Skip to main content

Correlation between Fracture Toughness and Zeta Potential of Cementstone

  • Chapter
Adhesion Problems in the Recycling of Concrete

Part of the book series: Nato Conference Series ((MASC,volume 4))

  • 331 Accesses

Summary

A brief account is first given of the difficulties encountered when trying to make a proper choice of fracture-facilitating surface-active agents for cementstone. In this context we describe the “Re-binder-effect”, the notion of zêta potential, and the present knowledge about the adsorbtion behaviour of calcium alumino silicates in alkaline aqueous environments. Comparison of the results of zêta potential measurements by means of electroosmosis, and measurements of the fracture toughness Klc, both performed on cementstone in aqueous electrolytic solutions of varying concentration which were kept saturated vs. calciumhydroxide, shows a distinct maximum for Klc at the so-called “Iso Electric Point”. A preliminary model is suggested to explain the observed behaviour of Klc as a function of the concentration of the electrolytic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Lea, “The Chemistry of Cement and Concrete”, Edward Arnold Ltd. (Publ.), London (1970)

    Google Scholar 

  2. H. Taylor, “The Chemistry of Cements”, Academic Press, London (1964)

    Google Scholar 

  3. T. C. Powers, “The Properties of fresh Concrete”, John Wiley & Sons, New York (1968)

    Google Scholar 

  4. A. M. Neville, “Properties of Concrete”, Pitman Publ. Corp., New York (1972)

    Google Scholar 

  5. W. A. Weyl, Advances in Chemistry Series no. 33, Am. Chem. Soc., Washington, D. C. (1961), 72

    Google Scholar 

  6. R. Feldman and R. F. Sereda, J. Appl. Chem. 14(1964)87

    Article  CAS  Google Scholar 

  7. F. H. Wittmann, Materials and Structures 1(l968)547

    Google Scholar 

  8. V. V. Strelko, Theoretical Experimental Chemistry (USSR) 3(1967) 263

    CAS  Google Scholar 

  9. D. A. Cadenhead, Progr. in Surface and Membrane Sci., Ac. Press, New York (1978), 336

    Google Scholar 

  10. H. R. Kruyt, “Colloid Science”, Vol. 2, Elsevier Publ. Cy., Amsterdam (1952)

    Google Scholar 

  11. A. Dietzel, Sprechsaal (1942), 82–85

    Google Scholar 

  12. K. Fajans, Ceramic Age 126(1959)288

    Google Scholar 

  13. S. G. Lipsett, J. Am. Chem. Soc. 49(1927)925,

    Article  CAS  Google Scholar 

  14. S. G. Lipsett, J. Am. Chem. Soc. 49(1927)1940,

    Article  CAS  Google Scholar 

  15. S. G. Lipsett, J. Am. Chem. Soc. 50(1928)2701

    Article  CAS  Google Scholar 

  16. S. Brunauer, Advances in Chemistry Series no. 33, Am. Chem. Soc., Washington, D. C. (1961), 5

    Google Scholar 

  17. P. A. Rebinder, Proc. 6th Phys. Conf., Moscow, 29, 1928

    Google Scholar 

  18. R. M. Latanision and J. T. Fourie, “Surface Effects in Crystal Plasticity”, Noordhoff, Leiden (1977)

    Google Scholar 

  19. A. R. C. Westwood and J. J. Mills in ref. 16, p. 835

    Google Scholar 

  20. A. R. C. Westwood, CM. Preece and D. L. Goldheim in: “Molecular Processes on Solid Surfaces”, E. Drauglis (ed.), Mc. Graw-Hill, New York (1968), 591

    Google Scholar 

  21. Ch. Schulte, H. Mader and F. H. Wittmann, Cement and Concrete Research 8(1978)359

    Article  CAS  Google Scholar 

  22. Chr. Hollenz and F. H. Wittmann, Cement and Concrete Research 4(1974)389

    Article  Google Scholar 

  23. C. A. M. Siskens, “The interface of calcium silicates and calcium alumino silicates in an alkaline aqueous environment”, Eindhoven University of Technology (Thesis), The Netherlands (1975)

