Advertisement

Biochemical Aspects of Transmission at Inhibitory Synapses: The Role of Glycine

  • M. H. Aprison
  • E. C. Daly
Chapter

Abstract

The biochemical aspects of the neurophysiology of transmission have been clarified during the years since the late 1950s. Thus, it is interesting to recall that during this period many biochemists became aware for the first time that most neurons in the central nervous system of higher vertebrates do not touch. With the aid of the electron microscope, the neuroanatomists have shown that a space of approximately 200 Å separates the terminal endings of the axon of one neuron and the cellular membranes of the next neuron. This space is called the synaptic cleft and can vary from 100 to 500 Å depending on the tissue and the location; this whole minute region in the nervous system (i.e., the terminal ending of one neuron, the cellular membrane of the second neuron in juxtaposition to the specific nerve ending, and the synaptic cleft) is called a synapse. Various organic compounds can be released from the axonal endings of the presynaptic cell into the synaptic cleft. The compounds which reach and can affect the conductance across the postsynaptic membrane at this region of the synapse in a specific manner are called transmitters and the whole process is called transmission. This latter process is chemical in nature.

Keywords

Spinal Cord Inhibitory Synapse Central Nervous System Tissue Tetanus Toxin Inhibitory Transmitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H. C., and Himwich, W. A., 1970, Amino acids, proteins and monoamines of developing brain, in: Developmental Neurobiology ( W. A. Himwich, ed.), pp. 287–310, Thomas, Springfield, Ill.Google Scholar
  2. Aitken, J. T., and Bridger, J. E., 1961, Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord, J. Anat. 95: 38–53.PubMedGoogle Scholar
  3. Ames, A., III, and Pollen, D. A., 1969, Neurotransmission in central nervous tissue: A study of isolated rabbit retina, J. Neurophysiol. 32: 424–442.PubMedGoogle Scholar
  4. Andersen, P., Eccles, J. C., and Schmidt, R. F., 1962, Presynaptic inhibition in the cuneate nucleus, Nature 194: 741–743.PubMedCrossRefGoogle Scholar
  5. Andersen, P., Eccles, J. C., Loyning, Y., and Voorhoeve, P. E., 1963, Strychnine-resistant central inhibition, Nature 200: 843–845.PubMedCrossRefGoogle Scholar
  6. Andersen, P., Eccles, J. C., Oshima, K., and Schmidt, R. F., 1964, Mechanism of synaptic transmission in the cuneate nucleus, J. Neurophysiol. 27: 1096–1116.PubMedGoogle Scholar
  7. Ando, T., and Nyhan, W. L., 1974, Propionic acidemia and the ketotic hyperglycinemia syndrome, in: Heritable Disorders of Amino Acid Metabolism ( W. L. Nyhan, ed.), pp. 37–60, Wiley, New York.Google Scholar
  8. Ando, T., Nyhan, W. L., Gerritsen, T., Gong, L., Heiner, D. C., and Bray, P. F., 1968, Metabolism of glycine in the nonketotic form of hyperglycinemia, Pediatr. Res. 2: 254–263.PubMedCrossRefGoogle Scholar
  9. Ando, T., Klinberg, W. G., Ward, A. N., Rasmusseen, K., and Nyhan, W. L., 1971, Isovaleric acidemia presenting with altered metabolism of glycine, Pediatr. Res. 5: 478–486.CrossRefGoogle Scholar
  10. Ando, T., Nyhan, W. L., Connor, J. D., Rasmusseen, K., Donnell, G., Barnes, N., Cottom, D., and Hull, D., 1972, The oxidation of glycine and propionic acid in propionic acidemia with ketotic hyperglycinemia, Pediatr. Res. 6: 576–583.PubMedCrossRefGoogle Scholar
  11. Aprison, M. H., 1970a, Evidence of the release of [“C]glycine from hemisectioned toad spinal cord with dorsal root stimulation, Pharmacologist 12: 222.Google Scholar
  12. Aprison, M. H., 1970b, Studies on the release of glycine in the isolated spinal cord of the toad, Trans. Am. Soc. Neurochem. 1: 25.Google Scholar
  13. Aprison, M. H., 1971, Biochemical aspects of inhibitory mechanisms in the CNS, in: Proceedings of the VIII International Union of Physiological Sciences.Google Scholar
  14. Aprison, M. H., 1978, Glycine as a neurotransmitter, in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. Di Mascio, and K. F. Killam, eds.), pp. 333–346, Raven Press, New York.Google Scholar
  15. Aprison, M. H., and McBride, W. J., 1973, Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat, Life Sci.Google Scholar
  16. Aprison, M. H., and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 4: 2075–2083.PubMedCrossRefGoogle Scholar
  17. Aprison, M. H., and Werman, R., 1968, A combined neurochemical and neurophysiological approach to the identification of central nervous system neurotransmitters, in: Neurosciences Research ( S. Ehrenpreis and O. C. Solnitzky, eds.), Vol. 1, pp. 143–174, Academic Press, New York.Google Scholar
  18. Aprison, M. H., Shank, R. P., Davidoff, R. A., and Werman, R., 1968, The distribution of glycine, a neurotransmitter suspect in the central nervous system of several vertebrate species, Life Sci. 7: 583–590.CrossRefGoogle Scholar
  19. Aprison, M. H., Shank, R. P., and Davidoff, R. A., 1969, A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates, Comp. Biochem. Physiol. 28: 1345–1355.PubMedCrossRefGoogle Scholar
  20. Aprison, M. H., Davidoff, R. A., and Werman, R., 1970, Glycine: Its metabolic and possible transmitter roles in nervous tissue, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 3, pp. 381–397, Plenum Press, New York.Google Scholar
  21. Aprison, M. H., McBride, W. J., and Freeman, A. R., 1973, The distribution of several amino acids in specific ganglia and nerve bundles of the lobster, J. Neurochem. 21: 87–95.PubMedCrossRefGoogle Scholar
  22. Aprison, M. H., Daly, E. C., Shank, R. P., and McBride, W. J., 1975, Neurochemical evidence for glycine as a transmitter and a model for its intrasynaptosomal compartmentation, in: Metabolic Compartmentation and Neurotransmission ( S. Berl, D. D. Clarke, and D. Schneider, eds.), pp. 37–63, Plenum Press, New York.CrossRefGoogle Scholar
  23. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters. Studies of the uptake of L-aspartate, GABA, L-glutamate, and glycine in cat spinal cord, J. Neurochem. 20: 529–539.PubMedCrossRefGoogle Scholar
  24. Bank, W. J., and Morrow, G., 1972, A familial spinal cord disorder with hyperglycinemia, Arch. Neurol. 27: 136–144.PubMedCrossRefGoogle Scholar
  25. Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmacol. 8: 299–307.PubMedCrossRefGoogle Scholar
  26. Banos, G., Daniel, P. M., Moorhouse, S. R., and Pratt, O. E., 1975, The requirements of the brain for some amino acids, J. Physiol. (Lond.) 246: 539–548.Google Scholar
  27. Barker, J. L., Nicoll, R. A., and Padjen, A., 1975, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid response, J. Physiol. (Lond.) 245: 521–536.Google Scholar
  28. Baumgartner, E. R., and Wick, H., 1972, Normal propionate metabolism in nonketotic hyperglycinemia, N. Engl. J. Med. 286: 784–785.PubMedGoogle Scholar
  29. Baumgartner, E. R., Bachman, C., Brechbuhler, T., and Wick, H., 1975, Acute neonatal nonketotic hyperglycinemia: Normal propionate and methylmalonate metabolism, Pediatr. Res. 9: 559–564.PubMedCrossRefGoogle Scholar
  30. Beart, P. M., and Bilal, K. B., 1976, Compartmentation and release of glycine in vitro, Neurosci. Abstr. 2: 594.Google Scholar
  31. Belcher, G., Davis, J., and Ryall, R. W., 1976, Glycine-mediated inhibitory transmission of group 1A-excited inhibitory interneurons by Renshaw cells, J. Physiol. (Lond.) 256: 651–662.Google Scholar
  32. Belcheva, S., and Vitanova, L., 1974, Effects of some antagonists of the inhibitory transmitters on biological activity of retinal cells, Aggressologie 15: 461–469.Google Scholar
  33. Benecke, R., Takano, K., Schmidt, J., and Henatsch, H.-D., 1977, Tetanus toxin-induced actions on spinal Renshaw cells and Ia-inhibitory interneurones during development of local tetanus in the cat, Exp. Brain Res. 27: 271–286.PubMedCrossRefGoogle Scholar
  34. Bennett, J. P., Jr., Logan, W. J., and Snyder, S. H., 1972, Amino acid neurotransmitter candidates: Sodium-dependent high-affinity uptake by unique synaptosomal fractions, Science 178: 997–999.PubMedCrossRefGoogle Scholar
  35. Benuck, M., Stern, F., and Lajtha, A., 1971, Transamination of amino acids in homogenates of rat brain, J. Neurochem. 8: 1555–1567.CrossRefGoogle Scholar
  36. Benuck, M., Stern, F., and Lajtha, A., 1972, Regional and subcellular distribution of aminotransferases in rat brain, J. Neurochem. 19: 949–957.PubMedCrossRefGoogle Scholar
  37. Berger, S. J., Carter, J. G., and Lowry, O. H., 1977a, The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord, cerebellum and hippocampus, J. Neurochem. 28: 149–158.PubMedCrossRefGoogle Scholar
  38. Berger, S. J., McDaniel, M. L., Carter, J. G., and Lowry, O. H., 1977, Distribution of four potential transmitter amino acids in monkey retina, J. Neurochem. 28: 159–163.PubMedCrossRefGoogle Scholar
  39. Biscoe, T. J., and Curtis, D. R., 1967, Strychnine and cortical inhibition, Nature 214: 914–915.PubMedCrossRefGoogle Scholar
  40. Biscoe, T. J., Duggan, A. W., and Lodge, D., 1972, Antagonism between bicuculline, strychnine, and picrotoxin and depressant amino acids in the rat nervous system, Comp. Gen. Pharmacol. 3: 423–433.PubMedCrossRefGoogle Scholar
  41. Bisti, S., Iosif, G., Marchesi, G. F., and Strata, P., 1971, Pharmacological properties of inhibition in the cerebellar cortex, Exp. Brain Res. 14: 24–37.PubMedCrossRefGoogle Scholar
  42. Blasberg, R., and Lajtha, A., 1965, Substrate specificity of steady state amino acid transport in mouse brain slices, Arch. Biochem. Biophys. 112: 361–377.CrossRefGoogle Scholar
  43. Blasberg, R., and Lajtha, A., 1966, Heterogeneity of the mediated transport systems of amino acid uptake in brain, Brain Res. 1: 86–104.PubMedGoogle Scholar
  44. Blum, K., Wallace, J. E., and Geller, I., 1972, Synergy of ethanol and putative neurotransmitters: Glycine and serine, Science 176: 292–294.PubMedCrossRefGoogle Scholar
  45. Boehme, D. H., Fordice, M. W., Marks, N., and Vogel, W., 1973, Distribution of glycine in human spinal cord and selected regions of brain, Brain Res. 50: 353–359.PubMedCrossRefGoogle Scholar
  46. Boehme, D. H., Marks, N., and Fordice, M. W., 1976, Glycine levels in the degenerated human spinal cord, J. Neurol. Sci. 27: 347–352.PubMedCrossRefGoogle Scholar
  47. Boyd, E. S., Meritt, D. A., and Gardner, C., 1966, The effect of convulsant drugs on transmission through the cuneate nucleus, J. Pharmacol. Exp. Ther. 154: 398–409.PubMedGoogle Scholar
  48. Bradford, H. F., 1969, Respiration in vitro of synaptosomes from mammalian cerebral cortex, J. Neurochem. 16: 675–684.PubMedCrossRefGoogle Scholar
  49. Bradford, H. F., 1970, Metabolic response of synaptosomes to electrical stimulation: Release of amino acids, Brain Res. 19: 239–247.PubMedCrossRefGoogle Scholar
  50. Bradford, H. F., and Thomas, A. J., 1969, Metabolism of glucose and glutamate by synaptosomes from mammalian cerebral cortex, J. Neurochem. 16: 1495–1504.PubMedCrossRefGoogle Scholar
  51. Bradford, H. F., Bennett, G. W., and Thomas, A. J., 1973, Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes, J. Neurochem. 21: 495–505.PubMedCrossRefGoogle Scholar
  52. Bradley, K., Easton, D. M., and Eccles, J. C., 1953, An investigation of primary or direct inhibition, J. Physiol. 122: 474–488.PubMedGoogle Scholar
  53. Brandt, N. J., Rasmussen, K., Brandt, S., Kolvraa, S., and Schonheyder, F., 1976, D-Glyceric-acidaemia and nonketotic hyperglycinaemia, Acta Paediatr. Scand. 65: 17–22.PubMedCrossRefGoogle Scholar
  54. Bridgers, W. F., 1965, The biosynthesis of serine in mouse brain extracts, J. Biol. Chem. 240: 4591–4597.PubMedGoogle Scholar
  55. Bridgers, W. F., 1967, Mouse brain phosphoserine phosphohydrolase and phosphotransferase, J. Biol. Chem. 242: 2080–2085.PubMedGoogle Scholar
  56. Bridgers, W. F., 1968, Serine transhydroxymethylase in developing mouse brain, J. Neurochem. 15: 1325–1328.PubMedCrossRefGoogle Scholar
  57. Broderick, D. S., Candland, K. L., North, J. A., and Mangum, J. H., 1972, The isolation of serine transhydroxymethylase from bovine brain, Arch. Biochem. Biophys. 148: 196–198.PubMedCrossRefGoogle Scholar
  58. Brody, T., Shin, Y. S., and Stokstad, E. L. R., 1976, Rat brain folate identification, J. Neurochem. 27: 409–413.PubMedCrossRefGoogle Scholar
  59. Brooks, V. B., Curtis, D. R., and Eccles, J. C., 1957, The action of tetanus toxin on the inhibition of motoneurones, J. Physiol. 135: 655–672.PubMedGoogle Scholar
  60. Bruin, W. J., Frantz, B. M., and Sallach, H. J., 1973, The occurrence of a glycine cleavage system in mammalian brain, J. Neurochem. 20: 1649–1658.PubMedCrossRefGoogle Scholar
  61. Burkhardt, D. A., 1972, Effects of picrotoxin and strychnine upon electrical activity of the proximal retina, Brain Res. 43: 246–249.PubMedCrossRefGoogle Scholar
  62. Burton, E. G., and Sallach, H. J., 1975, Methylenetetrahydrofolate reductase in the rat central nervous system: Intracellular and regional distribution, Arch. Biochem. Biophys. 166: 483–494.PubMedCrossRefGoogle Scholar
  63. Cho, Y. D., Martin, R. O., and Tunnicliff, G., 1973, Uptake of [3H]glycine and [C]glutamate by cultures of chick spinal cord, J. Physiol. 235: 437–446.PubMedGoogle Scholar
  64. Christensen, H. N., Cooper, P. E., Johnson, R. D., and Lynch, E. L., 1947, Glycine and alanine concentrations of body fluids, experimental modification, J. Biol. Chem. 168: 191–196.PubMedGoogle Scholar
  65. Cohen, A. I., McDaniel, M. L., and Orr, H. T., 1973, Absolute levels of some free amino acids in normal and biologically fractioned retinas, Invest. Ophthalmol. 12: 686–693.PubMedGoogle Scholar
  66. Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The inhibitory suppression of reflex discharges from motoneurones, J. Physiol. (Lond.) 130: 396–413.Google Scholar
  67. Corbeel, L., Tada, K., Colombo, J. P., Eeckels, R., Eggermont, E., Jaekan, J., Den Tandt, W., Harvengt, L., Delhaye, J., and Deloecker, W., 1975, Methylmalonic acidaemia and nonketotic hyperglycinaemia: Clinical and biochemical aspects, Arch. Dis. Child. 50: 103–109.PubMedCrossRefGoogle Scholar
  68. Corbett, J. L., and Harris, P. J., 1973, Studies on the sympathetic nervous system in tetanus, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 447–460.CrossRefGoogle Scholar
  69. Crawford, J. M., and Curtis, D. R., 1964, The excitation and depression of mammalian cortical neurones by amino acids, Br. J. Pharmacol. Chemother. 23: 313–329.PubMedGoogle Scholar
  70. Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1963, Strychnine and cortical inhibition, Nature 200: 845–846.PubMedCrossRefGoogle Scholar
  71. Curtis, D. R., 1959, Pharmacological investigations upon the inhibition of spinal motoneurones, J. Physiol. (Lond.) 145: 175–192.Google Scholar
  72. Curtis, D. R., 1962, The depression of spinal inhibition by electrophoretically administered strychnine, Int. J. Neuropharmacol. 1: 239–250.CrossRefGoogle Scholar
  73. Curtis, D. R., 1963, The pharmacology of central and peripheral inhibition, Pharmacol. Rev. 15: 333–364.PubMedGoogle Scholar
  74. Curtis, D. R., and DeGroat, W. C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10: 208–212.PubMedCrossRefGoogle Scholar
  75. Curtis, D. R., and Johnston, G. A., 1970, Strychnine, glycine and vertebrate postsynaptic inhibition, Nature 225: 12–58.CrossRefGoogle Scholar
  76. Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian Central nervous system, Ergebn. Physiol. 69: 98–188.Google Scholar
  77. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurons by structurally related amino acids, J. Neurochem. 6: 117–141.PubMedCrossRefGoogle Scholar
  78. Curtis, D. R., and Watkins, J. C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J. Physiol. (Lond.) 166: 1–14.Google Scholar
  79. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to gammaaminobutyric acid, Pharmacol. Rev. 17: 347–392.PubMedGoogle Scholar
  80. Curtis, D. R., Phillis, J. W., and Watkins, J C, 1959, The depression of spinal neurones by yamino-n-butyric acid and /3-alanine, J. Physiol. (Lond.) 146: 185–203.Google Scholar
  81. Curtis, D. R., Phillis, J W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (Lond.) 150: 656–682.Google Scholar
  82. Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1968a, The hyperpolarization of spinal interneurones by glycine and related amino acids, Exp. Brain Res. 5: 235–258.PubMedCrossRefGoogle Scholar
  83. Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968b, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6: 118.CrossRefGoogle Scholar
  84. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971, The specificity of strychine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res. 12: 547–565.PubMedCrossRefGoogle Scholar
  85. Curtis, D. R., Felix, D., Game, C. J. A., and McCulloch, R. M., 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51: 358–362.PubMedCrossRefGoogle Scholar
  86. Curtis, D. R., Game, C. J. A., and Lodge, D., 1976a, The in vivo inactivation of GABA and other inhibitory amino acids in the cat nervous system, Exp. Brain Res. 25: 413–428.PubMedCrossRefGoogle Scholar
  87. Curtis, D. R., Game, C. J. A_, and Lodge, D., 1976b, Benzodiazepines and central glycine receptors, Br. J. Pharmacol. 56: 307–311.PubMedGoogle Scholar
  88. Curtis, D. R., Game, C. J. A., Lodge, D., and McCulloch, R. M., 1976c, A pharmacological study of Renshaw cell inhibition, J. Physiol. (Lond.) 258: 227–242.Google Scholar
  89. Curtis, D. R., Lodge, D., Johnston, G. A. R., and Brand, S. J., 1976d, Central actions of benzodiazepines, Brain Res. 118: 344–347.PubMedCrossRefGoogle Scholar
  90. Cutler, R. W. P., 1975, Glycine release from rat spinal cord, American Society of Neurochemistry, Abstract, 6th Meeting, p. 191.Google Scholar
  91. Cutler, R. W. P., Hammerstad, J. P., Cornick, L. R., and Murray, J. E., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. I. Factors influencing the spontaneous efflux of [14C]glycine and 3H-GABA, Brain Res. 35: 337–355.PubMedCrossRefGoogle Scholar
  92. Cutler, R. W. P., Murray, J. E., and Hammerstad, J. P., 1972, Role of mediated transport in the electrically induced release of [’4C]glycine from slices of rat spinal cord, J. Neurochem. 19: 539–542.PubMedCrossRefGoogle Scholar
  93. Daly, E. C., and Aprison, M. H., 1974, Distribution of serine hydroxymethyltransferase and glycine transaminase in several areas of the central nervous system of the rat, J. Neurochem. 22: 877–885.PubMedCrossRefGoogle Scholar
  94. Daly, E. C., Nadi, N. S., and Aprison, M. H., 1976, Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: Evidence for an endogenous inhibitor during in vitro assay, J. Neurochem. 26: 179–185.PubMedGoogle Scholar
  95. Davidoff, R. A., and Adair, R., 1976, GABA and glycine transport in frog CNS: High affinity uptake and potassium-evoked release in vitro, Brain Res. 118: 403–415.CrossRefGoogle Scholar
  96. Davidoff, R. A., Shank, R. P., Graham, L. T., Jr., Aprison, M. H., and Werman, R., 1967a, Association of glycine with spinal interneurons, Nature 214: 680–681.PubMedCrossRefGoogle Scholar
  97. Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 19676, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.Google Scholar
  98. Davidoff, R. A., Aprison, M. H., and Werman, R., 1969, The effects of strychnine on the inhibition of interneurons by glycine and y-aminobutyric acid, Int. J. Neuropharmacol. 8: 191–194.PubMedCrossRefGoogle Scholar
  99. Davidson, N., and Southwick, C. A. P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (Lond.) 219: 689–708.Google Scholar
  100. Davidson, N., and Suckling, E. E., 1967, Studies on corticofugal inhibition in the rat dorsal column nuclei, Fed. Proc. 26: 491.Google Scholar
  101. Davies, L. P., and Johnston, G. A. R., 1973, Serine hydroxymethyltransferase in the central nervous system regional and subcellular distribution studies, Brain Res. 54: 149–156.CrossRefGoogle Scholar
  102. Davies, L. P., and Johnston, G. A. R., 1974, Postnatal changes in the levels of glycine and the activities of serine hydroxymethyltransferase and glycine:2-oxoglutarate aminotransferase in the rat central nervous system, J. Neurochem. 22: 107–112.PubMedCrossRefGoogle Scholar
  103. Davies, L. P., Johnston, G. A. R., and Stephanson, A. L., 1975, Postnatal changes in the potassium-stimulated, calcium-dependent release of radioactive GABA and glycine from slices of rat central nervous tissue, J. Neurochem. 25: 387–392.PubMedCrossRefGoogle Scholar
  104. Davis, R., and Huffmann, R. D., 1969, Pharmacology of the brachium conjunctivum-red nucleus synaptic system in the baboon, Fed. Proc. 28: 775.Google Scholar
  105. Dayson, H., 1967, Physiology of the Cerebrospinal Fluid, Little, Brown, Boston, Mass.Google Scholar
  106. De Belleroche, J. S., and Bradford, H. F., 1972, Metabolism of beds of mammalian cortical synaptosomes: Response to depolarizing influences, J. Neurochem. 19: 585–602.PubMedCrossRefGoogle Scholar
  107. De Belleroche, J. S., and Bradford, H. F., 1973, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem. 21: 441–451.PubMedCrossRefGoogle Scholar
  108. De Belleroche, J. S., and Bradford, H. F., 1977, On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro, J. Neurochem. 29: 335–343.CrossRefGoogle Scholar
  109. Deffner, G. G. J., 1961, The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm, Biochim. Biophys. Acta 47: 378–388.PubMedCrossRefGoogle Scholar
  110. DeGroat, W. C., 1970, The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18: 542–544.PubMedCrossRefGoogle Scholar
  111. De Groot, C. J., Troelstra, J. A., and Hommes, F. A., 1970, Nonketotic hyperglycinemia: An in vitro study of the glycine-serine conversion in liver of three patients and the effect of dietary methionine, Pediatr. Res. 4: 238–243.PubMedCrossRefGoogle Scholar
  112. De Groot, C. J., Vandenberg, H., and Hommes, F. A., 1975, Studies on valine sensitivity in nonketotic hyperglycinemia, Helv. Paediatr. Acta 30: 247–254.PubMedGoogle Scholar
  113. De Groot, C. J., Hommes, F. A., and Touwen, B. C. L., 1977, The altered toxicity of glycine in nonketotic hyperglycinemia, Hum. Hered. 27: 178.Google Scholar
  114. DeMarchi, W. J., and Johnston, G. A. R., 1969, The oxidation of glycine by D-amino acid oxidase in extracts of mammalian central nervous tissue, J. Neurochem. 16: 335–361.Google Scholar
  115. Dennison, M. E., Jordan, C. C., and Webster, R. A., 1976, Distribution and localization of tritiated amino acids by autoradiography in the cat spinal cord in vivo, J. Physiol. (Lond.) 258: 55P - 56 P.Google Scholar
  116. De Robertis, E., Pellegrino De Iraldi, A., Rodriquez De Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergic and noncholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase, J. Neurochem. 9: 23–35.Google Scholar
  117. Diamond, J., Roper, S., and Yasargil, G. M., 1973, The membrane effects, and sensitivity to strychnine, of neural inhibition of the mauthner cell, and its inhibition by glycine and GABA, J. Physiol. 232: 87–111.PubMedGoogle Scholar
  118. Dickinson, J. C., and Hamilton, P. B., 1966, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13: 1179–1187.PubMedCrossRefGoogle Scholar
  119. Dimfel, W., and Habermann, E., 1973, Histoautoradiographic localization of 125I-labelled tetanus toxin in rat spinal cord, Nauyn-Schmiedebergs Arch. Pharmacol. 280: 177–182.CrossRefGoogle Scholar
  120. Dray, A., and Straughan, D. W., 1976, Benzodiazepines: GABA and glycine receptors on single neurons in the rat medulla, J. Pharm. Pharmacol. 28: 314–315.PubMedCrossRefGoogle Scholar
  121. Dudzinski, D. S., and Cutler, R. W. P., 1974, Spinal subarachnoid perfusion in the rat: Glycine transport from spinal fluid, J. Neurochem. 22: 355–361.PubMedCrossRefGoogle Scholar
  122. Duggan, A. W., and McLennan. H., 1971, Bicuculline and inhibition in the thalamus, Brain Res. 25: 188–191.PubMedCrossRefGoogle Scholar
  123. Duggan, A. W., Lodge, D., and Biscoe, T. J., 1973, The inhibition of hypoglossal motoneurones by impulses in the glossopharyngeal nerve of the rat, Exp. Brain Res. 17: 261–270.PubMedCrossRefGoogle Scholar
  124. Eccles, J. C. (ed.), 1964, The Physiology of Synapses, Springer-Verlag, Berlin and New York.Google Scholar
  125. Edwardson, J. A., Bennett, G. W., and Bradford, H. F., 1972, Release of amino acids in neurosecretory substances after stimulation of nerve-endings (synaptosomes isolated from the hypothalamus), Nature 240: 554–556.PubMedCrossRefGoogle Scholar
  126. Ehinger, B., and Lindberg-Bauer, B., 1976, Light-evoked release of glycine from cat and rabbit retina, Brain Res. 113: 535–549.PubMedCrossRefGoogle Scholar
  127. Fagg, G. E., Jordon, C. C., and Webster, R. A., 1976, The release of endogenous amino acids from the cat spinal cord, Br. J. Pharmacol. 58: 440P - 441 P.PubMedGoogle Scholar
  128. Farriaux, J. P., Morel, P., and Hommes, F. A., 1976, Nonketotic hyperglycinemia with increased propionic acid excretion and hyperammonemia, N. Engl. J. Med. 294: 558.PubMedGoogle Scholar
  129. Fedineé, A. A., 1967, Absorption and distribution of tetanus toxin in experimental animals, in: Principles of Tetanus ( L. Echmann, ed.), pp. 169–176, Huber, Bern.Google Scholar
  130. Fedineé, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in rat spinal cord, J. Neurochem. 18: 2229–2234.CrossRefGoogle Scholar
  131. Feld, R. D., and Sallach, H. J., 1974, The regulation of D-glycerate dehydrogenase from porcine spinal cord, Brain Res. 73: 558–562.PubMedCrossRefGoogle Scholar
  132. Felix, D., and McLennan, H., 1971, The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb, Brain Res. 25: 661–664.PubMedCrossRefGoogle Scholar
  133. Filipovic, N., Stern, P., and Fuks, Z., 1976, Effects of serine on morphine-dependent mice, Pharmacology 14: 247–255.PubMedCrossRefGoogle Scholar
  134. Franklin, G. M., Dudzinski, D. S., and Cutler, R. W. P., 1975, Amino acid transport into the cerebrospinal fluid of the rat, J. Neurochem. 24: 367–372.PubMedCrossRefGoogle Scholar
  135. Freeman, A. R., 1973, Electrophysiological analysis of the actions of strychnine, bicuculline and picrotoxin on the axonal membrane, J. Neurobiol. 4: 567–582.PubMedCrossRefGoogle Scholar
  136. Frontali, N., 1964, Brain glutamic acid decarboxylase and synthesis of y-aminobutyric acid in vertebrate and invertebrate species, in: Comparative Neurochemistry (D. Richter, ed_), pp. 185–192, Macmillan, New York.Google Scholar
  137. Gahwiler, B. H., 1976, Spontaneous bioelectric activity of cultured Purkinje cells during exposure to glutamate, glycine, and strychnine, J. Neurobiol. 7: 97–107.PubMedCrossRefGoogle Scholar
  138. Gaitonde, M. K., Fayein, N. A., and Johnson, A. L., 1975, Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine, J. Neurochem. 24: 1215–1223.PubMedCrossRefGoogle Scholar
  139. Galindo, A., Krnjevié, K., and Schwartz, S., 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. (Lond.) 192: 359–377.Google Scholar
  140. Gaull, G. E., von Berg, W., Räihä, N. C. R., and Sturman, J. A., 1973, Development of methyltransferase activities of human fetal tissues, Pediatr. Res. 7: 527–533.PubMedCrossRefGoogle Scholar
  141. Geison, R. L., O’Neill Rowley, B., and Gerritsen, T., 1975, Urinary organic acid analysis in nonketotic hyperglycinemia: Nonspecific occurrence of free benzoic acid due to a /3- streptococcus infection, Clin. Chico. Acta 60: 137–142.CrossRefGoogle Scholar
  142. Gelfan, S., and Tarlov, I. M., 1963, Altered neuron population in L7 segment of dogs with experimental hind-limb rigidity, Am. J. Physiol. 205: 606–616.PubMedGoogle Scholar
  143. Geller, H. M., and Woodward, D. J., 1974, Responses of cultured cerebellar neurons to iontophoretically applied amino acids, Brain Res. 74: 67–80.PubMedCrossRefGoogle Scholar
  144. Gerritsen, T., Nyhan, W. L., Rehberg, M. L., and Ando, T., 1969, Metabolism of glyoxylate in nonketotic hyperglycinemia, Pediatr. Res. 3: 269–274.PubMedCrossRefGoogle Scholar
  145. Gilles, R., and Schoffeniels, E., 1964, Action de la veratrine, de la cocaine et de la stimulation électrique sur la synthèse et sur le pool des acides amines de la chaine nerveuse ventrale du homard, Biochim. Biophys. Acta 82: 525–537.PubMedCrossRefGoogle Scholar
  146. Gitzelmann, R., Cuenod, M., Otten, A., Steinmann, B., and Dumermuth, G., 1977, Nonketotic hyperglycinemia treated with strychnine, Pediatr. Res. 11: 1016.Google Scholar
  147. Graham, L. T., Jr., and Aprison, M. H., 1966, Fluorometric determination of aspartate, glutamate and y-aminobutyrate in nerve tissue by using enzymic methods, Anal. Biochem. 15: 487–497.PubMedCrossRefGoogle Scholar
  148. Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter candidates in cat spinal cord: Glutamic acid, aspartic acid, yaminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472.PubMedCrossRefGoogle Scholar
  149. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electron microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96: 79–88.PubMedGoogle Scholar
  150. Gray, E. G., and Willis, R. A., 1970, On synaptic vesicles, complex vesicles and dense projections, Brain Res. 24: 149–168.PubMedCrossRefGoogle Scholar
  151. Gregson, N. A., and Williams, P L, 1969, A comparative study of brain and liver mitochondria from newborn and adult rats, J. Neurochem. 16: 617–626.PubMedCrossRefGoogle Scholar
  152. Gushchin, S., Kozhechkin, S. N., and Sverdlov, Y. S., 1969, Presynaptic nature of depression by tetanus toxin of postsynaptic inhibition, Dokl. Akad. Nauk. (U.S.S.R.) 187: 604–606.Google Scholar
  153. Haas, H. L., and Hösli, L., 1973a, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res. 52: 399–402.PubMedCrossRefGoogle Scholar
  154. Haas, H. L., and Hösli, L., 1973b, Strychnine and inhibition of bulbar reticular neurones, Experientia 29: 542–544.PubMedCrossRefGoogle Scholar
  155. Habermann, E., 1973, Interaction of labelled tetanus toxin and toxoid with substituents of rat brain and spinal cord in vitro, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 341–359.CrossRefGoogle Scholar
  156. Habermann, E., and Wellhöner, H. H., 1974, Advances in tetanus research, Klin. Wochenschr. 52: 255–265.PubMedCrossRefGoogle Scholar
  157. Habermann, E., Dimfel, W., and Raker, K. O., 1973, Interaction of labelled tetanus toxin with substructures of rat spinal cord in vivo, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 361–373.CrossRefGoogle Scholar
  158. Hadzovié, S., and Brankov, K., 1974, Inhibitory transmitters in tetanus therapy, Nauyn Schmiedebergs Arch. Pharmacol. 248: R27.Google Scholar
  159. Hall, P. V., Smith, J. E., Campbell, R. L., Felten, D. L., and Aprison, M. H., 1976, Neurochemical correlates of spasticity, Life Sci. 18: 1467–1472.PubMedCrossRefGoogle Scholar
  160. Hammerstad, J. P., Murray, J. E., and Cutler, R. W. P., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [“C]glycine and 3H-GABA, Brain Res. 35: 357–367.PubMedCrossRefGoogle Scholar
  161. Hedrick, J. L., and Sallach, H. J., 1964, The nonoxidative decarboxylation of hydroxypyruvate in mammalian systems, Arch. Biochem. Biophys. 105: 261–269.PubMedCrossRefGoogle Scholar
  162. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973, Amino acid antagonists and the depression of cuneate neurones by y-aminobutyric acid (GABA) and glycine, Br. J. Pharmaol. 47: 642–643.Google Scholar
  163. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1976, Antagonism of y-aminobutyric acid and glycine by convulsants in the cuneate nucleus of cat, Br. J. Pharmacol. 56: 9–19.PubMedGoogle Scholar
  164. Hillman, R. E., and Keating, J. P., 1974, Beta-ketothiolase deficiency as a cause of the “ketotic hyperglycinemia syndrome,” Pediatrics 53: 221–225.PubMedGoogle Scholar
  165. Hillman, R. E., and Otto, E. F., 1974, Inhibition of glycine-serine interconversion in cultured human fibroblasts by products of isoleucine catabolism, Pediatr. Res. 8: 941–945.PubMedCrossRefGoogle Scholar
  166. Hillman, R. E., Sowers, L. H., and Cohen, J. L., 1973, Inhibition of glycine oxidation in cultured fibroblasts by isoleucine, Pediatr. Res. 7: 945–947.PubMedCrossRefGoogle Scholar
  167. Ho, C. K., and Hillman, R. E., 1974, Studies on ketotic hyperglycinemia-inhibitors of serine hydroxymethyltransferase, Pediatr. Res. 8: 433.CrossRefGoogle Scholar
  168. Hökfelt, T., and Ljungdahl, A., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine, Brain Res. 32: 189–194.PubMedCrossRefGoogle Scholar
  169. Holmgren, G., and Blomquist, H. K., 1977, Nonketotic hyperglycinemia in two sibs with mild psychoneurological symptoms, Neuropaediatric 8: 67–72.CrossRefGoogle Scholar
  170. Holtzman, E., Freeman, A. R., and Kashner, L. A., 1971, Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions, Science 173: 733–736.PubMedCrossRefGoogle Scholar
  171. Hopkin, J. M., and Neal, M. J., 1970, The release of “C-Glycine from electrically stimulated rat spinal cord slices, Proc. Br. Pharmacol. Soc. 4: 136–137 P.Google Scholar
  172. Hopkin, J. M., and Neal, M. J., 1971, Effect of electrical stimulation and high potassium concentrations on the efflux of (14C)glycine from slices of spinal cord, Br. J. Pharmacol. 42: 215–223.PubMedGoogle Scholar
  173. Hösli, L., and Haas, H. L., 1972, The hyperpolarization of neurones of the medulla oblongata by glycine. Experientia 28: 1057–1058.PubMedCrossRefGoogle Scholar
  174. Hösli, L., and Hösli, E., 1972, Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata, Brain Res. 45: 612–616.PubMedCrossRefGoogle Scholar
  175. Hösli, L., Tebécis, A. K., and Schonwetter, H. P., 1971a, A comparison of the effects of monoamines on neurones of the bulbar reticular formation, Brain Res. 25: 357–370.PubMedCrossRefGoogle Scholar
  176. Hösli, L., Andrès, P. F., and Hösli, E., 1971b, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34: 399–402.PubMedCrossRefGoogle Scholar
  177. Hösli, E., Ljungdahl, A., Hökfelt, T., and Hösli, L., 1972a, Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28: 1342–1344.PubMedCrossRefGoogle Scholar
  178. Hösli, L., Andrès, P. F., and Hösli, E., 19726, Effects of potassium on the membrane potential of spinal neurones in tissue culture, Pflugers Arch. Ges. Physiol. 333: 362–365.Google Scholar
  179. Hösli, L., Hösli, E., and Andrès, P. F., 1973a, Nervous tissue culture—A model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62: 597–602.PubMedCrossRefGoogle Scholar
  180. Hösli, L., Hösli, E., and Andrès, P. F., 19736, Uptake and action of glycine in cultures of central nervous tissue from rat, in: Central Nervous System—Studies on Metabolic Regulation and Function (E. Genazzani and H. Herken, eds.), pp. 77–83, Springer-Verlag, Berlin and New York.Google Scholar
  181. Hösli, L., Andrès, P. F., and Hösli, E., 1976, Action of amino acid transmitters on glial cells in tissue culture, Neurosci. Lett. 2: 223–227.PubMedCrossRefGoogle Scholar
  182. Hsia, Y. E., Scully, K. J., and Rosenberg, L. E., 1969, Defective propionate carboxylation in ketotic hyperglycinemia, Lancet 1: 757–758.PubMedCrossRefGoogle Scholar
  183. Humoller, F. L., Mahler, D. J., and Parker, M. M., 1966, Distribution of amino acids between plasma and spinal fluid, Int. J. Neuropsychiatry 2: 293–297.PubMedGoogle Scholar
  184. Iliffe, T. M., McAdoo, D. J., Beyer, C. B., and Haber, B., 1977, Amino acid concentration in the aplysia nervous system: Neurons with high glycine concentrations, J. Neurochem. 28: 1037–1042.PubMedCrossRefGoogle Scholar
  185. Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3H-GABA and [3H]glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.PubMedCrossRefGoogle Scholar
  186. Johnston, G. A. R., 1968, The intraspinal distribution of some depressant amino acids, J.Neurochem. 15: 1013–1017.PubMedCrossRefGoogle Scholar
  187. Johnston, G. A. R., and Iversen, L. L., 1971, Glycine uptake in the central nervous system slices and homogenates: Evidence for different uptake mechanisms in spinal cord and cerebral cortex, J. Neurochem. 18: 1951–1961.PubMedCrossRefGoogle Scholar
  188. Johnston, G. A. R., and Vitali, M. V., 1969a, Glycine producing transaminase activity in extracts of spinal cord, Brain Res. 15: 471–472.CrossRefGoogle Scholar
  189. Johnston, G. A. R., and Vitali, M. V., 1969b, Glycine-2-oxoglutarate transaminase in rat cerebral cortex, Brain Res. 15: 201–208.PubMedCrossRefGoogle Scholar
  190. Johnston, G. A. R., DeGroat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16: 797–800.PubMedCrossRefGoogle Scholar
  191. Johnston, G. A. R., Vitali, M. V., and Alexander, H. M., 1970, Regional and subcellular distribution studies on glycine:2-oxoglutarate transaminase activity in cat spinal cord, Brain Res. 20: 361–367.PubMedCrossRefGoogle Scholar
  192. Jones, D. G., and Bradford, H. F., 1971, Observations on the morphology of mammalian synaptosomes following their incubation and electrical stimulation, Brain Res. 28: 491–499.PubMedCrossRefGoogle Scholar
  193. Jordan, C. C., and Webster, R. A., 1971, Release of acetylcholine and “C-glycine from the cat spinal cord in vivo, Br. J. Pharmacol. 43: 441 P.Google Scholar
  194. Kaeser, H., and Saner, A., 1970, The effect of tetanus toxin on neuromuscular transmission, Eur. Neural. 3: 193–205.CrossRefGoogle Scholar
  195. Kawamura, H., and Provini, L., 1970, Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids, Brain Res. 24: 293–304.PubMedCrossRefGoogle Scholar
  196. Kelly, J. S., and Krnjevié, K., 1969, The action of glycine on cortical neurones, Exp. Brain Res. 9: 155–163.PubMedCrossRefGoogle Scholar
  197. Kelly, J. S., and Renaud, L. P., 1971, Postsynaptic inhibition in the cuneate blocked by GABA antagonists, Nature New Biol. 232: 25–26.PubMedGoogle Scholar
  198. Kelly, J. S., and Renaud, L. P., 1973a, On the pharmacology of the y-aminobutyric acid receptors on cuneo-thalamic relay cells of the cat, Br. J. Pharmacol. 48: 369–386.PubMedGoogle Scholar
  199. Kelly, J. S., and Renaud, L. P., 1973b, On the pharmacology of the glycine receptors on the cuneo-thalamic relay cells in the cat, Br. J. Pharmacol. 48: 387–395.PubMedGoogle Scholar
  200. Kelly, J. S., and Renaud, L. P., 1973c, On the pharmacology of ascending, descending and recurrent postsynaptic inhibition of cuneothalamic relay cells in the cat, Br. J. Pharmacol. 48: 396–408.PubMedGoogle Scholar
  201. Kennedy, A. J., Neal, M. J., and Lolley, R. N., 1977, The distribution of amino acids within the rat retina, J. Neurochem. 29: 157–159.PubMedCrossRefGoogle Scholar
  202. Kikuchi, G., 1973, The glycine cleavage system: Composition reaction mechanism and physiological significance, Mol. Cell. Biol. 1: 169–187.Google Scholar
  203. King, L. E., and Fedineé, A. A., 1974, Pathogenesis of local tetanus in rats: Neural ascent of tetanus toxin, Nauyn-Schmiedebergs Arch. Pharmacol. 281: 391–401.CrossRefGoogle Scholar
  204. Koechlin, B. A., 1955, On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern, J. Biophys. Biochem. Cytol. 1: 511–529.PubMedCrossRefGoogle Scholar
  205. Koenig, H., 1958, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4: 785–792.PubMedCrossRefGoogle Scholar
  206. Kolvraa, S., Rasmussen, K., and Brandt, N. J., 1976, D-Glyceric acidemia: Biochemical studies of a new syndrome, Pediatr. Res. 10: 825–830.PubMedCrossRefGoogle Scholar
  207. Kondrashova, M. N., and Rodionova, M. A., 1971, Realization of the glyoxylate cycle in animal cell mitochondria, Dokl. Akad. Nauk SSSR, 196: 1225–1227.PubMedGoogle Scholar
  208. Korol, S., and Owens, G. W., 1974, Glycine, strychnine and retinal inhibition, Experientia 30: 1161–1162.PubMedCrossRefGoogle Scholar
  209. Krieger, I., and Hart, Z. H., 1974, Valine-sensitive nonketotic hyperglycinemia, J. Pediatr. 85: 43–48.PubMedCrossRefGoogle Scholar
  210. Krieger, I., Winbaum, E. S., and Eisenbrey, A. B., 1977, Cerebrospinal fluid glycine in nonketotic hyperglycinemia. Effect of treatment with sodium benzoate and a ventricular shunt, Metabolism 26: 517–524.PubMedCrossRefGoogle Scholar
  211. Krnjevié, K., and Phillis, J. W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. (Land.) 165: 274–304.Google Scholar
  212. Krnjevié, K., and Schwartz, S., 1966, Cortical inhibition and GABA, Fed. Proc. 25: 627.Google Scholar
  213. Krnjevié, K., Randic, M., and Straughan, D. W., 1966, Pharmacology of cortical inhibition, J. Physiol. (Lond.) 184: 78–105.Google Scholar
  214. Krnjevié, K., Puil, E., and Werman, R., 1977, GABA and glycine actions on spinal motoneurons, Can. J. Physiol. Pharmacol. 55: 658–669.CrossRefGoogle Scholar
  215. Kryzhanovsky, G. N., 1973, The mechanism of action of tetanus toxin: Effect on synaptic processes and some particular features of toxin binding by nervous tissue, NauynSchmiedebergs Arch. Pharmacol. 276: 247–270.CrossRefGoogle Scholar
  216. Kryzhanovsky, G. N., 1975, Present data on the pathogenesis of tetanus, Prog. Drug Res. 19: 301–313.PubMedGoogle Scholar
  217. Kryzhanovsky, G. N., and Sheykhon, F. D., 1973, Descending supraspinal effect in tetanus intoxication of the spinal cord, Exp. Neurol. 38: 110–122.PubMedCrossRefGoogle Scholar
  218. Kuno, M., and Muneoka, A., 1962, Further studies on site of action of systematic omega-amino acids in the spinal cord, Jap. J. Physiol. 12: 397–410.CrossRefGoogle Scholar
  219. Laborit, H., Baron, C., London, A., and Olympie, J., 1971, Central nervous activity and comparative general pharmacology of glyoxylate, glycolate and glycoaldehyde, Agressologie 12: 187–211.PubMedGoogle Scholar
  220. Lajtha, A., and Toth, J., 1961, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216–225.PubMedCrossRefGoogle Scholar
  221. Lajtha, A., and Toth, J., 1963, The brain barrier system. V. Stereospecificity of amino acid uptake, exchange and efflux, J. Neurochem. 10: 909–920.PubMedCrossRefGoogle Scholar
  222. Lamothe, C., Thuret, F., and Laborit, H., 1971, The action of glyoxylic acid, glycolic acid and glycoaldehyde, in vivo and in vitro, on some phases of energy metabolism in cerebral cortex, liver and myocardial slices of the rat, Agressologie 12: 233–240.Google Scholar
  223. Lane, J. D., Smith, J. E., Hall, P. V., Campbell, R. L., and Aprison, M. H., 1977, Levels of taurine in eight areas of the canine lumbar spinal cord, Abstract, 6th International Meeting of the International Society of Neurochemistry.Google Scholar
  224. Larson, M. D., 1969, An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord, Brain Res. 15: 185–200.PubMedCrossRefGoogle Scholar
  225. Levy, H. L., Nishimura, R. N., Erickson, A. M., and Janowska, S. E., 1972, Hyperglycinemia: In vivo comparison of nonketotic and ketotic (propionic acidemia) forms. I. CSF glycine and blood/CSF glycine, Pediatr. Res. 6: 400.Google Scholar
  226. Lewis, P. R., 1952, The free amino acids of invertebrate nerve, Biochem. J. 52: 330–338.PubMedGoogle Scholar
  227. Liang, C. C., 1962, Studies on experimental thiamine deficiency. Trends of keto acid formation and detection of glyoxylic acid, Biochem. J. 82: 429–434.PubMedGoogle Scholar
  228. Ljungdahl, A., and Hökfelt, T., 1973, Autoradiographic uptake patterns of [3H]GABA and [3H]glycine in central nervous tissues with special reference to the cat spinal cord, Brain Res. 62: 587–590.PubMedCrossRefGoogle Scholar
  229. Logan, W. J., and Snyder, S. H., 1971, Glycine, glutamic and aspartic acids: Unique high affinity uptake systems in central nervous tissue of the rat, Nature 234: 297–299.PubMedCrossRefGoogle Scholar
  230. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42: 413–431.PubMedCrossRefGoogle Scholar
  231. Mangan, J. L., and Whittaker, V. P., 1966, The distribution of free amino acids in subcellular fractions of guinea pig brain, Biochem. J. 98: 128–137.PubMedGoogle Scholar
  232. Matus, A. I., and Dennison, M. E., 1971, Autoradiographic localization of tritiated glycine at “flat vesicle” synapses in spinal cord, Brain Res. 32: 195–197.PubMedCrossRefGoogle Scholar
  233. Matus, A. I., and Dennison, M. E., 1972, An autoradiographic study of uptake of exogenous glycine by vertebrate spinal cord slices in vitro, J. Neurocytol. 1: 27–34.CrossRefGoogle Scholar
  234. McBride, W. J., Daly, E., and Aprison, M. H., 1973, Interconversion of glycine and serine in a synaptosome fraction isolated from the spinal cord, medulla oblongata, telencephalon, and cerebellum of the rat, J. Neurobiol. 4: 557–566.PubMedCrossRefGoogle Scholar
  235. McBride, W. J., Shank, R. P., Freeman, A. R., and Aprison, M. H., 1974, Levels of free amino acids in excitatory, inhibitory and sensory axons of the walking limbs of the lobster, Life Sci. 14: 1109–1120.PubMedCrossRefGoogle Scholar
  236. McClain, L. D., Carl, G. F., and Bridgers, W. F., 1975, Distribution of folic acid coenzymes and folate-dependent enzymes in mouse brain, J. Neurochem. 24: 719–722.PubMedGoogle Scholar
  237. McGale, E. H. F., Pye, I. F., Stonier, C., Hutchinson, E. C., and Aber, G. M., 1977, Studies on the interrelationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals, J. Neurochem. 29: 291–297.PubMedCrossRefGoogle Scholar
  238. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Yu, J. Y., 1975, Immunocytochemical localization of glutamate decarboxylase in rat spinal cord, J. Comp. Neural. 164: 305–321.CrossRefGoogle Scholar
  239. Mellanby, J., and Whittaker, V P., 1968, The fixation of tetanus toxin by synaptic membranes, J. Neurochem. 15: 205–208.PubMedCrossRefGoogle Scholar
  240. Mellanby, J., van Heyningen, W. E., and Whittaker, V. P., 1965, Fixation of tetanus toxin by subcellular fractions of brain, J. Neurochem. 12: 77–79.PubMedCrossRefGoogle Scholar
  241. Mitchell, J. F., and Millis, J W., 1962, Cholinergie transmission in the frog spinal cord, Br. J. Pharmacol. Chemother. 19: 534–542.PubMedGoogle Scholar
  242. Miyata, Y., and Otsuka, M., 1975, Quantitative histochemistry of y-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition, J. Neurochem. 25:239–244. Morimoto, T., Takata, M., and Kawamura, Y., 1968, Effect of lingual nerve stimulation on hypoglossal motoneurons, Exp. Neurol. 22: 174–190.Google Scholar
  243. Motokawa, Y., and Kikuchi, G., 1971, Glycine metabolism in rat liver mitochondria: V. Intramitochòndrial localization of the reversible glycine cleavage system and serine hydroxymethyltransferase, Arch. Biochem. Biophys. 146: 461–466.PubMedCrossRefGoogle Scholar
  244. Motokawa, Y., Kikuchi, G., Narisawa, K., and Arakawa, T., 1977, Reduced level of glycine cleavage system in the liver of hyperglycinemia patients, Clin. Chim. Acta 79: 173–181.PubMedCrossRefGoogle Scholar
  245. Mulder, A. H., and Snyder, S. H., 1974, Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat, Brain Res. 76: 297–308.Google Scholar
  246. Murakami, M., Ohtsu, K., and Ohtsuka, T., 1972, Effects of chemicals on receptors and horizontal cells in the retina, J. Physiol. (Lond.) 227: 899–913.Google Scholar
  247. Murayama, S., and Smith, C. M., 1965, Rigidity of hind limbs of cats produced by occulsion of spinal cord blood supply, Neurology 15: 565–579.PubMedGoogle Scholar
  248. Murray, J. E., and Cutler, R. W. P., 1970, Clearance of glycine from cat cerebrospinal fluid: Faster clearance from spinal subarachnoid than from ventricular compartment, J. Neurochem. 17: 703–704.PubMedCrossRefGoogle Scholar
  249. Nakano, Y., Fujioka, M., and Wada, H., 1968, Studies on serine hydroxymethylase isoenzymes from rat liver, Biochim. Biophys. Acta 159: 19–26.PubMedGoogle Scholar
  250. Neal, M. J., 1969, Uptake of [“C]glycine by rat spinal cord, Br. J. Pharmacol. 36: 205P - 206 P.PubMedGoogle Scholar
  251. Neal, M. J., 1971, The uptake of [’“C]glycine by slices of mammalian spinal cord, J. Physiol. (Lond.) 215: 103–117.Google Scholar
  252. Neal, M. J., and Pickles, H., 1969, Uptake of [’“C]glycine by spinal cord, Nature 223: 679.CrossRefGoogle Scholar
  253. Neal, M. J., Peacock, D. J., and White, R. D., 1973, Kinetic analysis of amino acid uptake by the rat retina in vitro, Br. J. Pharmacol. 47: 656–657.Google Scholar
  254. Nelson-Krause, D. C., and Howard, B. D., 1976, Release of glycine and GABA from synaptosomes prepared from rat central nervous tissue, Fed. Proc. 35: 543.Google Scholar
  255. Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35: 501–511.PubMedCrossRefGoogle Scholar
  256. Nishimura, Y., Tada, K., and Arakawa, T., 1974, Coexistence of defective activity in glycine-cleavage reaction and propionyl-CoA carboxylase in the liver of a hyperglycinemic child, Tohoku J. Exp. Med. 113: 267–271.PubMedCrossRefGoogle Scholar
  257. Nyhan, W. L., 1967, Treatment of hyperglycinemia, Am. J. Dis. Child. 113: 129–133.PubMedGoogle Scholar
  258. Obata, K., 1965, Pharmacological study on postsynaptic inhibition of Deiters’ neurons, Abstract, 23rd International Congress of Physiological Sciences, p. 406.Google Scholar
  259. Obata, K., Takeda, K., and Shinozaki, H., 1970, Further study on pharmacological properties of the cerebellar-induced inhibition of Deiters’ neurones, Exp. Brain Res. 11: 327–342.PubMedCrossRefGoogle Scholar
  260. Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221: 1629–1639.PubMedGoogle Scholar
  261. Oppenheim, R. W., and Reitzel, J., 1975, Ontogeny of behavioral sensitivity to strychnine in the chick embryo: Evidence for the early onset of CNS inhibition, Brain Behay. Evol. 11: 130–159.CrossRefGoogle Scholar
  262. Ordonez, L. A., and Wurtman, R. J., 1973, Enzymes catalyzing the de novo synthesis of methyl groups in the brain and other tissues of the rat, J. Neurochem. 21: 1447–1455.PubMedCrossRefGoogle Scholar
  263. Osborne, R. H., and Bradford, H. F., 1973, Tetanus toxin inhibits amino acid release from nerve ending in vitro, Nature New Biol. 244: 157–158.Google Scholar
  264. Osborne, R. H., Bradford, H. F., and Jones, D. G., 1973, Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla, J. Neurochem. 21: 407–419.PubMedCrossRefGoogle Scholar
  265. Otsuka, M., 1977, Substance P and sensory transmitter, in: Advances in Neurochemistry ( B. W. Agranoff and M. H. Aprison, eds.), Vol. 2, pp. 193–211, Plenum Press, New York.Google Scholar
  266. Pavone, L., Monica, F., and Levy, H. L., 1975, Asymptomatic type II hyperprolinaemia associated with hyperglicinaemia in three sibs, Arch. Dis. Child. 50: 637–641.PubMedCrossRefGoogle Scholar
  267. Perry, T. L., Berry, K., Hansen, S., Diamond, S., and Mok, C., 1971a, Regional distribution of amino acids in human brain obtained at autopsy, J. Neurochem. 18: 513–519.PubMedCrossRefGoogle Scholar
  268. Perry, T. L., Hansen, S., Berry, K., Mok, C., and Lesk, D., 1971b, Free amino acids and related compounds in biopsies of human brain, J. Neurochem. 18: 521–528.PubMedCrossRefGoogle Scholar
  269. Perry, T. L., Hansen, S., and Kennedy, J., 1975a, CSF amino acids and plasma—CSF amino acid ratio in adults, J. Neurochem. 24: 587–589.PubMedCrossRefGoogle Scholar
  270. Perry, T. L., Urquhart, N., Maclean, J., Evans, M. E., Hansen, S., Davidson, A. G. F., Applegarth, D. A., Macleod, P. J., and Lock, J. E., 1975b, Nonketotic hyperglycinemia glycine accumulation due to absence of glycine cleavage in brain, N. Engl. J. Med. 292: 1269–1272.PubMedCrossRefGoogle Scholar
  271. Perry, T. L., Urquhart, N., Maclean, J., and Hansen, J., 1975c, Reply to the letter of Sciver, C. R., Sprague, W., and Harwood, S. P., N. Engl. J. Med. 293: 778.Google Scholar
  272. Piepho, R. W., and Friedman, A. H., 1971, Twenty-four hour rhythms in the glycine content of rat hindbrain and spinal cord, Life Sci. 10: 1355–1362.CrossRefGoogle Scholar
  273. Pollay, M., 1976, Movement of glycine across the blood—brain barrier of the rabbit, J. Neurobiol. 7: 123–128.PubMedCrossRefGoogle Scholar
  274. Precht, W., Baker, R., and Okada, Y., 1973, Evidence for GABA as the synaptic transmitter of the inhibitory vestibulo-ocular pathway, Exp. Brain Res. 18: 415–428.PubMedCrossRefGoogle Scholar
  275. Price, D. L., Griffin, J., Young, A., Peck, K., and Stocks, A., 1975, Tetanus toxin: Direct evidence for retrograde intraaxonal transport, Science 188: 945–947.PubMedCrossRefGoogle Scholar
  276. Price, D. L., Stocks, A., Griffin, J. W., Young, A., and Peck, K., 1976, Glycine-specific synapses in rat spinal cord: Identification by electron microscope autoradiography, J. Cell Biol. 68: 389–395.PubMedCrossRefGoogle Scholar
  277. Price, D. L., Griffin, J. W., and Peck, K., 1977, Tetanus toxin: Evidence for binding at presynaptic nerve endings, Brain Res. 121: 379–384.PubMedCrossRefGoogle Scholar
  278. Purpura, D. P., Girado, M., Smith, T. G., Callan, D. A., and Grundfest, H., 1959, Structure—activity determinants of pharmacological effects of amino acids and related compounds on central synapses, J. Neurochem. 3: 238–266.PubMedCrossRefGoogle Scholar
  279. Ransom, B. R., and Nelson, P. G., 1976, Possible pathophysiology of neurologic abnormalities associated with nonketotic hyperglycinemia, N. Engl. J. Med. 294: 1295–1296.PubMedGoogle Scholar
  280. Rassin, D. K., and Gaull, G. E., 1975, Subcellular distribution of enzymes of transmethylation and transsulphuration in rat brain, J. Neurochem. 24: 969–978.PubMedCrossRefGoogle Scholar
  281. Reploh, H., Grobe, H., Dickmann, L., Palm, D., v. Bassewitz, D. B., and Jenett, W., 1973, The clinical findings in a patient with nonketotic hyperglycinemia, Z. Kinderkeilkd. 114: 191–204.Google Scholar
  282. Reubi, J. C., and Cuenod, M., 1976, Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus, Brain Res. 112: 347–361.PubMedCrossRefGoogle Scholar
  283. Revsin, B., and Morrow, G., 1976, Glycine transport in normal and nonketotic hyperglycinemic human diploid fibroblasts, Exp. Cell Res. 100: 95–103.PubMedCrossRefGoogle Scholar
  284. Revsin, B., Lebowitz, J., and Morrow, G., 1977, Effect of valine on propionate metabolism in control and hyperglycinemia fibroblasts and in rat liver, Pediatr. Res. 11: 749–753.PubMedCrossRefGoogle Scholar
  285. Rexed, B., 1954, A cytoarchitectonic atlas of the spinal cord in the cat, J. Comp. Neurol. 100: 297–379.PubMedCrossRefGoogle Scholar
  286. Richardson, T. W., Aprison, M. H., and Werman, R., 1965, An automatic direct-current operating temperature-control device, J. Appl. Physiol. 20: 1355–1356.Google Scholar
  287. Roberts, P. J., 1974, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res. 67: 419–428.Google Scholar
  288. Roberts, P. J., and Mitchell, J. F., 1972, The release of amino acids from the hemisected spinal cord during stimulation, J. Neurochem. 19: 2473–2481.PubMedCrossRefGoogle Scholar
  289. Romano, M., and Cerra, M., 1967, Further studies on the toxicity of glyoxylate in the rat, Gazz. Biochem. 16: 354–358.Google Scholar
  290. Roper, S., and Diamond, J., 1970, Strychnine antagonism and glycine: A reply, Nature 225: 1259.PubMedCrossRefGoogle Scholar
  291. Roper, S., Diamond, J., and Yasargil, G., 1969, Does strychnine block inhibition postsynaptically?, Nature 223: 1168–1169.PubMedCrossRefGoogle Scholar
  292. Rosenberg, L. E., Lilljequist, A., and Hsia, Y. E., 1968, Methylmalonic acidiria: An inborn error leading to metabolic acidosis, long-chain ketouria and intermittent hyperglycinemia, N. Engl. J. Med. 278: 1319–1322.PubMedCrossRefGoogle Scholar
  293. Ryall, R. W., Piercey, M. F., and Polosa, C., 1972, Strychnine-resistant mutual inhibition of Renshaw cells, Brain Res. 41: 119–129.PubMedCrossRefGoogle Scholar
  294. Sato, T., Kochi, H., Sato, N., and Kikuchi, G., 1969, Glycine metabolism by rat liver mitochondria, J. Biochem. 65: 77–83.PubMedGoogle Scholar
  295. Scriver, C. R., Sprague, W., and Horwood, S. P., 1975, Plasma-CSF glycine in normal and nonketotic hyperglycinemic subjects (letter), N. Engl. J. Med. 293: 778.PubMedGoogle Scholar
  296. Schwab, M. E., and Thoenen, H., 1976, Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study, Brain Res. 105: 213–227.PubMedCrossRefGoogle Scholar
  297. Schwab, M. E., and Thoenen, H., 1977, Selective transsynaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: A comparison with nerve growth factor, Brain Res. 122: 459–474.PubMedCrossRefGoogle Scholar
  298. Schwander, J., and Lamarche, M., 1972, Inhibition of oxygen consumption in rat brain homogenate by sodium glyoxylate, C.R. Seances Soc. Biol. 166: 186–189.Google Scholar
  299. Semba, T., and Kano, M., 1969, Glycine in the spinal cord of cats with local tetanus rigidity, Science 164: 571–572.PubMedCrossRefGoogle Scholar
  300. Shank, R. P., and Aprison, M. H., 1970a, The metabolism of glycine and serine in eight different areas of the rat central nervous system. J. Neurochem. 17: 1461–1475.PubMedCrossRefGoogle Scholar
  301. Shank, R. P., and Aprison, M. H., 19706, Method for multiple analyses of concentration and specific radioactivity of individual amino acids in nervous tissue extracts, Anal. Biochem. 35: 136–145.Google Scholar
  302. Shank, R. P., Aprison, M. H., and Baxter, C. F., 1973, Precursors of glycine in the central nervous system: Comparison of specific activities in glycine and other amino acids after administration of [U14C]glucose, [3,414C]glucose, [1–14C]glucose, [U-14C]serine or [1,514C]citrate to the rat, Brain Res. 52: 301–308.PubMedCrossRefGoogle Scholar
  303. Shaw, R. K., and Heine, J. D., 1965, Ninhydrin positive substances present in different areas of normal rat brain, J. Neurochem. 12: 151–155.PubMedCrossRefGoogle Scholar
  304. Sky-Peck, H. H., Rosenbloom, C., and Winzler, R. J., 1966, Incorporation of glucose into the protein-bound amino acids of one-day-old mouse brain in vitro, J. Neurochem. 13: 223–228.CrossRefGoogle Scholar
  305. Smith, J. E., Hall, P. V., Campbell, R. L., Jones, A. R., and Aprison, M. H., 1976, Levels of y-aminobutyric acid in the dorsal grey lumbar spinal cord during the development of experimental spinal spacticity, Life Sci. 19: 1525–1530.PubMedCrossRefGoogle Scholar
  306. Smith, J. E., Hall, P. V., Galvin, M. R., Jones, A. R., and Campbell, R. L., 1977, The effects of glycine replacement on canine spinal spasticity, Trans. Am. Soc. Neurochem. 8: 210.Google Scholar
  307. Snodgrass, S. R., Cutler, R. W. P., Kang, E. S., and Lorenzo, A. V., 1969, Transport of neutral amino acids from feline cerebrospinal fluid, Am. J. Physiol. 217: 974–980.PubMedGoogle Scholar
  308. Snyder, S. H., 1975, The glycine synaptic receptor in the mammalian central nervous system, Br. J. Pharmacol. 53: 473–484.PubMedGoogle Scholar
  309. Snyder, S. H., and Enna, S. J., 1975, The role of central glycine receptors in the pharmacologic actions of benzodiazepines, Adv. Biochem. Psychopharmacol. 14: 81–91.PubMedGoogle Scholar
  310. Snyder, S. H., Logan, W. J., Bennett, J. P., and Arregui, A., 1973a, Amino acids as central nervous transmitters: Biochemical studies, in: Neurosciences Research, Vol. 5: Chemical Approaches to Brain Function ( S. Ehrenpreis and I. J. Kopin, eds.), pp. 131–157, Academic Press, New York.Google Scholar
  311. Snyder, S. H., Young, A. B., Bennett, J. P., and Mulder, A. H., 19736, Synaptic biochemistry of amino acids, Fed. Proc. 32: 2039–2047.Google Scholar
  312. Starr, H. S., 1973, Effect of dark adaptation on GABA system in retina, Brain Res. 59: 331–337.PubMedCrossRefGoogle Scholar
  313. Stern, P., and Bokonjié, R., 1974, Glycine therapy in 7 cases of spasticity, a pilot study, Pharmacology 12: 117–119.PubMedCrossRefGoogle Scholar
  314. Stern, P., and Hadzovie, J., 1970, Effect of glycine on experimental hindlimb rigidity in rats, Life Sci. 9: 955–959.CrossRefGoogle Scholar
  315. Stern, P., and Hadzovié, J., 1973, Pharmacological analysis of central actions of substance P, Arch. Int. Pharmacodyn. 202: 259–262.PubMedGoogle Scholar
  316. Stern, P., Catovié, S., and Filipovic, N., 1973, The metabolism of glycine in mice treated acutely and chronically with morphine, Pharmacology 10: 97–103.PubMedCrossRefGoogle Scholar
  317. Stern, P., Catovié, S., and Stern, M., 1974, Mechanism of action of substance P, NaunynSchmiedebergs Arch. Pharmacol. 281: 233–239.CrossRefGoogle Scholar
  318. Stokes, B. T., and Bignall, K. E., 1974, The emergence of inhibition in the chick embryo spinal cord, Brain Res. 77: 231–242.PubMedCrossRefGoogle Scholar
  319. Straschill, M., 1968, Action of drugs on single neurons in the cat’s retina, Vision Res. 8: 35–47.CrossRefGoogle Scholar
  320. Straughan, D. W., 1974, Convulsant drugs: Amino acid antagonism and central inhibition, Neuropharmacology 13: 495–508.PubMedCrossRefGoogle Scholar
  321. Tada, K., Narisawa, K., Yoshida, T., Konno, T., Yokayama, Y., Nakagawa, H., Tanno, K., Mochizuki, K., Arakawa, T., Yoshida, T., and Kikuchi, G., 1969, Hyperglycinemia: A defect in glycine cleavage reaction, Tohoku J. Exp. Med. 98: 289.PubMedCrossRefGoogle Scholar
  322. Tada, K., Corbeel, L. M., Eeckels, R., and Eggermont, E., 1974, A block in glycine cleavage reaction as a common mechanism in ketotic and nonketotic hyperglycinemia, Pediatr. Res. 8: 721–723.PubMedCrossRefGoogle Scholar
  323. Takano, K., and Neumann, K., 1972, Effect of glycine upon stretch reflex tension, Brain Res. 36: 474–475.PubMedCrossRefGoogle Scholar
  324. Tebécis, A. K., and DiMaria, A., 1972, Strychnine-sensitive inhibition in the medullary reticular formation: Evidence for glycine as an inhibitory transmitter, Brain Res. 40: 373–383.PubMedCrossRefGoogle Scholar
  325. Tebécis, A. K., and Ishikawa, T., 1973, Glycine and GABA as inhibitory transmitters in the medullary reticular formation studies involving intra-and extracellular recording, Pflugers Arch. 338: 273–278.PubMedCrossRefGoogle Scholar
  326. Tebécis, A. K., and Phillis, J. W., 1969, The use of convulsants in studying possible functions of amino acids in the toad spinal cord, Comp. Biochem. Physiol. 28: 1303.PubMedCrossRefGoogle Scholar
  327. Tebécis, A. K., Hösli, L., and Haas, H., 1971, Bicuculline and the depression of medullary reticular neurones by GABA and glycine, Experientia 27: 548.PubMedCrossRefGoogle Scholar
  328. Ten Bruggencate, G., and Engberg, I., 1968, Analysis of glycine actions on spinal interneurones by intracellular recording, Brain Res. 11: 446–450.PubMedCrossRefGoogle Scholar
  329. Ten Bruggencate, G., and Engberg, I., 1971, Iontophoretic studies in Deiters’ nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin, Brain Res. 25: 431–448.PubMedCrossRefGoogle Scholar
  330. Ten Bruggencate, G., and Sonnhof, U., 1972, Effects of glycine and GABA, and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus, Arch. Ges. Physiol. 334: 240–252.CrossRefGoogle Scholar
  331. Trijbels, J. M. F., Monnens, L. A. H., van der Zee, S. P. M., Vrenken, J. A. Th., Sengers, R. C. A., and Schretlen, E. D. A. M., 1974, A patient with nonketotic hyperglycinemia: Biochemical findings and therapeutic approaches, Pediatr. Res. 8: 598–605.PubMedCrossRefGoogle Scholar
  332. Tsukada, Y., Nagata, Y., Hirano, S., and Matsutani, T., 1963, Active transport of amino acid into cerebral cortex slices, J. Neurochem. 10: 241–256.PubMedCrossRefGoogle Scholar
  333. Tureen, L. L., 1936, Effect of experimental temporary vascular occlusion on the spinal cord. I. Correlation between structural and functional changes, A.M.A. Arch. Neurol. Psychiatry 35: 789–807.Google Scholar
  334. Uchizono, K., 1965, Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat, Nature 207: 642–643.PubMedCrossRefGoogle Scholar
  335. Uhr, M. L., 1973, Glycine decarboxylation in the central nervous system. J. Neurochem. 20: 1005–1009.PubMedCrossRefGoogle Scholar
  336. Uhr, M. L., and Sneddon, M. K., 1971, Glycine and serine inhibition of d-glycerate dehydro- genase and 3-phosphoglycerate dehydrogenase of rat brain, FEES Lett. 17: 137–140.CrossRefGoogle Scholar
  337. Uhr, M. L., and Sneddon, M. K., 1972, The regional distribution of d-glycerate dehydrogenase and 3-phosphoglycerate dehydrogenase in the cat central nervous system: Correlation with glycine levels, J. Neurochem. 19: 1495–1500.PubMedCrossRefGoogle Scholar
  338. van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature 249: 415–417.CrossRefGoogle Scholar
  339. Voaden, M. J., Marshall, J., and Murani, N., 1974, The uptake of [3H]-y-aminobutyric acid and [3H]glycine by the isolated retina of the frog, Brain Res. 67: 115–132.PubMedCrossRefGoogle Scholar
  340. Wada, Y., Tada, K., Takada, G., Omura, K., Yoshida, T., Kuniya, T., Aoyama, T., Hakui, T., and Harada, S., 1972, Hyperglycinemia associated with hyperammonemia: In vitro glycine cleavage in liver, Pediatr. Res. 6: 622–625.PubMedGoogle Scholar
  341. Wadlington, W. B., Kilroy, A., Ando, T., Sweetman, L., and Nyhan, W. L., 1975, Hyperglycinemia and propionyl CoA carboxylase deficiency and episodic severe illness without consistent ketosis, J. Pediatr. 86: 707–712.PubMedCrossRefGoogle Scholar
  342. Werman, R., 1972, CNS cellular level: Membranes, Annu. Rev. Physiol. 34: 337–374.PubMedCrossRefGoogle Scholar
  343. Werman, R., and Aprison, M. H„ 1968, Glycine: The search for a spinal cord inhibitory transmitter, in: Structure and Functions of Inhibitory Neuronal Mechanisms ( C. von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 473–486, Pergamon Press, Oxford.Google Scholar
  344. Werman, R., Davidoff, R. A., and Aprison, M. H., 1966, Glycine and postsynaptic inhibition in cat spinal cord, Physiologist 9: 318.Google Scholar
  345. Werman, R., Davidoff, R. A., and Aprison, M. H., 1967, Inhibition of motoneurones by iontophoresis of glycine, Nature 214: 681–683.PubMedCrossRefGoogle Scholar
  346. Werman, R., Davidoff, R. A., and Aprison, M. H., 1968, Inhibitory action of glycine on spinal neurons in the cat, J. Neurophysiot. 31: 81–95.Google Scholar
  347. Wiechert, P., 1963, Über die Permeabilität der Blut-liquao-schranke für einige Aminosäuren, Acta Biol. Med. Germ. 10: 305–310.PubMedGoogle Scholar
  348. Wiechert, P., and Schroter, P., 1964, Der Einfluss von y-Aminobuttersaure, L-Glutaminsaure und Glycin auf die Blut-hirn-schranke und die Enzymaktivitaten des Kaninchengehirnes, Acta Biol. Med. Germ. 12: 475–580.PubMedGoogle Scholar
  349. Wilson, V. J., Diecke, F. P. J., and Talbot, W. H., 1960, Action of tetanus toxin on conditioning of spinal motoneurones, J. Neurophysiol. 23: 659–666.PubMedGoogle Scholar
  350. Yagi, K., and Sawaki, Y., 1975, Recurrent inhibition and facilitation: Demonstration in the tubero-infundibular system and effects of strychnine and picrotoxin, Brain Res. 84: 155–159.PubMedCrossRefGoogle Scholar
  351. Yoshida, T., and Kikuchi, G., 1970, Major pathways of glycine and serine catabolism in rat liver, Arch. Biochem. Biophys. 139: 380–392.PubMedCrossRefGoogle Scholar
  352. Yoshida, T., and Kikuchi, G., 1973, Major pathways of serine and glycine catabolism in various organs of the rat and cock, J. Biochem. 73: 1013–1022.PubMedGoogle Scholar
  353. Yoshida, T., Kikuchi, G., Tada, K., Narisawa, K., and Arakawa, T., 1969, Physiological significance of glycine cleavage system in human liver as revealed by the study of a case of hyperglycinemia, Biochem. Biophys. Res. Commun. 35: 577–583.PubMedCrossRefGoogle Scholar
  354. Young, A. B., and Snyder, S. H., 1973, Strychnine binding associated with glycine receptors of the central nervous system, Proc. Natl. Acad. Sci. U.S.A. 70: 2832–2836.PubMedCrossRefGoogle Scholar
  355. Young, A. B., and Snyder, S. H., 1974a, Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: Cooperativity of glycine interactions, Mol. Pharmacol. 10: 790–809.Google Scholar
  356. Young, A. B., and Snyder, S. H., 19746, The glycine synaptic receptor—Evidence that strychnine binding is associated with the ionic conductance mechanism, Proc. Natl. Acad. Sci. U.S.A. 71: 4002–4005.Google Scholar
  357. Young, A. B., Zukin, S. R., and Snyder, S. H., 1974, Interaction of benzodiazepines with central nervous glycine receptors: Possible mechanism of action, Proc. Natl. Acad. Sci. U.S.A. 71: 2246–2250.PubMedCrossRefGoogle Scholar
  358. Zacks, S. J., and Sheff, M. F., 1970, Pathobiological aspects of the action of tetanus toxin in the nervous system and skeletal muscle, Neurosci. Res. 3: 210–287.Google Scholar
  359. Zukin, S. R., Young, A. B., and Snyder, S. H., 1975, Development of the synaptic glycine receptor in chick embryo spinal cord, Brain Res. 83: 525–530.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. H. Aprison
    • 1
  • E. C. Daly
    • 1
  1. 1.Section of Applied and Theoretical Neurobiology, The Institute of Psychiatric Research and Departments of Biochemistry and PsychiatryIndiana University Medical CenterIndianapolisUSA

Personalised recommendations