Skip to main content

The Role of Protozoa in Nutrient Cycling and Energy Flow

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 4))

Abstract

Nutrient cycling and energy flow are centered on photosynthesis and plant growth, for plant tissue forms the greater part of the earth’s biomass. But all organisms participate, and their role is determined not simply by their biomass but by their catalytic reaction in different ecosystems. The major nutrient cycles are the carbon cycle, in which the organic energy cycle is implicit, the nitrogen cycle, the sulfur cycle, and the phosphorus cycle. The major energy cycles are the solar cycle and the hydrological cycle that is not only the source of the major part of living matter but also provides the medium for all organic cycles. The geometry of nutrient cycling is determined by the nature and distribution of sources and sinks, the most important being the atmosphere, the ocean and soil, and the availability of the major, minor, and trace elements, and other growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adu, J. K., Oades, J. M., 1978a, Physical factors influencing decomposition of organic materials in soil aggregates, Soil Biol Biochem. 10: 109–115.

    CAS  Google Scholar 

  • Adu, J. K., Oades, J. M., 1978b, Utilization of organic materials in soil aggregates by bacteria and fungi, Soil Biol Biochem. 10: 117–122.

    CAS  Google Scholar 

  • Anderson, R. V., Elliott, E. T., McClellan, J. F., Coleman, D. C., Cole, C. V., 1978, Trophic interactions in soil as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes, Microb. Ecol. 4: 361–371.

    Google Scholar 

  • Ausmus, B. S., O’Neill, E. G., 1978, Comparison of carbon dynamics of three microcosm substrates, Soil Biol Biochem. 10: 425–429.

    CAS  Google Scholar 

  • Bamforth, S. S., 1973, Population dynamics of soil and vegetation protozoa, Amer. Zool 13: 171–176.

    Google Scholar 

  • Barsdate, R. J., Prentki, R. T., Fenchel, T., 1974, Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect on bacterial grazers, Oikds 25: 239–251.

    CAS  Google Scholar 

  • Bary, B. M., Stuckey, R. G., 1950, An occurrence in Wellington Harbour of Cyclotri-chium meuneri Powers, a ciliate causing red water, with some additions to its morphology, Trans. R. Soc. N.Z. 78: 86–92.

    Google Scholar 

  • Beers, C. D., 1963, Relation of feeding in the sea urchin, Strongylocentrotus droebachiensis, to division in some of its endocommensal ciliates, Biol. Bull. 124: 1–8.

    Google Scholar 

  • Beever, R. E., Burns, D. J. W., 1978, Does cycloheximide-induced loss of phosphate uptake in Neurospora crassa reflect rapid turnover?, J. Bacteriol. 134: 1176–1178.

    PubMed  CAS  Google Scholar 

  • Berger, J., 1967, The morphology and biology of a carnivorous commensal ciliate from echinoids, J. Protozool. 14 (Suppl.): 24–25.

    Google Scholar 

  • Berk, S. G., Brownlee, D. C., Heinle, D. R., Kling, H. J., Colwell, R. R., 1977, Ciliates as a food source for marine planktonic copepods, Microb. Ecol 4: 27–40.

    Google Scholar 

  • Bick, H., 1963, A review of central European methods for the biological estimation of water pollution levels, Bull W.H.O. 29: 401–413.

    CAS  Google Scholar 

  • Bick, H., 1967, Vergleichende Untersuchungen der Ciliatensukzession beim Abbau von Pepton und Cellulose (Modellversuche), Hydrobiologia 30: 353–373.

    Google Scholar 

  • Bick, H., 1968, Autokologische und saprobiologische Untersuchungen an SĂ¼sswasserciliaten, Hydrobiologia 31: 17–36.

    Google Scholar 

  • Bick, H., Kunze, S., 1971, Eine Zusammenstellung von autokologischen und saprobiologischen Befunden an SĂ¼sswasserciliaten, Int. Rev. Gesamten Hydrobiol. 56: 337–384.

    Google Scholar 

  • Bick, H., Schmerenbeck, W., 1971, Vergleichende Untersuchungen des Peptonabbaus und der damit verknĂ¼pften Ciliaten Besiedlung in strömenden und stagnierenden Modellgewässern, Hydrobiologia 37: 409–446.

    Google Scholar 

  • BiczĂ³k, F., 1954, Testaceae in the rhizosphere, Ann. Biol Univ. Hung. 2: 385–394.

    Google Scholar 

  • Bonnet, L., 1973, Aspects gĂ©nĂ©raux du peuplement thĂ©camoebien des mousses corticoles, in: Progress in Protozoology ( P. de Puytorac and J. Grain, eds.), p. 51, UniversitĂ© de Clermont, Clermont-Ferrand.

    Google Scholar 

  • Bonnet, L., 1975, Types morphologique, Ă©cologie et evolution de la thèque chez les ThĂ©camoebiens, Proristologica 11: 363–378.

    Google Scholar 

  • Borror, A. C., 1963a, Morphology and ecology of the benthic ciliated Protozoa of Alligator Harbor, Florida, Arch. Protistenkd. 106: 464–534.

    Google Scholar 

  • Borror, A. C., 1963b, Morphology and ecology of some uncommon ciliates from Alligator Harbor, Florida, Trans. Am. Microsc. Soc. 82: 125–131.

    Google Scholar 

  • Borror, A. C., 1965, New and little-known tidal marsh ciliates, Trans. Am. Microsc. Soc. 84: 550–565.

    Google Scholar 

  • Borror, A. C, 1968, Ecology of interstitial ciliates, Trans. Am. Microsc. Soc. 87: 233–243.

    Google Scholar 

  • Bowers, B., Olszewski, T. E., 1972, Pinocytosis in Acanthamoeba castettanii: kinetics and morphology, J. Cell Biol. 53: 681–694.

    PubMed  CAS  Google Scholar 

  • Brown, T. J., 1967, Utilization of 4 sugars known to occur in activated sludge by Aspidisca cicada (Ciliata, Hypotrichida); effect on division rate, J. Protozool. 14: 340–344.

    PubMed  CAS  Google Scholar 

  • Buhse, H. E., Jr., Hamburger, K., 1974, Induced macrostome formation in Tetrahymena vorax strain V2: Patterns of respiration, C.R. Trav. Lab. Carlsberg 40: 11–89.

    Google Scholar 

  • Burns, R. G., 1978, Enzyme activity in soil: Some theoretical and practical considerations, in Soil Enzymes ( R. G. Burns, ed.), pp. 295–340, Academic Press, London.

    Google Scholar 

  • Capo, C., Bongrand, P., Benoliel, A. M., Depieds, R., 1974, Phagocytosis, J. Theor. Biol. 47: 177–188.

    PubMed  CAS  Google Scholar 

  • Chambers, J., Thompson, J., 1976, Phagocytosis and pinocytosis in Acanthamoeba Castellanii, J.Gen.Microbiol. 92: 246–250.

    PubMed  CAS  Google Scholar 

  • Chapman, A. G., Atkinson, D. E., 1977, Adenine nucleotide concentrations and turnover rates, their correlation with biological activity in bacteria and yeast, Adv. Microb.Physiol. 15: 254–306.

    Google Scholar 

  • Chapman-Andresen, C., Holter, H., 1964, Differential uptake of protein and glucose by pinocytosis in Amoeba proteus, C.R. Trav. Lab. Carlsberg 34: 211–226.

    PubMed  CAS  Google Scholar 

  • Chardez, D., 1968, Études statistique sur l’écologie et la morphologic des ThĂ©camoebiens (Protozoa, Rhizopoda Testacea), Hydrobiologia 32: 271–287.

    Google Scholar 

  • Chardez, D., 1972, Étude sur les thĂ©camoebiens des bioty pes interstitiels, psammons littoraux et zones marginales souterraines des eaux douces, Bull. Rech. Agron. Gembloux 6: 257–268.

    Google Scholar 

  • Chesson, P., 1978, Predator-prey theory and variability, Annu. Rev. Ecol Syst. 9: 323–347.

    Google Scholar 

  • Clark, F. E., 1967, Bacteria in soil, in Soil Biology ( A. Burges and F. Raw, eds.), pp. 15–49, Academic Press, London.

    Google Scholar 

  • Cole, C. V., Elliott, E. T., Hunt, H. W., Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations, Microb. Ecol. 4: 381–387.

    CAS  Google Scholar 

  • Coleman, D. C, Cole, C. V., Hunt, H. W., Klein, D. A., 1978a, Trophic interactions in soils as they affect energy and nutrient dynamics. I. Introduction, Microb. Ecol. 4: 345–349.

    CAS  Google Scholar 

  • Coleman, D. C., Anderson, R. V., Cole, C. V., Elliott, E. T., Woods, L., Campion, M. K., 1978b, Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon, Microb. Ecol. 4: 373–380.

    CAS  Google Scholar 

  • Collins, N. J., Baker, J. H., Tilbrook, P. J., 1975, Signy Island, maritime antarctic, in Structure and Functions of Tundra Ecosystems (T. Rosswall and O. W. Heal, eds.), pp. 345–374, Ecological Bulletin 20, Swedish Natural Research Council, Stockholm.

    Google Scholar 

  • Corliss, J. P., Hartwig, E., 1977, The ‘primitive’ interstitial ciliates: Their ecology, nuclear uniqueness, and postulated place in the evolution and systematics of the phylum Ciliophora, Mikrofauna Meeresboden 61: 65–88.

    Google Scholar 

  • CoĂ»teaux, M.-M., 1975, Éeologie des ThĂ©camoebiens de quelques humus bruts forestiers: l’espĂ©ce dans la dynamique de l’équilibre, Rev. Ecol Biol Sol 12: 421–447.

    Google Scholar 

  • CoĂ»teaux, M.-M., 1976, Dynamisme de 1’équilibre des thĂ©camoebiens dans quelques sols climaciques,Mem. Mm. Natl Hist. Nat. Ser. A Zool. 96: 1–183.

    Google Scholar 

  • Crowley, P. H., 1978, Effective size and the persistence of ecosystems, Oecologia 35: 185–195.

    Google Scholar 

  • Cramp, L. M., 1920, Numbers of protozoa in certain Rothamsted soils, J. Agric. Sci. 10: 182–198.

    Google Scholar 

  • Cunningham, A., Maas, P., 1978, Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardii in nitrogen-limited batch and continuous culture, J. Gen. Microbiol. 104: 227–231.

    Google Scholar 

  • Curds, C. R., 1973, The role of Protozoa in the activated-sludge process, Am. Zool. 13: 161–169.

    Google Scholar 

  • Curds, C. R., 1977, Microbial interactions involving protozoa, in Aquatic Microbiology F. A. Skinner and J. M. Shewan, eds.), pp. 69–105, Society of Applied Bacteriology, Symposium Series No. 6, Academic Press, London.

    Google Scholar 

  • Curds, C. R., Bazin, M. J., 1977, Protozoan predation in batch and continuous culture, in Advances in Aquatic Microbiology ( M. R. Droop and H. W. Jannasch, eds.), pp. 115–176, Academic Press, London.

    Google Scholar 

  • Cutler, D. W., 1923, The action of protozoa on bacteria when inoculated into sterile soil, Ann. Appl. Biol. 10: 137–141.

    Google Scholar 

  • Cutler, D. W., 1927, Soil protozoa and bacteria in relation to their environment, J. Quekett Micros. Club 15: 309–330.

    Google Scholar 

  • Cutler, D. W., Bal, D. V., 1926, Influence of protozoa on the process of nitrogen fixation by Azotobacter chroococcum, Ann. Appl. Biol. 13: 516–534.

    Google Scholar 

  • Cutler, D. W., Crump, L. M., 1920, Daily periodicity in the numbers of active soil flagellates: With a brief note on the relation of trophic amoebae and bacterial numbers, Ann. Appl. Biol. 7: 11–24.

    Google Scholar 

  • Cutler, D. W., Cramp, L. M., 1927, The qualitative and quantitative effects of food on the powth of a soil amoeba (Hartmanella hyalina), Br. J. Exp. Biol. 5: 155–165.

    Google Scholar 

  • Cutler, D. W., Cramp, L. M., 1929, Carbon dioxide production in sands and soils in the presence and absence of amoebae, Ann. Appl. Biol. 16: 472–482.

    CAS  Google Scholar 

  • Cutler, D. W., Cramp, L. M., 1935, Problems in Soil Microbiology, Longmans, Green and Co., London.

    Google Scholar 

  • Cutler, D. W., Cramp, L. M., Sandon, H., 1922, A quantitative investigation of the bacterial and protozoan population of the soil, with an account of the protozoan fauna, Philos. Trans. R. Soc. London Ser. B 211: 317–350.

    Google Scholar 

  • Danso, S. K. A., Alexander, M., 1975, Regulation of predation by prey-density: The piotozoan-Rhizobium relationship, Appl. Microbiol 29: 515–521.

    PubMed  CAS  Google Scholar 

  • Danso, S. K. A., Keya, S. O., Alexander, M., 1975, Protozoa and the decline of Rhizobium populations added to the soil, Can. J. Microbiol 21: 884–895.

    PubMed  CAS  Google Scholar 

  • Darbyshire, J. F., 1969, Protozoa in the rhizosphere of Lolium perenne L., Can. J. Microbiol. 12: 1287–1289.

    Google Scholar 

  • Darbyshire, J. F., 1976, Effect of water suctions on the growth in soil of the ciliate Colpoda steini and the bacterium Azotobacter chroococcum, J. Soil Sci. 27: 369–376.

    Google Scholar 

  • Darbyshire, J. F., Greaves, M. P., 1967, Protozoa and bacteria in the rhizosphere of Sinapsis alba L., Trifolium repens L., and Lolium perenne L., Can. J. Microbiol. 13: 1057–1068.

    PubMed  CAS  Google Scholar 

  • Darbyshire, J. F., Greaves, M. P., 1973, Bacteria and protozoa in the rhizosphere,Pestic.Sci. 4: 349–360.

    Google Scholar 

  • Das, S. M., 1947, The biology of two species of Folliculinidae (Ciliata, Heterotricha) found at Cullercoats, with a note on the British species of the family, Proc. Zool. Soc. 117: 441–456.

    Google Scholar 

  • Davis, P., Caron, D., Sieburth, J., 1978, Oceanic amebae from the North Atlantic: Culture, distribution and taxonomy, Trans. Am. Microsc. Soc. 97: 73–88.

    Google Scholar 

  • Delwiche, C. C, 1977, Energy relations in the global nitrogen cycle, Ambio 6: 106–111. de Noyelles, F., and O’Brien, W. J., 1978, Phytoplankton succession in nutrient enriched experimental ponds as related to changing carbon, nitrogen and phosphorus conditions, Arch. Hydrobiol 84: 137–165.

    Google Scholar 

  • Doyle, W. L., Harding, J. F., 1937, Quantitative studies on the ciliate Glaucoma. Excretion of ammonia, J. Exp. Biol 14: 462–469.

    CAS  Google Scholar 

  • Dragesco, J., 1960, CiliĂ©s MĂ©sopsarnmique Littoraux, Trav. Sta. Biol. Roscoff l2, n.s., 1–36.

    Google Scholar 

  • Dragesco, J., 1965a, Étude cytologique de quelques Flagelles mĂ©sopsammiques, Cah. Biol. Mar. 6: 83–115.

    Google Scholar 

  • Dragesco, J., 1965b, CiliĂ©s mĂ©sopsammique d’Afrique Noire, Cah. Biol. Mar. 6: 357–399.

    Google Scholar 

  • Drake, J. F., Tsuchiya, H. M., 1977, Growth kinetics of Colpoda steinii on Escherichia coli, Appl. Environ. Microbiol. 34: 18–22.

    CAS  Google Scholar 

  • Droop, M. R., 1953, Phagotrophy in Oxyrrhis marina Dujardin, Nature (London) 172: 250–251.

    CAS  Google Scholar 

  • Droop, M. R., 1968, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. U.K. 48: 689–733.

    CAS  Google Scholar 

  • Droop, M. R., 1970, Vitamin B12 and marine ecology, Helgol. Wiss. Meeresunters 20: 629–636.

    CAS  Google Scholar 

  • Droop, M. R., 1973, Some thoughts on nutrient limitation in algae, J. Phycol. 9: 264–272.

    CAS  Google Scholar 

  • Droop, M. R., 1977, An approach to quantitative nutrition of phytoplankton, J. Protozool. 24: 528–532.

    CAS  Google Scholar 

  • Echetebu, C. O., Plesner, P., 1977, The pool of ribonucleoside triphosphates in synchronized Tetrahymena pyriformis, J. Gen. Microbiol. 103: 389–392.

    CAS  Google Scholar 

  • Edwards, S. W., Lloyd, D., 1977a, Changes in oxygen uptake rates, enzyme activities, cytochrome amounts and adenine nucleotide pool levels during growth of Acanthamoeba castellanii in batch culture, J. Gen. Microbiol. 102: 135–144.

    CAS  Google Scholar 

  • Edwards, S. W., Lloyd, D., 1977b, Cyanide-insensitive respiration in Acanthamoeba castellanii: Changes in sensitivity of whole cell respiration during exponential growth, J. Gen. Microbiol. 103: 207–213.

    CAS  Google Scholar 

  • Edwards, S. W., Lloyd, D., 1978, Oscillations of respiration and adenine nucleotides in synchronous cultures of Acanthamoeba castellanii: Mitochondrial respiratory control in vivo,J. Gen. Microbiol. 108: 197–204.

    CAS  Google Scholar 

  • Elliott, P. B., Bamforth, S. S., 1975, Interstitial protozoa and algae of Louisiana salt marshes, J. Protozool. 22: 514–519.

    Google Scholar 

  • Elliott, E. T., Coleman, D. C., 1977, Soil protozoan dynamics in a shortgrass prairie, Soil Biol. Biochem. 9: 113–118.

    CAS  Google Scholar 

  • Fantham, H. B., Porter, A., 1945, The microfauna, especially the protozoa, found in some Canadian mosses, Proc. Zool Soc. London 115: 97–174.

    Google Scholar 

  • FaurĂ©-Fremiet, E., 1950a, Écologie des ciliĂ©s psammophiles littoraux, Bull. Biol Fr. Belg. 84: 35–75.

    PubMed  Google Scholar 

  • FaurĂ©-Fremiet, E., 1950b, CaulobactĂ©ries Ă©pizoiques associĂ©s aux Centrophorella (CiliĂ©s holotriches), Bull. Soc. Zool. Fr. 75: 154–157.

    Google Scholar 

  • FaurĂ©-Fremiet, E., 1950c, Ecology of ciliate infusoria, Endeavour 9: 183–187.

    Google Scholar 

  • FaurĂ©-Fremiet, E., 1951a, Associations infusoriennes Ă  Beggiatoa, Hydrobiologia 3: 65–71.

    Google Scholar 

  • FaurĂ©-Fremiet, E., 1951b, The marine sand-dwelling ciliates of Cape Cod, Biol Butt. Mar.Biol Lab. Woods Hole Mass. 100: 59–70.

    Google Scholar 

  • FaurĂ©-Fremiet, E., 195Ic, The tidal rhythm of the diatom Hantzschia amphioxys, Biol. Bull. Mar. Biol Lab. Woods Hold Mass. 100: 173–177.

    Google Scholar 

  • Feierabend, R., 1978, Untersuchungen Ă¼ber freie und geloste Aminosäuren in natĂ¼rlichen Gewässern, Arch. Hydrobiol. 84: 454–479.

    CAS  Google Scholar 

  • Fenchel, T., 1967, The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with metazoans in various types of sediments, Ophelia 4: 121–138.

    Google Scholar 

  • Fenchel, T., 1968a, The ecology of marine microbenthos. II. The food of marine benthic ciliates, Ophelia 5: 73–121.

    Google Scholar 

  • Fenchel, T., 1968b, The ecology of marine microbenthos. III. The reproductive potential of ciliates, Ophelia 5: 123–136.

    Google Scholar 

  • Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.

    Google Scholar 

  • Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia (Berlin) 14: 317–326.

    Google Scholar 

  • Fenchel, T. M., 1978, The ecology of micro- and meiobenthos, Annu. Rev. Ecol. Syst. 9: 99–121.

    Google Scholar 

  • Fenchel, T., Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition (J. M. Anderson and A. MacFadyen, eds.), pp. 285–299, 17th Symposium of the British Ecological Society, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fenchel, T., Jørgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: the role of bacteria, in: Advances in Microbial Ecology, Vol. 1 ( M. Alexander, ed.), pp. 1–58, Plenum Press, New York.

    Google Scholar 

  • Findlay, B. J., 1977, The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa, Oecologia (Berlin) 30: 75–81.

    Google Scholar 

  • Garland, P. B., 1977, Energy transduction and transmission in microbial systems, in: Microbial Energetics (B. A. Haddock and W. A. Hamilton, eds.), pp. 1-21, 27th Symposium for General Microbiology, Cambridge University Press, Cambridge.

    Google Scholar 

  • GellĂ©rt, J., 1955, Die Ciliaten des sich unter der Flechte Parmelia saxatilis Mass, gebildeten Humus, Acta Biol. Acad. Sci. Hung. 6: 77–111.

    Google Scholar 

  • GellĂ©rt, J., 1956, Ciliaten des sich unter dem Moosrasen auf Felsen gebildeten Humus, Acta Biol. Acad. Sci. Hung. 6: 337–359.

    Google Scholar 

  • Gessat, M., Jantzen, H., 1974, Die Bedeutung von Adenosin-3’, 5’-monophosphate fĂ¼r die Entwicklung von Acanthamoeba castellanii, Arch. Microbiol. 99: 155–166.

    CAS  Google Scholar 

  • Gold, K., 1973, Methods for growing Tintinnida in continuous culture, Am. Zool. 13: 203–208.

    Google Scholar 

  • Golemansky, V., 1976, Rhizopodes psammobiontes (Protozoa, Rhizopoda) du psammal supralittoral des cĂ´tes guinĂ©enes de l’Atlantique, Acta Zool. Bulg. 4: 23–29.

    Google Scholar 

  • Golemansky, V., 1978, Adaptations morphologique des thĂ©camoebiens psammobiontes dupsammal supralittoral des mers, Acta Protozool. 17: 141–152.

    Google Scholar 

  • Gray, E., 1951, The ecology of the bacteria of Hobson’s Brook, a Cambridgeshire chalk stream, J. Gen. Microbiol. 5: 840–859.

    PubMed  CAS  Google Scholar 

  • Gray, E., 1952, The ecology of the ciliate fauna of Hobson’s Brook, a Cambridgeshire chalk stream, J. Gen. Microbiol. 6: 108–122.

    PubMed  CAS  Google Scholar 

  • Habte, M., Alexander, M., 1975, Protozoa as agents responsible for the decline of Xanthomonas campestris in soil, Appl. Microbiol. 29: 159–164.

    PubMed  CAS  Google Scholar 

  • Habte, M., Alexander, M., 1977, Further evidence for the regulation of bacterial populations in soil by protozoa, Arch. Microbiol. 113: 181–183.

    PubMed  CAS  Google Scholar 

  • Habte, M., Alexander, M., 1978, Mechanisms of persistence of low numbers of bacteria preyed upon by protozoa, Soil Biol. Biochem. 10: 1–6.

    Google Scholar 

  • Harding, J. P., 1937a, Quantitative studies on the ciliate Glaucoma. I. The regulation of the size and the fission rate by the bacterial food supply, J. Exp. Biol. 14: 422–430.

    Google Scholar 

  • Harding, J. P., 1937b, Quantitative studies on the ciliate Glaucoma. II. The effects of starvation, J. Exp. Biol. 14: 431–439.

    Google Scholar 

  • Harvey, R. J., Greaves, J. E., 1941, Nitrogen fixation by Azotobacter chroococcum in the presence of soil protozoa, Soil Sci. 51: 85–100.

    Google Scholar 

  • Heal, O. W., 1962, The abundance and micro-distribution of testate amoebae (Rhizopoda, Testacea) in Sphagum, Oikos 13: 35–47.

    Google Scholar 

  • Heal, O. W., 1964a, Observations on the seasonal and spatial distribution of testacea (Protozoa, Rhizopoda) in Sphagnum, J. Anim. Ecol. 33: 395–412.

    Google Scholar 

  • Heal, O. W., 1964b, The use of cultures for studying Testacea (Protozoa, Rhizopoda) in soil, Pedobiologia 4: 1–7.

    Google Scholar 

  • Heller, R., 1978, Two predator-prey difference equations considering population growth and starvation, J. Theor. Biol. 70: 401–413.

    PubMed  CAS  Google Scholar 

  • Herzberg, M. A., Klein, D. A., Coleman, D. C., 1978, Trophic interactions in soils as they affect energy and nutrient dynamics. II. Physiological responses of selected rhizosphere bacteria, Microb. Ecol. 4: 351–359.

    CAS  Google Scholar 

  • Hoffman, E. K., Rasmussen, L., Zeuthen, E., 1974, Cytochalasin B: Aspects of phagocytosis in nutrient uptake in Tetrahymena, J. Cell Sci. 15: 403–406.

    Google Scholar 

  • Holter, H., Zeuthen, E., 1947, Metabolism and reduced weight in starving Chaos chaos, C. R. Trav. Lab. Carlsberg 26: 277–296.

    Google Scholar 

  • Hunt, H. W., Cole, C. V., Klein, D. A., Coleman, D. C., 1977, A simulation model for the effect of predation on bacteria on continuous culture, Microb. Ecol. 3: 259–278.

    CAS  Google Scholar 

  • Kandatsu, M., Horiguchi, M., 1962, Ocurrence of ciliatin (2-Aminoethylphosphonic acid) in Tetrahymena, Agric. Biol. Chem. (Tokyo) 26: 721–722.

    CAS  Google Scholar 

  • Hutner, S. H. (ed.), 1964, Biochemistry and Physiology of Protozoa, Vol. 3, Academic Press, New York.

    Google Scholar 

  • Hutner, S. H., Lwoff, A. (eds.), 1955, Biochemistry and Physiology of Protozoa, Vol. 2, Academic Press, New York.

    Google Scholar 

  • Hunter, S. H., Provasoli, L., 1955, The Phytoflagellates, in: Biochemistry and Physiology of Protozoa, Vol. 1 ( A. Lwoff, ed.), pp. 27 - 128, Academic Press, New York.

    Google Scholar 

  • Jantzen, H., 1974, Das Adenosinphosphat-System während Wachstum und Entwicklung von Acanthamoeba castellanii,Arch. Microbiol 101: 391–399.

    CAS  Google Scholar 

  • Jenkinson, D. A., Rayner, J. H., 1977, The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci. 123: 298–305.

    CAS  Google Scholar 

  • Jenkinson, D. S., Powlson, D. S., Wedderburn, R. W. W., 1976, The effects of biocidal treatments on metabolism in soil. III. The relationship between soil biovolume, measured by optical microscopy, and the flush of decomposition caused by fumigation, Soil Biol. Biochem. 8: 189–202.

    CAS  Google Scholar 

  • Johannes, R. E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr. 10: 434–442.

    Google Scholar 

  • Johannes, R. E., 1968, Nutrient regeneration in lakes and oceans, in: Advances in Microbiology of the Sea, Vol. 1 ( M. R. Droop and E. J. Ferguson Wood, eds.), pp. 203–213, Academic Press, London.

    Google Scholar 

  • Kalff, J., Knoechel, R., 1978, Phytoplankton and their dynamics in oligotrophic and eutrophic lakes, Annu. Rev. Ecol. Syst. 9: 475–495.

    Google Scholar 

  • Karpenko, A., Railkin, A. I., Seravin, L. N., 1977, Feeding behaviour of unicellular animals. II. The role of prey mobility in the feeding behaviour of protozoa, Acta Proto-zool. 16: 333–344.

    Google Scholar 

  • Kaszubiak, H., Kaczmarek, W., Durska, G., 1976, Feeding of soil microbial community on organic matter from its dead cells, Ekol Pol. 24: 391–397.

    CAS  Google Scholar 

  • Keeling, C. D., Bacastow, R. B., 1977, Impact of industrial gases on climate, in: Energy and Climate, National Research Council, pp. 72–95, National Academy of Sciences, Washington, D. C.

    Google Scholar 

  • Kidder, G. W. (ed.), 1967, Protozoa, in: Chemical Zoology, Vol. 1 (M. Florkin and B. T. Scheer, eds.), Academic Press, New York.

    Google Scholar 

  • King, D. L., 1972, Carbon as a limiting factor in lake ecology, in: Trace Substances in Environmental Health, Vol. 5 ( D. D. Hemphill, ed.), pp. 109–115, University of Missouri, Columbia.

    Google Scholar 

  • Kloetzel, J. A., 1974, Feeding in ciliated protozoa. 1. Pharyngeal disks in Euplotes: a source of membrane for food vacuole formation? J. Cell Sci. 15: 379–401.

    PubMed  CAS  Google Scholar 

  • Kolkwitz, R., Marsson, M., 1909, Oekologie der tierischen Saproben, Int. Rev. Gesamten Hydrobiol Hydrogr. 2: 126–152.

    Google Scholar 

  • Lackey, J. B., 1938, A study of some ecologic factors affecting protozoa, Ecol Monogr. 8: 501–527.

    CAS  Google Scholar 

  • Laminger, H., 1973, Untersuchungen Ă¼ber Abundanz and Biomasse der sedimentbewohnenden Testaceen (Protozoa, Rhizopoda) in einem Hochgebirgssee (Vorderer Finstertaler See, KĂ¼htal, Tirol), Int. Rev. Gesamten Hydrobiol. 58: 543–568.

    Google Scholar 

  • Laminger, H., 1978, The effects of soil moisture fluctuations on the testacean species Trinema enchelys (Ehrenberg) Leidy in a high mountain brown-earth podzol and its feeding behaviour, Arch. Protistenkd. 120: 446–454.

    Google Scholar 

  • Latter, P. M., Cragg, J. B., Heal, O. W., 1967, Comparative studies on the microbiology of four moorland soils in the Northern Pennines, J. Ecol. 55: 445–464.

    Google Scholar 

  • Lauterborn, R., 1916, Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes natĂ¼rlicher Gewässer, Verh. Naturforsch. Med. Ver. Heidelberg, n.s. 13: 395–481.

    Google Scholar 

  • Laybourn, J., 1975, Respiratory energy losses in Stentor coeruleus Ehrenberg (Ciliophora), Oecologia (Berlin) 21: 273–278.

    Google Scholar 

  • Laybourn, J., 1976a, Energy budgets for Stentor coeruleus Ehrenberg (Ciliophora), Oecologia (Berlin) 22: 431–437.

    Google Scholar 

  • Laybourn, J., 1976b, Respiratory energy losses in Podophrya fixa MĂ¼ller in relation to temperature and nutritional status, J. Gen. Microbiol. 96: 203–208.

    Google Scholar 

  • Laybourn, J., 1977, Respiratory energy losses in the protozoan predator Didinium nasutum MĂ¼ller (Ciliophora), Oecologia (Berlin) 27: 305–309.

    Google Scholar 

  • Laybourn, J., Finlay, B. J., 1976, Respiratory energy losses related to cell weight and temperature in ciliated protozoa, Oecologia (Berlin) 24: 349–355.

    Google Scholar 

  • Laybourn, J. E. M., Stewart, J. M., 1975, Studies on consumption and growth in the ciliate Colpidium campylum Stokes, J. Anim. Ecol. 44: 165–174.

    Google Scholar 

  • Lee, J. J., Muller, W. A., 1973, Trophic dynamics and niches of salt marsh Foraminifera, Am. Zool. 13: 215–223.

    Google Scholar 

  • Legner, M., 1975, Concentration of organic substances in water as a factor controlling the occurrence of some ciliate species, Int. Rev. Gesamten Hydrobiol. 60: 639–654.

    Google Scholar 

  • Lindemann, R. L., 1942, The trophic-dynamic aspect of ecology, Ecology 23: 399–418.

    Google Scholar 

  • Lloyd, D., Phillips, G. A., Statham, M., 1978, Oscillations of respiration, adenine nucleotide levels and heat evolution in synchronous cultures of Tetrahymena pyriformis St prepared by continuous-flow selection, J. Gen. Microbiol. 106: 19–26.

    CAS  Google Scholar 

  • Lousier, J. D., 1974a, Effects of experimental soil moisture fluctuations on turnover rates of testacea, Soil Biol Biochem. 6: 19–26.

    Google Scholar 

  • Lousier, J. D., 1974b, Response of soil testacea to soil moisture fluctuations, Soil Biol. Biochem. 6: 235–239.

    Google Scholar 

  • Lousier, J. D., 1976, Testate amebae (Rhizopoda, Testacea) in some Canadian Rocky Mountain softs, Arch. Protistenkd. 118: 191–201.

    Google Scholar 

  • Lousier, J. D., and Parkinson, D., 1976, Litter decomposition in a cool temperate deciduous forest, Can. J. Bot. 54: 419–436.

    CAS  Google Scholar 

  • Luckinbill, L. S., 1973, Coexistence in laboratory populations of Pammecium aurelia and its predator Didinium nasutum, Ecology 54: 1320–1327.

    Google Scholar 

  • Luckinbill, L. S., 1974, The effects of space and enrichment on a predator-prey system, Ecology 55: 1142–1147.

    Google Scholar 

  • Lwoff, A. (ed.), 1951, Biochemistry and Physiology of Protozoa, Vol. 1, Academic Press, New York.

    Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Matheja, J., Degens, E. T., 1971, Structural Molecular Biology of Phosphates, p. 180, G. Fisher Verkg, Stuttgart.

    Google Scholar 

  • Maxham, J. V., Hickman, H. J., 1974, Substrate diffusion and uptake within bacterial flocs, J. Theor. Biol. 43: 229–239.

    PubMed  CAS  Google Scholar 

  • Medvecsky, N., Rosenberg, H., 1971, Phosphate transport in Escherichia coli, Biochim. Biophys. Acta 241: 494–506.

    Google Scholar 

  • Meiklejohn, J., 1930, The relationship between the numbers of soil bacterium and the ammonia produced by it in peptone solution, with some reference to the effect of this process on the presence of amoebae, Ann. Appl Biol. 19: 584–608.

    Google Scholar 

  • Meiklejohn, J., 1932, The effect of Colpidium on ammonia produced by soil bacteria, Ann. Appl Biol. 19: 584–608.

    Google Scholar 

  • Meisterfeld, R., 1977, Die horizontale und vertikale Verteilung der Testaceen (Rhizopoda, Testacea) in Sphagnum, Arch. Hydrobiol. 79: 319–356.

    Google Scholar 

  • Nasir, S. A., 1923, Some preliminary investigations on the relationship of protozoa to soil fertility, with special reference to nitrogen fixation, Ann. Appl Biol. 10: 122–133.

    CAS  Google Scholar 

  • National Research Council, 1977, Energy and Climate, p. 158, National Academy of Sciences, Washington, D. C. Needham, D. M., Robertson, M., Needham, J., Baldwin, E., 1932, Phosphagen and protozoa, J. Exp. Biol. 9: 332–335.

    Google Scholar 

  • Newman, E. I., 1978, Root microorganisms: Their significance in the ecosystem, Biol. Rev. Cambridge Philos. Soc. 53: 511–554.

    CAS  Google Scholar 

  • Nichols, G. L., Syrett, P. J., 1978, Nitrate reductase deficient mutants of Chlamydomonas reinhardii. Isolation and genetics, J. Gen. Microbiol. 108: 71–77.

    CAS  Google Scholar 

  • Nielsen, L. Brunberg, 1968, Investigations on the microfauna of leaf litter in a Danish beech forest, Nat. Jutl. 14: 79–87.

    Google Scholar 

  • Nikolyuk, V. F., 1968, The effect of root systems of wild growing and cultivated plants on Protozoa in the soils of Uzbekistan, in: Methods of Productivity Studies in Root Systems and Rhizosphere Organisms: International Symposium, pp. 126–129, Nauka, Leningrad.

    Google Scholar 

  • Nikolyuk, V. F., 1969, Some aspects of the study of soil protozoa, Acta Protozool 7: 99–109.

    Google Scholar 

  • Noland, L. E., 1925, Factors influencing the distribution of fresh water ciliates, Ecology 6: 437–452.

    Google Scholar 

  • Olson, J. S., Pfuderer, H. A., Chan, Y.-H., 1978, Changes in the Global Carbon Cycle and the Biosphere, Environmental Sciences Division Publication No. 1050, Oak Ridge National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia, p. 169.

    Google Scholar 

  • Organ, A. E., Bovee, E. C., Jahn, T. L., 1978, Effects of ionic ratios vs. osmotic pres¬sure on the rate of the water expelling vesicle of Tetrahymena pyriformis, Acta Protozool. 17: 177–190.

    CAS  Google Scholar 

  • Orias, E., Rasmussen, L., 1977, Dual capacity for nutrient uptake in Tetrahymena. II. Role of the two systems in vitamin uptake, J. Protozool. 24: 507–511.

    PubMed  CAS  Google Scholar 

  • Panikov, N., Pkt, S. J., 1978, The effects of cooperativity and growth yield variation on the kinetics of nitrogen or phosphate limited growth of Chlorella in a chemostat culture, J. Gen. Microbiol. 108: 295–303.

    CAS  Google Scholar 

  • Parnas, H., 1976, A theoretical explanation of the priming effect based on microbial growth with two limiting substrates, Soil Biol Biochem, 8: 139–144.

    CAS  Google Scholar 

  • Paul, E. A., van Veen, J. A., 1978, The use of tracers to determine the dynamic nature of organic matter, in: Symposia Papers, Vol. 3, pp. 61–102, Transactions of the 11th Congress International Society of Soil Science, Edmonton.

    Google Scholar 

  • Pauls, K. P., Thompson, J. E., 1978, Growth and differentiation-related enzyme changes in cytoplasmic membranes of Acanthamoeba castellanii, J. Gen. Microbiol. 107: 147–153.

    CAS  Google Scholar 

  • Payne, W. J., Wiebe, W. J., 1978, Growth yield and efficiency in chemosynthetic microorganisms, Annu. Rev. Microbiol. 32: 155–183.

    PubMed  CAS  Google Scholar 

  • Peak, J. G., Peak, M. J., 1977, Regulation by ammonium of variation in heterotrophic CO2 fixation by Euglena gracilis during growth cycles, J. Protozool. 24: 441–444.

    CAS  Google Scholar 

  • Picken, L. E. R., 1937, The structure of some protozoan communities, J. Ecol. 25: 368–384.

    Google Scholar 

  • Pirt, S. J., Bazin, M. J., 1972, Possible adverse effect of Protozoa on effluent purification systems, Nature (London) 239: 290.

    CAS  Google Scholar 

  • Plachter, H., 1979, Untersuchungen zur Feinstruktur der Stiele und Gehäuse einiger symphorionter Ciliaten, Arch. Protistenkd. 121: 193–210.

    Google Scholar 

  • Preston, T. M., King, C. A., 1978, Cell-substrate associations during the amoeboid locomotion of Naegleria. J. Gen. Microbiol. 104: 347–351.

    Google Scholar 

  • Provasoli, L., Pinter, I. J., 1953, Ecological implications of in vitro nutritional requirements of algal flagellates, Ann. N. Y. Acad. Sci. 56: 839–851.

    PubMed  CAS  Google Scholar 

  • Raikov, I. B., 1962, Les ciliĂ©s mĂ©sopsammique du literal de la Mer Blanche (URSS) avec une description de quelques espèces nouvelles ou peu connues, Cah. Biol. Mar. 3: 325–361.

    Google Scholar 

  • Rasmussen, L., 1973, On the role of food vacuole formation in the uptake of dissolved nutrients by Tetrahymena, Exp. Cell Res. 82: 192–196.

    CAS  Google Scholar 

  • Rasmussen, L., 1976, Nutrient uptake in Tetrahymena pyriformis, Carlsberg Res. Commun. 41: 143–167.

    CAS  Google Scholar 

  • Rasmussen, L., Modeweg-Hansen, L., 1973, Cell multiplication in Tetrahymena cultures after addition of particulate material, J. Cell Sci. 12: 275–286.

    PubMed  CAS  Google Scholar 

  • Reid, R., 1969, Fluctuations in populations of 3 Vorticella species from an activated-sludge sewage plant, J. Protozool 16: 111–120.

    Google Scholar 

  • Ricketts, T. R., 1972, The interaction of particulate material and dissolved foodstuffs in food uptake by Tetrahymena pyriformis, Arch. Mikrobiol. 81: 344–349.

    CAS  Google Scholar 

  • Ringelberg, J., Kersting, K., 1978, Properties of an aquatic microecosystem: I. General introduction to the prototypes, Arch. Hydrobiol. 83: 47–68.

    Google Scholar 

  • Roti, L. W., Stevens, A. R., 1975, DNA synthesis in growth and encystment of Acanthamoeba castellanii, J. Cell Sci, 17: 503–515.

    PubMed  CAS  Google Scholar 

  • Russell, E. J., Hutchinson, H. B., 1909, On the effect of partial sterilization of soil on the production of plant food, J. Agric. Sci. 3: 111–144.

    Google Scholar 

  • Russell, E. W., 1961, Soil Conditions and Plant Growth, 9th ed., Longmans, Green and Co., London. Sardeshpande, J. S., Baksubramanya, R. H., Kulkarni, J. H., and Bagyaraj, D. J., 1977, Protozoa in relation to Rhizobium S-12 and Azotobacter chroococcum, Plant Soil 47: 75–80.

    Google Scholar 

  • Satir, P., Zeuthen, E., 1961, Cell cycle and the relationship of growth to reduced weight (RW) in the giant ameba Chaos chaos L., C.R. Trav. Lab. Carlsberg, 32: 241–264.

    PubMed  CAS  Google Scholar 

  • Schlesinger, W. H., 1977, Carbon balance in terrestrial detritus, Annu. Rev. Ecol Syst. 8: 51–81.

    CAS  Google Scholar 

  • Schmerenbeck, W., 1975, Experimented Untersuchungen an strömenden Modellgewässern zur Frage der Beziehung Zwischen dem Abbau organischer Substanz und der Ciliatenbesiedlung, Thesis, Institut fĂ¼r Landwirtschaftliche Zoologie und Bienenkunde, No. 2, Bonn, p. 95.

    Google Scholar 

  • Schönborn, W., 1964, Lebensformtypen und Lebensraumwechsel der Testaceen, Limnologica 2: 321–335.

    Google Scholar 

  • Schönborn, W., 1977, Production studies on Protozoa, Oecologia 27: 171–184.

    Google Scholar 

  • Seravin, L. N., Orlovskaya, E. E., 1977, Feeding behaviour of unicellular animals. I. The main role of chemoreception in the food choice of carnivorous protozoa, Acta Protozool. 16: 309–332.

    Google Scholar 

  • Singh, B. N., 1946, A method of estimating the numbers of soil protozoa, especially amoebae based on their differential feeding on bacteria, Ann. Appl. Biol. 33: 112–119.

    PubMed  CAS  Google Scholar 

  • Singh, B. N., 1949, The effect of artificial fertilizers and dung on the numbers of amoebae in Rothamsted soils, J. Gen. Microbiol. 3: 204–210.

    PubMed  CAS  Google Scholar 

  • Singh, B. N., 1960, Inter-relationship between micropredators and bacteria in soil, Proceedings 47th Indian Science Congress, Part II, Agricultural Sciences, pp. 1–14.

    Google Scholar 

  • Singh, B. N., 1964, Soil protozoa and their probable role in soil fertility, Bull Natl Inst. Set. India 26: 238–244.

    Google Scholar 

  • Skriver, L., Nilsson, J. R., 1978, The relationship between energy-dependent phagocytosis and the rate of oxygen consumption in Tetrahymena, J. Gen. Microbiol. 109: 359–366.

    CAS  Google Scholar 

  • Small, E. B., 1973, A study of ciliate protozoa from a small polluted stream in East Central Illinois, Am. Zool 13: 223–230.

    Google Scholar 

  • Smith, H. G., 1973a, The Signy Island Terrestrial Reference Sites II. Protozoa, Br. Antarctic Survey Bull. 33, 34: 83–87.

    Google Scholar 

  • Smith, H. G., 1973b, The Signy Island Terrestrial Reference Sites. III. Population Ecology of Corythion dubium (Rhizopoda, Testacida) in Site I, Br. Antarctic Survey Bull. 33 34: 123–135.

    CAS  Google Scholar 

  • Stoermer, E. F., Ladewski, B. G., Schelske, C. L., 1978, Population responses of Lake Michigan phytoplankton to nitrogen and phosphorus enrichment, Hydrobiologia 57: 249–265.

    CAS  Google Scholar 

  • Stout, J. D., 1962, An estimation of microfaunal populations in soils and forest litter, J. Soil Sci. 13: 314–320.

    Google Scholar 

  • Stout, J. D., 1968, The significance of the protozoan fauna in distinguishing mull and mor of beech (Fagus silvatica), Pedobiologia 8: 387–400.

    Google Scholar 

  • Stout, J. D., 1971, Aspects of the microbiology and oxidation of Wicken Fen soil, Soil Biol. Biochem. 3: 9–25.

    CAS  Google Scholar 

  • Stout, J. D., 1974, Protozoa, in: Biology of Plant Litter Decomposition, Vol. 11 ( H. Dickinson and G. J. F. Pugh, eds.), pp. 383–420, Academic Press, New York.

    Google Scholar 

  • Stout, J. D., Heal, O. W., 1967, Protozoa, in: Soil Biology ( A. Burges and F. Raw, eds.), pp. 149–195, Academic Press, New York.

    Google Scholar 

  • Stouthamer, A. H., 1977, Energetic aspects of growth of micro-organisms, in: Microbial Energetics (B. A. Haddock and W. A. Hamilton, eds.), pp. 285–316, Symposium 27, Society for General Microbiology, Cambridge.

    Google Scholar 

  • Theng, B. K. G., 1974, The Chemistry of Clay-Organic Reactions, Hilger, London. Theng, B. K. G., 1979, Formation and Properties of Clay-Polymer Complexes, Elsevier, Amsterdam,

    Google Scholar 

  • Van Niel, C. B., Thomas, J. P., Ruben, S., Kamen, M. D., 1942, Radioactive carbon as an indicator of carbon dioxide utilization. IX. The assimilation of carbon dioxide by protozoa, Proc. Natl Acad. Sci. U.S.A. 28: 157–161.

    PubMed  Google Scholar 

  • Vernberg, W. B., Coull, B. C., 1974, Respiration of an interstitial ciliate and benthic energy relationships, Oecologia (Berlin) 16: 259–264.

    Google Scholar 

  • Villarreal, E., Canale, R., Arcasu, Z., 1977, Transport equations for a microbial predator-prey community, Microb. Ecol. 3: 131–142.

    Google Scholar 

  • Wang, C. C., 1928, Ecological studies of the seasonal distribution of Protozoa in a fresh water pond, J. Morphol. 46: 431–478.

    Google Scholar 

  • Wangersky, P. J., 1978, Lotka-Volteira population models, Annu. Rev. Ecol Syst. 9: 189–218.

    Google Scholar 

  • Welch, E. B., Sturtevant, P., and Perkins, M. A., 1978, Dominance of phosphorus over nitrogen as the limiter to phytoplankton growth rate, Hydrobiologia 57: 209–215.

    CAS  Google Scholar 

  • Wenzel, F., 1953, Die der Moosrasen trockner Standorte, Arch. Protistenkd. 99: 70–141.

    Google Scholar 

  • Whittaker, R. H., 1975, Communities and Ecosystems, 2nd ed., Macmillan, New York.

    Google Scholar 

  • Wiegert, R. G., Owen, D. F., 1971, Trophic structure, available resources and population density in terrestrial vs aquatic ecosystems, J. Theor. Biol. 30: 69–81.

    PubMed  CAS  Google Scholar 

  • Wilson, J. M., Griffin, D. M., 1975, Water potential and the respiration of microorganisms in the soil, Soil Biol Biochem. 7: 199–204.

    Google Scholar 

  • Woodwell, G. M., Pecan, E. V. (eds.), 1973, Carbon and the Biosphere, U. S. Atomic Energy Commission, U.S. Department of Commerce, Springfield, Virginia.

    Google Scholar 

  • Ziegler, B., 1977, Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms, J. Theor. Biol. 67: 687–713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Stout, J.D. (1980). The Role of Protozoa in Nutrient Cycling and Energy Flow. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8291-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8291-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8293-9

  • Online ISBN: 978-1-4615-8291-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics