Skip to main content

Adaptability Theory Analysis of the Genotype-Phenotype Relationship

  • Chapter
Book cover Adaptability
  • 76 Accesses

Abstract

Reliability is a special case of a biologically more fundamental ability—which I call transformability. The substance of the analysis of reliability was: reliable information processing, insofar as it is based on redundancy, requires an increase in the actual magnitudes of the entropies H(ω̱) and H(ω̱|ω*). It also increases the effectiveness of adaptability by increasing the difference between these two entropies. One of the objectives of this chapter is to show that the gradual transformability of biological structure and function is also based on redundancies which increase the actual magnitudes. The most important example is the transformability of the phenotype in response to genetic variation. This is clearly the sine qua non for effective evolutionary adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, P. M., and W. Ebeling (1983) “On the Stochastic Description of a Predator-Prey Ecology,” BioSystems (in press).

    Google Scholar 

  • Bargiello, T., and J. Grossfield (1979) “Biochemical Polymorphisms: The Unit of Selection and the Hypothesis of Conditional Neutrality,” BioSystems 11, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E. (1975) “The Role of Cyclic Nucleotides in Central Synaptic Function,” Rev. Physiol. Biochem. Pharmacol. 74, 1–103.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., and E. H. Davidson (1971) “Repetitive and Non-repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty,” Q. Rev. Biol. 46 (2), 111–138.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. (1974a) “The Limits of Biological Simulation,” J. Theoret. Biol. 45, 585–590.

    Article  CAS  Google Scholar 

  • Conrad, M. (1974b) “Molecular Automata,” pp. 419–430 in Physics and Mathematics of the Nervous System, ed. by M. Conrad, W. Güttinger, and M. Dal Cin. Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Conrad, M. (1977) “Evolutionary Adaptability of Biological Macromolecules,” J. Mol. Evol. 10, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. (1978) “Evolution of the Adaptive Landscape,” pp. 147–169 in Theoretical Approaches to Complex Systems, ed. by R. Heim and G. Palm. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Conrad, M. (1979a) “Bootstrapping on the Adaptive Landscape,” BioSystems 11, 167–182.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. (1979b) “Mutation-Absorption Model of the Enzyme,” Bull. Math. Biol. 41, 387–405.

    PubMed  CAS  Google Scholar 

  • Conrad, M. (1981) “Algorithmic Specification as a Tool for Computing with Informal Biological Models,” BioSystems 13, 303–320.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. (1982) “Natural Selection and the Evolution of Neutralism,” BioSystems 15, 83–85.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M., and E. A. Liberman (1982) “Molecular Computing as a Link between Biological and Physical Theory,” J. Theor. Biol. 98, 239–252.

    Article  CAS  Google Scholar 

  • Conrad, M., and M. M. Rizki (1980) “Computational Illustration of the Bootstrap Effect,” BioSystems 13, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M., and M. Volkenstein (1981) “Replaceability of Amino Acids and the Self-Facilitation of Evolution,” J. Theor. Biol. 92, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Cox, E. C., and T. C. Gibson (1974) “Selection for High Mutation Rates in Chemostats,” Genetics 77, 169–184.

    PubMed  CAS  Google Scholar 

  • Davis, M. (1958) Computability and Unsolvability. McGraw-Hill, New York.

    Google Scholar 

  • Goldschmidt, R. (1940) The Material Basis of Evolution. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Gould, S. J. (1977) Ontogeny and Phytogeny. Belknap Press of Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Greengard, P. (1976) “Possible Role for Cyclic Nucleotides and Phosphorylated Membrane Proteins in Postsynaptic Actions of Neurotransmitters,” Nature 260 (5547), 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1968) “Evolutionary Rate at the Molecular Level,” Nature 217, 624–626.

    Article  PubMed  CAS  Google Scholar 

  • King, J. L., and T. H. Jukes (1969) “Non-Darwinian Evolution,” Science 164, 788–798.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, F. H. (1979) “Commentary,” BioSystems 11, 181–182.

    Article  Google Scholar 

  • Koshland, D. E. (1963) “The Role of Flexibility in Enzyme Action,” Cold Spring Harbor Symp. Quant. Biol. 28, 473–482.

    Google Scholar 

  • Lewontin, R. C. (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • Liberman, E. A., S. V. Minina, and K. V. Golubtsov (1975) “The Study of the Metabolic Synapse. I. Effect of Intracellular Microinjection of 3’, 5’-AMP,” Biofizika 20, 451–456.

    PubMed  CAS  Google Scholar 

  • Liberman, E. A., S. V. Minina, N. E. Shklovsky-Kordy, and M. Conrad (1982) “Microinjection of Cyclic Nucleotides Provides Evidence for a Diffusional Mechanism of Intraneuronal Control,” BioSystems 15, 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, E. (1963) Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Minsky, M. (1967) Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Nei, M. (1975) Molecular Population Genetics and Evolution. North Holland/American Elsevier, New York.

    Google Scholar 

  • Perutz, M. F. (1962) Proteins and Nucleic Acids. Elsevier, Amsterdam.

    Google Scholar 

  • Roitt, I. (1974) Essential Immunology, 2nd. ed. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Rossman, M. G., A. Liljas, C. Branden, and L. J. Banaszak (1975) “Evolutionary and Structural Relationships among Dehydrogenases,” pp. 63–102 in The Enzymes, Vol. 11, 3rd ed., ed. by P. D. Boyer. Academic Press, New York.

    Google Scholar 

  • Sel’kov, E. E. (1975) “Stabilization of Energy Charge, Generation of Oscillations and Multiple Steady States in Energy Metabolism as a Result of Purely Stoichiometric Regulation,” Eur. J. Biochem. 59, 151–157.

    Article  PubMed  Google Scholar 

  • Sel’kov, E. E. (1979) “The Oscillatory Basis of Cell Energy Metabolism,” pp. 166–174 in Pattern Formation by Dynamic Systems and Pattern Recognition, ed. by H. Haken. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Simpson, G. G. (1951) Horses. Oxford University Press, Oxford, England.

    Google Scholar 

  • Strobeck, C., J. Maynard Smith, and B. Charlesworth (1976) “The Effects of Hitchhiking on a Gene for Recombination,” Genetics 82, 547–558.

    PubMed  CAS  Google Scholar 

  • Thorn, R. (1970) “Topological Models in Biology,” pp. 89–116 in Towards a Theoretical Biology, Vol. 3, ed. by C. H. Waddington. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Thompson, D. A. W. (1917) On Growth and Form. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Van Valen, L. (1973) “A New Evolutionary Law,” Evol. Theor. 1, 1–30.

    Google Scholar 

  • Volkenstein, M. (1979) “Mutations and the Value of Information,” J. Theor. Biol. 80, 155–169.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C. H. (1957) The Strategy of Genes. George Allen and Unwin, London.

    Google Scholar 

  • Wills, C. (1976) “Production of Yeast Alcohol Dehydrogenase Isoenzymes by Selection,” Nature 261, 26–29.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S. (1932) “The Roles of Mutation, Inbreeding, Cross-Breeding, and Selection in Evolution,” Proc. Sixth Int. Cong. Genet. 1, 356–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Conrad, M. (1983). Adaptability Theory Analysis of the Genotype-Phenotype Relationship. In: Adaptability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8327-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8327-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8329-5

  • Online ISBN: 978-1-4615-8327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics