: Absorption spectra as a modern method of investigating pesticides. Ann. sper. agrar. (Rome) 12, 77 (1958); Chem. Abst. 53, 16691 a (1959).Google Scholar
  16. Bowman, J. S., and J. E. Casida: Metabolism of the systemic insecticide O,O-diethyl S-(ethylthio)methyl phosphorodithioate (Thimet) in plants. J. Agr. Food Chem. 5, 192 (1957).Google Scholar
  17. Braid, P. E., and J. le Bocuf: Determination of trace amounts of lindane in air by infrared spectrophotometry. Anal. Chem. 29, 1625 (1957).Google Scholar
  18. Brandenberger, H., and H. Bader: Determination of powder moisture by azeotropic distillation and near-infrared spectrophotometry. Anal. Chem. 33, 1947 (1961).Google Scholar
  19. Brieger, H., F. Rieders, and W. A. Hodes: Acrylonitrile: spectrophotometric determination, acute toxicity and mechanism of action. Arch. Ind. Hyg. Occupational Med. 6, 128 (1952).Google Scholar
  20. Bruce, R. B., J. W. Howard, and J. B. Zink: Determination of diphenylamine residues on apples. J. Agr. Food Chem. 6, 597 (1958).Google Scholar
  21. Bunger, W. B., and R. W. Richburg: Infrared determination of dichlorodiphenyl- trichloroethane and benzene hexachloride in insecticides. J. Agr. Food Chem. 5, 127 (1957).Google Scholar
  22. Calderbank, A., C. B. Morgan, and S. H. Yuen: Determination of Diquat residues in potato tubers. Analyst 86, 569 (1961).Google Scholar
  23. Carman, G. E., F. A. Gunther, R. C. Blinn, and R. D. Garmus: The physical fate of parathion applied to citrus. J. Econ. Entomol. 45, 767 (1953).Google Scholar
  24. Chang, S. C.: Chromatographic separation of active components of natural pyrethrins and their characterizations. J. Agr. Food Chem. 9, 390 (1961).Google Scholar
  25. Chen, Y. S.: Microdetermination of parathion (and related compounds). Bull. Assoc. Agr. Chem. Natl. Taiwan Univ. 8, 21 (1959); Chem. Abst. 53, 22707i (1959).Google Scholar
  26. Clark, W. H.: Infrared analysis of the isomers of 2V,N-diethyltoluamide. Anal. Chem. 31, 197 (1959).Google Scholar
  27. Clark, W. H.: Infrared analysis of insecticides to determine toxaphene alone or in the presence of dichlorodiphenyltrichloroethane (DDT). J. Agr. Food Chem. 10, 214 (1962).Google Scholar
  28. Cleverley, B.: The estimation of mixtures of DDT and BHC isomers using infrared differential null-analysis. Anal. Chem. 33, 1621 (1961).Google Scholar
  29. Colthup, N. B.: Spectra-structure correlations in the infrared region. J. Opt. Soc. Amer. 40, 397 (1950).Google Scholar
  30. Conkin, R. A., and E. G. Jaworski: Detection of 2-chloroallyl diethyldithio-carbamate residues in field-treated crops. Presented at 133rd National Meeting, Amer. Chem. Soc. San Francisco, California. (1958).Google Scholar
  31. Cook, J. W.: Paper chromatography of some organic phosphate insecticides. III. Effects of light on systox and isosystox. J. Assoc. Official Agr. Chemists 37, 989 (1954).Google Scholar
  32. Coulson, D. M.: Gas chromatography of pesticides. Adv. Pest Control Research 5, 153 (1962).Google Scholar
  33. Daasch, L. W.: Infrared spectroscopic analysis of five isomers of 1,2,3,4,5,6-hexa-chlorocyclohexane. Anal. Chem. 19, 779 (1947).Google Scholar
  34. Daasch, L. W., and D. C. Smith: Infrared spectra of phosphorus compounds. Anal. Chem. 23, 1853 (1951).Google Scholar
  35. Dauterman, W. C., J. E. Casida, J. B. Knack, and T. Kowalczyk: Bovine metabolism of organophosphorus insecticides. Metabolism and residues associated with oral administration of dimethoate to rats and three lactating cows. J. Agr. Food Chem. 7, 188 (1959).Google Scholar
  36. Davidow, B., and G. Woodard: An ultraviolet spectrophotometric method for the determination of benzene hexachloride. J. Assoc. Official Agr. Chemists 32, 751 (1949).Google Scholar
  37. Derkosch, J., H. Jansch, R. Leutner, and F. X. Mayer: Identification of insecticide E-605. Monatssch. 85, 684 (1954); Chem. Abst. 48, 14090 b (1954).Google Scholar
  38. Derkosch, J., H., and F. X. Mayer: Detection and identification of the insecticide E-605 in forensic chemistry. Microchim. Acta 495 (1955); Chem. Abst. 49, 11508 a (1955).Google Scholar
  39. Diephuis, F., and C. L. Dunn: Toxaphene in tissues of cattle and sheep fed toxaphene-treated alfalfa. Montana State Coll. Agr. Expt. Stat. Bull. 461, 22 (1949); Chem. Abst. 43, 8600 g (1949).Google Scholar
  40. Duncan, A. B. F.: Theory of electronic spectra. Chemical applications of spectroscopy. In Technique of Organic Chemistry Vol. IX. New York—London: Interscience 1956 a.Google Scholar
  41. Duncan, A. B. F.: Theory of infrared and raman spectra. Chemical applications of spectroscopy. In Technique of organic chemistry Vol. IX. New York—London: Interscience 1956 b.Google Scholar
  42. Elliott, M.: The pyrethrins and related compounds. II. Infra-red spectra of the pyrethrins and other constituents of pyrethrum extract. J. Appl. Chem. 11, 19 (1961).Google Scholar
  43. Englis, D. T., B. B. Burnett, R. A. Schrieber, and J. W. Miles: Determination of benzoic and salicylic acids in food products. J. Agr. Food Chem. 3, 964 (1955).Google Scholar
  44. Ewing, G. W.: Instrumental methods of chemical analysis. 2ed. New York— Toronto—London: McGraw-Hill 1960.Google Scholar
  45. Fagen, H. J., E. P. Kolen, and R. V. Hussory: Spectrophotometric method for determining piperine in oleoresins of black pepper. J. Agr. Food Chem. 3, 860 (1955).Google Scholar
  46. Fahrenfort, J.: Attenuated total reflection. A new principle for the production of useful infrared reflection spectra of organic compounds. Spectrochim. Acta 17, 698 (1961).Google Scholar
  47. Ferguson, C. E. jr., L. N. Gard, and K. S. Dress: An infrared analytical method for determining residues of isopropyl iV-(3-chlorophenyl)carbamate (CIPC) in white potatoes treated for sprout inhibition. Presented at 141st National Meeting, Amer. Chem. Soc. Washington, D.C. (1962).Google Scholar
  48. Fischer, W., and U. Ulrich: Detection of plant pesticides in mixtures by infrared spectroscopy. 2. Anal. Chem. 172, 175 (1960); Nachrbl. deut. Pflanzenschutzdienstes (Stuttgart) 12, 133 (1960); Chem. Abst. 54, 13525 i (1960).Google Scholar
  49. Forman, S. E., B. L. Gilbert, G. S. Johnson, C. A. Erickson, and H. Adelman: Thiodan-5a,9a-C 24 J. Agr. Food Chem. 8, 193 (1960).Google Scholar
  50. Freeman, S. K.: Infrared spectrophotometric determination of allethrin. Anal. Chem. 27, 1268 (1955).Google Scholar
  51. Freeman, S. K.: Stability of Allethrin vs pyrethrins. Soap and Chem. Specialties 32 (No$12), 131, 133, 135; (No. 3), 150, 153, 166, 170, 173, 197 (1956).Google Scholar
  52. Friedel, R. A., and M. Orchin: Ultraviolet spectra of aromatic compounds. New York: Wiley, and London: Chapman & Hall 1951.Google Scholar
  53. Gannon, N., and G. C. Decker: The conversion of heptachlor to its epoxide on plants. J. Econ. Entomol. 51, 3 (1958 a).Google Scholar
  54. Gannon, N.: The conversion of aldrin to dieldrin on plants. J. Econ. Entomol. 51, 8 (1958 b).Google Scholar
  55. Gatterdam, P. E., J. E. Casida, and D. W. Stoutamire: Relation of structure to stability, antiesterase activity and toxicity with substituted-vinyl phosphate insecticides. J. Econ. Entomol. 52, 270 (1959).Google Scholar
  56. Gersdorff, W. A., S. K. Freeman, and P. G. Piquett: Some Barthrin isomers and their toxicity to houseflies in space sprays. J. Agr. Food Chem. 7, 548 (1959).Google Scholar
  57. Gershman, L. L.: Infrared determination of endrin residues. J. Assoc. Official Agr. Chemists 44, 212 (1961).Google Scholar
  58. Gersmann, H. R., and J. A. A. Ketelaar: Chemical studies on insecticides. VIII. Ultraviolet spectra and opposing resonance in phosphate esters. Rec. Trav. Chim. 77, 1018 (1958).Google Scholar
  59. Gigger, R. P.: Ultraviolet procedure for determination of Diazinon residues. Geigy Chemical Corp. Mimeo. (1959).Google Scholar
  60. Glastonbury, H. A., and M. D. Stevenson: The microestimation of Y-(4-chloro-2-methylphenoxy) butyric acid, y-(2:4-dichlorophenoxy) butyric acid, and rc-butyl y-(2:4-dichlorophenoxy) butyrate, in plant material. J. Sci. Food Agr. 10, 379 (1959).Google Scholar
  61. Goddu, R. F.: Near-infrared spectrophotometry. Hercules Chemist No. 34, 5 (1958).Google Scholar
  62. Goddu, R. F., and D. A. Delker: Spectra-structure correlations for the near-infrared region. Anal. Chem. 32, 140 (1960).Google Scholar
  63. Gordon, N., and M. Beroza: Spectrophotometric determination of small quantities of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Anal. Chem. 24, 1968 (1952).Google Scholar
  64. Gore, R. C.: Infrared spectra of organic thiophosphates. Disc. Faraday Soc. 9, 138 (1950).Google Scholar
  65. Green, N.: Synthesis of carboxy-labelled C14-2V,2V-diethyl-m-toluamide, an insect repellent. J. Ecan. Entomol. 51, 707 (1958).Google Scholar
  66. Grummitt, O., D. Marsh, and J. A. Stearns: Analysis and properties of bis(p-chlorophenyl)methyl carbinol. Anal. Chem. 24, 702 (1952).Google Scholar
  67. Gunther, F. A.: Analytical evaluation of residues of pesticide chemicals in foods and feeds. Proc. 17th International Congress of Pure and Applied Chem. Verlag Chemie, pp. 387–426, 1959.Google Scholar
  68. Gunther, F. A.: Pesticide residues in foods. Analytical philosophy, technology and capabilities in other countries. J. Assoc. Official Agr. Chemists 44, 620 (1961 a).Google Scholar
  69. Gunther, F. A.: Analytical evaluation of residues of specific chemical additives in foods. In Instrumental methods for the analysis of food additives. New York—London: Interscience 1961 b.Google Scholar
  70. Gunther, F. A.: Instrumentation in pesticide residue determination. Adv. Pest Control Research 5, 191 (1962).Google Scholar
  71. Gunther, F. A., and R. C. Blinn: Analysis of insecticides and acaricides. New York—London: Interscience 1955.Google Scholar
  72. Gunther, F. A.: Ultraviolet spectrophotometric microdetermination of the acaricide 4,4-dichloro-a-(trichloromethyl) benzhydrol (FW-293). J. Agr. Food Chem. 5, 517 (1957).Google Scholar
  73. Gunther, F. A.: Unpublished data (1962).Google Scholar
  74. Gunther, F. A., J. H. Barkley, M. J. Kolbezen, R. C. Blinn, and E. A. Staggs: Quantitative microdetermination of gaseous ammonia by its absorption at 204.3 m/4. Anal. Chem. 28, 1985 (1956).Google Scholar
  75. Gunther, F. A., R. C. Blinn, and J. H. Barkley: Infrared procedure for quantitative determination of residues of 2,4,4/,5-tetrachlorodiphenyl sulfone (Tedion) on and in citrus fruit peel. J. Agr. Food Chem. 7, 104 (1959 a).Google Scholar
  76. Gunther, F. A.: Procedure for determining amounts of biphenyl and of o-phenylphenol on and in a single sample of citrus fruit. Univ. of Calif. Citrus Expt. Sta. Mimeo. (1959 b).Google Scholar
  77. Gunther, F. A., and M. M. Barnes: Infrared determination of p-chlorobenzyl p-chlorophenyl sulfide and its oxidation to its sulfone on pears. J. Agr. Food Chem. 5, 198 (1957).Google Scholar
  78. Gunther, F. A., E. Benjamini, W. R. Kinkade,, and L. D. Anderson: Magnitudes and natures of nicotine residues on and in field-treated Texas mustard greens. J. Agr. Food Chem. 7, 330 (1959 c).Google Scholar
  79. Gunther, F. A., and G. E. Carman: Residues of Ethion on and in lemons and oranges as determined by an infrared spectrophotometric procedure. J. Agr. Food Chem. 10, 224 (1962 a).Google Scholar
  80. Gunther, F. A., and C. C. Cassil: Unpublished data (1962 b).Google Scholar
  81. Gunther, F. A., M. J. Kolbezen, C. W. Wilson, and R. A. Conkin: Evaluating concentrations of spectrally absorbing vapors in dynamic systems. Anal. Chem. 30, 1089 (1958).Google Scholar
  82. Haddock, L. A., and L. G. Phillips: The determination of a-(4-chloro-2-methylphenoxy) propionic acid in commercial acid of this name. Analyst 84, 94 (1959).Google Scholar
  83. Haenni, E. O.: A new idea in the design of infrared absorption cells for liquids. J. Assoc. Official Agr. Chemists 42, 215 (1959).Google Scholar
  84. Harford, A. D., E. Thornton, and N. G. Mctaggart: The analysis and biological assessment of petroleum-based insecticides. Proceedings 22nd Midyear Meeting, Am. Pet. Inst. Div. of Refining, Philadelphia, Pa. p. 389; Chem. Abst. 52, 9503d (1958).Google Scholar
  85. Harley, J. H., and S. E. Wiberley: Instrumental analysis. New York: Wiley 1954.Google Scholar
  86. Harrison, I. R., and P. G. Marshall: The depletion of insecticides in sheep-dipping baths. J. Sci. Food Agr. 10, 568 (1959).Google Scholar
  87. Harrison, I. R., and P. G. Marshall: The depletion of insecticides in sheep-dipping baths. Further field trials. J. Sci. Food Agr. 12, 548 (1961).Google Scholar
  88. Hashimoto, S., and K. Nagai: Hydrolysis of 1,2,4-trichlorobenzene. Doshisha Kogaku Kaishi 8, 76 (1957); Sci. Eng. Rev. Doshisha Univ. 1, 225 (1960); Chem. Abst. 54, 22421 i (1960).Google Scholar
  89. Hawkes, J. C.: Infrared spectroscopy as a quantitative analytical method in general chemicals manufacture. J. Appl. Chem. 7, 123 (1957).Google Scholar
  90. Heagy, A. B.: Infrared determination of DDT in dusts. J. Assoc. Offic. Agr. Chemists 43, 342 (1960).Google Scholar
  91. Herriott, R. M.: A spectrophotometric method for the determination of p,p-DDT. Science 104, 228 (1946).Google Scholar
  92. Hirt, R. C., W. R. Doughman, R. G. Schmitt, and S. T. Moore: Spectrophotometric determination of melamine and formaldehyde in lard. J. Agr. Food Chem. 3, 1044 (1955).Google Scholar
  93. Horner, H. J., J. E. Weiler, and N. C. Angelotti: Visible and infrared spectroscopic determination of trace amounts of silicones in foods and biological materials. Anal. Chem. 32, 1858 (1960); also in Instrumental methods for the analysis of food additives. New York—London: Interscience 1961.Google Scholar
  94. Jacobsen, M., I. Hornstein, and R. T. Murphy: The analysis of milk for rotenoids. J. Assoc. Official Agr. Chemists 42, 174 (1959).Google Scholar
  95. Jennings, E. C., jr., and D. G. Edwards: Determination of methoxychlor in insecticide-treated paperboard by ultraviolet spectrophotometry. Anal. Chem. 25, 1179 (1953).Google Scholar
  96. Jolliffe, V. A.: Determination of diethylene glycol-bis-(2,2-dichloropropionate) (dalapon ester) in Bermuda grass. Univ. of Calif. Citrus Expt. Sta. Unpublished procedure (1961).Google Scholar
  97. Jones, L. C., jr., and L. W. Taylor: Far-ultraviolet absorption spectra of unsaturated and aromatic hydrocarbons. Anal. Chem. 27, 228 (1955).Google Scholar
  98. Jones, R. N., and C. Sandorfy: The application of infrared and raman spectrometry to the elucidation of molecular structure. Chemical applications of spectroscopy. In Technique of organic chemistry Vol. IX. New York—London: Interscience 1956.Google Scholar
  99. Katz, S. E.: Ultraviolet method for determination of streptomycin in feeds. J. Agr. Food Chem. 8, 50 (1960).Google Scholar
  100. Kaye, W. I.: Near-infrared spectroscopy. I. Spectral identification and analytical applications. Spectrochim. Acta 6, 257 (1954).Google Scholar
  101. Harrison, I. R., and P. G. Marshall: Near-infrared spectroscopy. II. Instrumentation and technique. Spectrochim. Acta 7, 181 (1955).Google Scholar
  102. Harrison, I. R., and P. G. Marshall: The application of far-ultraviolet spectroscopy to gas chromatography. Beckman Analyzer 2 (No. 3), 4 (1961).Google Scholar
  103. Harrison, I. R.:Far-ultraviolet spectroscopic detection of gas chromatograph effluent. Anal. Chem. 34, 287 (1962).Google Scholar
  104. Kenyon, W. C.: Infrared absorption spectrum of toxaphene. Anal. Chem. 24, 1197 (1952).Google Scholar
  105. Ketelaar, J. A. A., and H. R. Gersmann: Chemical studies on insecticides. IX. Infrared absorption spectra on phosphorus acid esters. Rec. Trav. Chim. 78, 190 (1959).Google Scholar
  106. Knodel, L. R., and E. J. Elvin: Infrared determination of biphenyl in treated fiberboard cartons. Anal. Chem. 24, 1824 (1952).Google Scholar
  107. Knoerlein, R. G.: The infrared analysis of rotenone. J. Assoc. Offic. Agr. Chemists 44, 577 (1961).Google Scholar
  108. Krivis, A. F., G. E. Bronson, W. A. Struck, and J. L. Johnson: Infrared identification of paper chromatographed compounds. Microchemical Journal Symposium, p. 277. New York—London: Interscience 1961.Google Scholar
  109. Leahy, J. S., and C. E. Waterhouse: The quantitative determination of low concentrations of warfarin in aqueous solution. Analyst 85, 1012 (1960).Google Scholar
  110. Lykken, L.: Total chlorine and infrared methods for the determination of aldrin, dieldrin, and endrin formulations. J. Assoc. Offic. Agr. Chemists 44, 595 (1961).Google Scholar
  111. Mccaulley, D. F., and J. W. Cook: The infrared spectra of organic phosphate pesticides and their applications to some problems in phosphate pesticide analysis. J. Assoc. Offic. Agr. Chemists 43, 710 (1960); also in Instrumental methods for the analysis of food additives. New York: Interscience 1961.Google Scholar
  112. Mcdonald, I. R. C., and C. C. Watson: Quantitative infrared analysis of mixtures of isomeric or closely related substances. Anal. Chem. 29, 339 (1957).Google Scholar
  113. Mctaggart, N. G., E. Thornton, and A. D. Harford: The determination of pyrethrins and other insecticidal compounds by infrared spectrometry. Pyrethrum Post 4 (No. 4), 12 (1958).Google Scholar
  114. Maehly, A. C.: A micro technique for identifying barbiturates in forensic chemistry. Analyst 87, 116 (1962).Google Scholar
  115. March, R. B.: The resolution and chemical and biological characterization of some constituents of technical chlordane. J. Econ. Entomol. 45, 452 (1952).Google Scholar
  116. Marshall, P. G.: The determination of 2:6-dichloro-4-nitroaniline in Ditranil and some fungicidal formulations by infrared spectroscopy. Analyst 85, 681 (1960).Google Scholar
  117. Matsen, F. A.: Applications of the theory of electronic spectra. Chemical applications of spectroscopy. In Technique of organic chemistry Vol. IX. New York—London: Interscience 1956.Google Scholar
  118. Mellon, M. G.: Analytical absorption spectroscopy. New York: Wiley 1950.Google Scholar
  119. Miller, F. A.: Applications of infrared and ultraviolet spectra to organic chemistry. In Advanced treatise of organic chemistry Vol. III. New York: Wiley 1953.Google Scholar
  120. Mitchell, L. C.: The effect of ultraviolet light (2537 A.) on 141 pesticide chemicals by paper chromatography. J. Assoc. Offic. Agr. Chemists 44, 643 (1961).Google Scholar
  121. Mold, J. D., R. C. Gore, J. M. Lynch, and E. J. Schantz: Creatine ethyl ether. J. Amer. Chem. Soc. 77, 178 (1955).Google Scholar
  122. Morris, W. W., jr., and E. O. Haenni: Characterization of tocopherols in vegetable oils by infrared spectrophotometry. J. Assoc. Offic. Agr. Chemists 45, 92 (1962).Google Scholar
  123. Newell, J. E., R. J. Mazaika, and W. J. Cook: The microdetermination of 2,3-dichloro-l,4-naphthoquinone (Phygon) in water. J. Agr. Food Chem. 6, 669 (1958).Google Scholar
  124. Newhall, W. F., E. J. Elvin, and L. R. Knodel: Infrared determination of biphenyl in citrus fruits. Anal. Chem. 26, 1234 (1954).Google Scholar
  125. Patchett, G. G.: Ultraviolet determination of R-242. Stauffer Chemical Co. Mimeo. (1955).Google Scholar
  126. Paulig, G.: Determination of alodan residues in grain. Z. Anal. Chem. 168, 401 (1959); Chem Abst. 54, 768 e (1960).Google Scholar
  127. Paulig, G.: Infrared spectrophotometric determination of pentachloronitrobenzene residues. Deut. Lebensm.-Rundschau 56, 296 (1960); Chem. Abst. 55, 13747h (1961).Google Scholar
  128. Paulig, G.: Infrared spectrophotometric determination of Thiodan residues in fruit juices. Deut. Lebensm.-Rundschau 57, 230 (1961); Chem. Abst. 56, 1813 h (1962).Google Scholar
  129. Phillips, D. D., G. E. Pollard, and S. B. Soloway: Thermal isomerization of endrin and its behavior in gas chromatography. J. Agr. Food Chem. 10, 217 (1962).Google Scholar
  130. Pinder, A. R.: Physical methods in organic chemistry. Part II. Physicochemical measurements. Chem. & Ind. 1180 (1961).Google Scholar
  131. Pollard, G. E.: Application of infrared spectrophotometry to the determination of pesticide residues. Presented at 131st National Meeting. Amer. Chem. Soc. Miami, Fla. (1957).Google Scholar
  132. Pollard, G. E., W. M. Saltman, and P. YIN: Infrared determination of dieldrin and DDT in mixtures. J. Assoc. Offic. Agr. Chemists 38, 478 (1955).Google Scholar
  133. Presnell, A. K.: Rapid preparation of mineral oil mulls. Anal. Chem. 27, 571 (1955).Google Scholar
  134. Ramsey, L. L.: Report on dehydroacetic acid in cheese. J. Assoc. Offic. Agr. Chemists 36, 83 and 744 (1953).Google Scholar
  135. Rosen, A. A., and F. M. Middleton: Chlorinated insecticides in surface waters. Anal. Chem. 31, 1729 (1959).Google Scholar
  136. Rosenfield, D., A. I. Epstein, E. F. Stier, and W. A. Maclinn: A study of a spectrophotometric method for the flavor evaluation of insecticide treated vegetables. Food Research 25, 513 (1960).Google Scholar
  137. Samuel, B. L.: Modifications of the Knoerlein infrared method for rotenone. J. Assoc. Offic. Agr. Chemists 44, 580 (1961).Google Scholar
  138. Sassman, W. A., and S. P. Cohen: Ultraviolet and infrared spectrophotometric analysis of an insect repellent mixture. Appl. Spectroscopy 8, 67 (1954).Google Scholar
  139. Schmidt, C. H., and P. A. Dahm: The synthesis of C14-labelled piperonyl butoxide and its fate in the Madeira roach. J. Econ. Entomol. 49, 729 (1956).Google Scholar
  140. Schmidt, C. H., M. C. Bowman, and F. Acree jr.: Ultraviolet determination of the insect repellent diethyltoluamide. J. Econ. Entomol. 51, 694 (1958).Google Scholar
  141. Schwartzman, G.: Determination of nicotine residues in foods. J. Assoc. Offic. Agr. Chemists 44, 177 (1961).Google Scholar
  142. Sjoberg, B.: Determination of chloro-2-methylphenoxyacetic acid by infrared spectrophotometry. Acta Chem. Scand. 4, 798 (1950); Chem. Abst. 45, 1465 i (1951).Google Scholar
  143. Sparagana, M., and W. B. Mason: Infrared microspectrophotometry using reflecting-type 6X beam condensing optics in reference and sample beams. Anal. Chem. 34, 242 (1962).Google Scholar
  144. Spencer, E. Y., R. D. O’Brien, and R. W. White: Permanganate oxidation products of schradan.. J. Agr. Food Chem. 5, 123 (1957).Google Scholar
  145. Stanley, W. L.: Determination of menthyl salicylates in lemon oil. J. Assoc. Offic. Agr. Chemists 42, 643 (1959).Google Scholar
  146. Strouts, C. R. H., J. H. Gilfillan, and H. N. Wilson: Analytical chemistry, the working tools Vol. II. Oxford: Clarenden Press 1955.Google Scholar
  147. Sumiki, Y., and A. Matsuyama: Infrared spectrophotometric determination of traces of parathion in water. Bull. Agr. Chem. Soc. Japan 21, 329 (1957); Chem. Abst. 52, 5706 g (1958).Google Scholar
  148. Susi, H., and H. E. Rector: Quantitative infrared analysis of pesticides in the solid state. Anal. Chem. 30, 1933 (1958).Google Scholar
  149. Szalkowski, C. R.: Report on glycarbylamide in feeds. J. Assoc. Offic. Agr. Chemists 42, 241 (1959).Google Scholar
  150. Szonyi, C., and J. D. Craske: A simple micro-mull technique for obtaining infrared spectra. Anal. Chem. 34, 448 (1962).Google Scholar
  151. Thomas, L. C., and R. A. Chittenden: Infrared group frequency correlations for organophosphorus compounds. Chem. & Ind. 1913 (1961).Google Scholar
  152. Tietz, H., and H. Frehse: Method of determining residues of systemic insecticides of the Metasystox group in plants. Hofchen-Briefe 13 (No. 4), 212 (1960).Google Scholar
  153. Toren, P. E., L. D. Goodhue, W. R. Kirkham, and D. E. Howell: Determination of small quantities of 2,3,4,5-bis (¿l2-butenylene) tetrahydrofurfural (Repellent R-ll) in milk. J. Agr. Food Chem. 5, 749 (1957).Google Scholar
  154. Torkington, P., and H. W. Thompson: Solvents for use in the infrared. Trans. Faraday Soc. 41, 184 (1945).Google Scholar
  155. Tsuyuki, H., M. A. Stahmann, and J. E. Casida: Preparation, purification, isomeration, and biological properties of octameriiylpyrophosphoramide AT-oxide. J. Agr. Food Chem. 3, 922 (1955).Google Scholar
  156. Ulrich, W. F.: Far-ultraviolet absorption studies on biologically active substances. Beckman Analyzer 3 (No. 2), 3 (1962).Google Scholar
  157. Union Carbide Chemicals Company: Infrared spectroscopy method of analysis for “Sevin” insecticide formulations. Mimeo. (1962).Google Scholar
  158. Upham, S. D.: Methods for determining malathion. J. Assoc. Official Agr. Chemists 43, 360 (1960).Google Scholar
  159. Urone, P. F., and M. L. Druschel: Infrared determination of chlorinated hydrocarbon vapors in air. Anal. Chem. 24, 626 (1952).Google Scholar
  160. Waggoner, W. H., and M. E. Chambers: Solid state ultraviolet spectra. J. Org. Chem. 26, 298 (1961).Google Scholar
  161. Ware, J. H.: Determination of malathion in formulations. J. Assoc. Offic. Agr. Chemists 44, 608 (1961).Google Scholar
  162. Watson, C. C.: Absorption spectrum of β-chlorobenzyl-P-chlorophenyl sulphide (chlorobenside). Chem. & Ind. 349 (1956).Google Scholar
  163. Watson, C. C.: Determination of p-chlorobenzyl p-chlorophenyl sulfide, (chlorobenside) and p-chlorobenzyl p-chlorophenyl sulfoxide (chlorobenside sulfoxide) residues on apples. J. Agr. Food Chem. 5, 679 (1957).Google Scholar
  164. Weinkauff, O. J., R. W. Radue, R. E. Keller, and H. R. Crane: Identification of Cajffein as natural or synthetic. J. Agr. Food Chem. 9, 397 (1961).Google Scholar
  165. Weiss, A. R.: Determination of Perthane residues. Rohm & Haas Co. Mimeo. (1955).Google Scholar
  166. West, W.: Spectroscopy and spectrophotometry. In physical methods of organic chemistry Vol. II. New York—London: Interscience 1946.Google Scholar
  167. West, W.: Introductory survey of molecular spectra. Chemical applications of spectroscopy. In Technique of Organic chemistry Vol. IX. New York—London: Interscience 1956.Google Scholar
  168. White, T. T., and G. G. Mckinley: Determination of phosdrin insecticide and methyl parathion in formulations. J. Assoc. Offic. Agr. Chemists 44, 589 (1961a).Google Scholar
  169. White, T. T.: Determination of aldrin, dieldrin, or endrin in formulations. J. Assoc. Offic. Agr. Chemists 44, 591 (1961 b).Google Scholar
  170. Zweig, G., and T. E. Archer: Quantitative determination of Thiodan by gas chromatography. J. Agr. Food Chem. 8, 190 (I960).Google Scholar
  171. White, T. T., and D. Rubinstein: Residue analysis of a chlorinated insecticide (Thiodan) by combination of gas chromatography and infrared spectrophotometry. J. Agr. Food Chem. 8, 403 (1960).Google Scholar
  172. White, T. T., and D. Raz: Residue determination of naphthaleneacetic acid and its methyl ester in potatoes by a combination of gas chromatography and ultraviolet spectrophotometry. J. Agr. Food Chem. 10, 199 (1962).Google Scholar

Copyright information

© Springer-Verlag OHG Berlin · Göttingen · Heidelberg 1963

Authors and Affiliations

  • Roger C. Blinn
    • 2
  • Francis A. Gunther
    • 1
  1. 1.University of California Citrus Research Center and Agricultural Experiment StationRiversideUSA
  2. 2.American Cyanamid Co.PrincetonUSA

Personalised recommendations