    Google Scholar 

  24. H. N. Stein, Report CL 60/35, T. N. O. Delft, The Netherlands (1960), p. 19

    Google Scholar 

  25. M. E. Tadros, J. Am. Ceram. Soc. 59(1976)344

    Article  CAS  Google Scholar 

  26. D. M. Roy, M. Daimon and K. Asaga, 7th Int. Congr. Chem. Cement, Paris (1980), Vol. II, p. II–242

    Google Scholar 

  27. G. A. C. M. Spierings, “The influence of Na2O on the formation and colloidchemical properties of calcium aluminate hydrates”, Eindhoven University of Technology (Thesis), The Netherlands (1977)

    Google Scholar 

  28. M. von Smoluchowski, Bull. Intern. Acad. Polon. Sci., Classe Sci. Math. Nat. 1903, 182

    Google Scholar 

  29. H. F. W. Taylor, J. Chem. Soc. (1950) 3682

    Google Scholar 

  30. J. Lyklema, J. Electroanal. Chem. 18(1968)341

    Article  CAS  Google Scholar 

  31. R. Koopmans and G. D. Rieck, Brit. J. Appl. Phys. 16(1965)1913

    Article  Google Scholar 

  32. E. Matjevic, “Surface and Colloid Science”, Vol. 7, John Wiley & Sons, London (1974), pp. 29–31

    Google Scholar 

  33. J. T. A. M. Weizen, “The influence of surface-active agents on ka-olinite”, Eindhoven University of Technology (Thesis), The Netherlands (1979)

    Google Scholar 

  34. J. Perin, J. Chem. Phys. 3 (1905)30

    Google Scholar 

  35. C. J. M. Houtepen, “The dehydration of some calcium aluminate hydrates”, Eindhoven University of Technology (Thesis), The Netherlands (1975)

    Google Scholar 

  36. Gmelin, “Handbuch der anorganischen Chemie”, Verlag Chemie Gmbh, Berlin (1927),

    Google Scholar 

  37. Gmelin, Syst. nr. 6 (“Chlor”) (1927) 315–320,

    Google Scholar 

  38. Gmelin, Syst. nr. 7 (“Brom”) (1927) 233,

    Google Scholar 

  39. Gmelin, Syst. nr. 7 (“Brom”) (1927) 307–310

    Google Scholar 

  40. J. H. Brown, Mag. of Concrete Research 24(1972)185

    Google Scholar 

  41. S. M. Wiederhorn and H. Johnson, J. Am. Ceram. Soc. 56(1973)192

    Article  CAS  Google Scholar 

  42. S. M. Budd, Physics and Chemistry of Glasses, 2(1961)111,

    CAS  Google Scholar 

  43. S. M. Budd, Physics and Chemistry of Glasses, 2(1961)115

    Google Scholar 

  44. W. Hinz, “Silikate”, Vol. I, VEB verlag für Bauwesen, Berlin (1970)

    Google Scholar 

  45. F. Schröder, Zement-Kalk-Gips 9(1969)423

    Google Scholar 

  46. C. W. Lentz, Spec. Rep. 90, Highway Research Board (1966)296

    Google Scholar 

  47. E. E. Lachowski, Cement and Concrete Research 9(1979)337

    Article  CAS  Google Scholar 

  48. A. K. Sarkar and D. M. Roy, Cement and Concrete Research 9(1979) 343

    Article  CAS  Google Scholar 

  49. S. Mindess and S. Diamond, 7th Int. Congr. Chem. Cement, Paris (1980), Vol. III, p. VI-114

    Google Scholar 

  50. M. J. Sparnaay, Surface Science 1(1964)213

    Article  CAS  Google Scholar 

  51. H. Gerrischer, “Physical Chemistry” Vol. IX-A, Ac. Press, New York (1970), p. 463

    Google Scholar 

  52. A. K. Chatterji and T. C. Phatak, Nature 197(1963)656

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Neerhoff, A.T.F. (1981). Correlation between Fracture Toughness and Zeta Potential of Cementstone. In: Kreijger, P.C. (eds) Adhesion Problems in the Recycling of Concrete. Nato Conference Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8312-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8312-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8314-1

  • Online ISBN: 978-1-4615-8312-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics