Skip to main content

Biochemical Aspects of Transmission at Inhibitory Synapses: The Role of Glycine

  • Chapter

Abstract

The biochemical aspects of the neurophysiology of transmission have been clarified during the years since the late 1950s. Thus, it is interesting to recall that during this period many biochemists became aware for the first time that most neurons in the central nervous system of higher vertebrates do not touch. With the aid of the electron microscope, the neuroanatomists have shown that a space of approximately 200 Å separates the terminal endings of the axon of one neuron and the cellular membranes of the next neuron. This space is called the synaptic cleft and can vary from 100 to 500 Å depending on the tissue and the location; this whole minute region in the nervous system (i.e., the terminal ending of one neuron, the cellular membrane of the second neuron in juxtaposition to the specific nerve ending, and the synaptic cleft) is called a synapse. Various organic compounds can be released from the axonal endings of the presynaptic cell into the synaptic cleft. The compounds which reach and can affect the conductance across the postsynaptic membrane at this region of the synapse in a specific manner are called transmitters and the whole process is called transmission. This latter process is chemical in nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, H. C., and Himwich, W. A., 1970, Amino acids, proteins and monoamines of developing brain, in: Developmental Neurobiology ( W. A. Himwich, ed.), pp. 287–310, Thomas, Springfield, Ill.

    Google Scholar 

  • Aitken, J. T., and Bridger, J. E., 1961, Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord, J. Anat. 95: 38–53.

    PubMed  CAS  Google Scholar 

  • Ames, A., III, and Pollen, D. A., 1969, Neurotransmission in central nervous tissue: A study of isolated rabbit retina, J. Neurophysiol. 32: 424–442.

    PubMed  Google Scholar 

  • Andersen, P., Eccles, J. C., and Schmidt, R. F., 1962, Presynaptic inhibition in the cuneate nucleus, Nature 194: 741–743.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Eccles, J. C., Loyning, Y., and Voorhoeve, P. E., 1963, Strychnine-resistant central inhibition, Nature 200: 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Eccles, J. C., Oshima, K., and Schmidt, R. F., 1964, Mechanism of synaptic transmission in the cuneate nucleus, J. Neurophysiol. 27: 1096–1116.

    PubMed  CAS  Google Scholar 

  • Ando, T., and Nyhan, W. L., 1974, Propionic acidemia and the ketotic hyperglycinemia syndrome, in: Heritable Disorders of Amino Acid Metabolism ( W. L. Nyhan, ed.), pp. 37–60, Wiley, New York.

    Google Scholar 

  • Ando, T., Nyhan, W. L., Gerritsen, T., Gong, L., Heiner, D. C., and Bray, P. F., 1968, Metabolism of glycine in the nonketotic form of hyperglycinemia, Pediatr. Res. 2: 254–263.

    Article  PubMed  CAS  Google Scholar 

  • Ando, T., Klinberg, W. G., Ward, A. N., Rasmusseen, K., and Nyhan, W. L., 1971, Isovaleric acidemia presenting with altered metabolism of glycine, Pediatr. Res. 5: 478–486.

    Article  CAS  Google Scholar 

  • Ando, T., Nyhan, W. L., Connor, J. D., Rasmusseen, K., Donnell, G., Barnes, N., Cottom, D., and Hull, D., 1972, The oxidation of glycine and propionic acid in propionic acidemia with ketotic hyperglycinemia, Pediatr. Res. 6: 576–583.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M. H., 1970a, Evidence of the release of [“C]glycine from hemisectioned toad spinal cord with dorsal root stimulation, Pharmacologist 12: 222.

    Google Scholar 

  • Aprison, M. H., 1970b, Studies on the release of glycine in the isolated spinal cord of the toad, Trans. Am. Soc. Neurochem. 1: 25.

    Google Scholar 

  • Aprison, M. H., 1971, Biochemical aspects of inhibitory mechanisms in the CNS, in: Proceedings of the VIII International Union of Physiological Sciences.

    Google Scholar 

  • Aprison, M. H., 1978, Glycine as a neurotransmitter, in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. Di Mascio, and K. F. Killam, eds.), pp. 333–346, Raven Press, New York.

    Google Scholar 

  • Aprison, M. H., and McBride, W. J., 1973, Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat, Life Sci.

    Google Scholar 

  • Aprison, M. H., and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 4: 2075–2083.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M. H., and Werman, R., 1968, A combined neurochemical and neurophysiological approach to the identification of central nervous system neurotransmitters, in: Neurosciences Research ( S. Ehrenpreis and O. C. Solnitzky, eds.), Vol. 1, pp. 143–174, Academic Press, New York.

    Google Scholar 

  • Aprison, M. H., Shank, R. P., Davidoff, R. A., and Werman, R., 1968, The distribution of glycine, a neurotransmitter suspect in the central nervous system of several vertebrate species, Life Sci. 7: 583–590.

    Article  CAS  Google Scholar 

  • Aprison, M. H., Shank, R. P., and Davidoff, R. A., 1969, A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates, Comp. Biochem. Physiol. 28: 1345–1355.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M. H., Davidoff, R. A., and Werman, R., 1970, Glycine: Its metabolic and possible transmitter roles in nervous tissue, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 3, pp. 381–397, Plenum Press, New York.

    Google Scholar 

  • Aprison, M. H., McBride, W. J., and Freeman, A. R., 1973, The distribution of several amino acids in specific ganglia and nerve bundles of the lobster, J. Neurochem. 21: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M. H., Daly, E. C., Shank, R. P., and McBride, W. J., 1975, Neurochemical evidence for glycine as a transmitter and a model for its intrasynaptosomal compartmentation, in: Metabolic Compartmentation and Neurotransmission ( S. Berl, D. D. Clarke, and D. Schneider, eds.), pp. 37–63, Plenum Press, New York.

    Chapter  Google Scholar 

  • Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters. Studies of the uptake of L-aspartate, GABA, L-glutamate, and glycine in cat spinal cord, J. Neurochem. 20: 529–539.

    Article  PubMed  CAS  Google Scholar 

  • Bank, W. J., and Morrow, G., 1972, A familial spinal cord disorder with hyperglycinemia, Arch. Neurol. 27: 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmacol. 8: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Banos, G., Daniel, P. M., Moorhouse, S. R., and Pratt, O. E., 1975, The requirements of the brain for some amino acids, J. Physiol. (Lond.) 246: 539–548.

    CAS  Google Scholar 

  • Barker, J. L., Nicoll, R. A., and Padjen, A., 1975, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid response, J. Physiol. (Lond.) 245: 521–536.

    CAS  Google Scholar 

  • Baumgartner, E. R., and Wick, H., 1972, Normal propionate metabolism in nonketotic hyperglycinemia, N. Engl. J. Med. 286: 784–785.

    PubMed  CAS  Google Scholar 

  • Baumgartner, E. R., Bachman, C., Brechbuhler, T., and Wick, H., 1975, Acute neonatal nonketotic hyperglycinemia: Normal propionate and methylmalonate metabolism, Pediatr. Res. 9: 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Beart, P. M., and Bilal, K. B., 1976, Compartmentation and release of glycine in vitro, Neurosci. Abstr. 2: 594.

    Google Scholar 

  • Belcher, G., Davis, J., and Ryall, R. W., 1976, Glycine-mediated inhibitory transmission of group 1A-excited inhibitory interneurons by Renshaw cells, J. Physiol. (Lond.) 256: 651–662.

    CAS  Google Scholar 

  • Belcheva, S., and Vitanova, L., 1974, Effects of some antagonists of the inhibitory transmitters on biological activity of retinal cells, Aggressologie 15: 461–469.

    CAS  Google Scholar 

  • Benecke, R., Takano, K., Schmidt, J., and Henatsch, H.-D., 1977, Tetanus toxin-induced actions on spinal Renshaw cells and Ia-inhibitory interneurones during development of local tetanus in the cat, Exp. Brain Res. 27: 271–286.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P., Jr., Logan, W. J., and Snyder, S. H., 1972, Amino acid neurotransmitter candidates: Sodium-dependent high-affinity uptake by unique synaptosomal fractions, Science 178: 997–999.

    Article  PubMed  CAS  Google Scholar 

  • Benuck, M., Stern, F., and Lajtha, A., 1971, Transamination of amino acids in homogenates of rat brain, J. Neurochem. 8: 1555–1567.

    Article  Google Scholar 

  • Benuck, M., Stern, F., and Lajtha, A., 1972, Regional and subcellular distribution of aminotransferases in rat brain, J. Neurochem. 19: 949–957.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. J., Carter, J. G., and Lowry, O. H., 1977a, The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord, cerebellum and hippocampus, J. Neurochem. 28: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. J., McDaniel, M. L., Carter, J. G., and Lowry, O. H., 1977, Distribution of four potential transmitter amino acids in monkey retina, J. Neurochem. 28: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T. J., and Curtis, D. R., 1967, Strychnine and cortical inhibition, Nature 214: 914–915.

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T. J., Duggan, A. W., and Lodge, D., 1972, Antagonism between bicuculline, strychnine, and picrotoxin and depressant amino acids in the rat nervous system, Comp. Gen. Pharmacol. 3: 423–433.

    Article  PubMed  CAS  Google Scholar 

  • Bisti, S., Iosif, G., Marchesi, G. F., and Strata, P., 1971, Pharmacological properties of inhibition in the cerebellar cortex, Exp. Brain Res. 14: 24–37.

    Article  PubMed  CAS  Google Scholar 

  • Blasberg, R., and Lajtha, A., 1965, Substrate specificity of steady state amino acid transport in mouse brain slices, Arch. Biochem. Biophys. 112: 361–377.

    Article  CAS  Google Scholar 

  • Blasberg, R., and Lajtha, A., 1966, Heterogeneity of the mediated transport systems of amino acid uptake in brain, Brain Res. 1: 86–104.

    PubMed  CAS  Google Scholar 

  • Blum, K., Wallace, J. E., and Geller, I., 1972, Synergy of ethanol and putative neurotransmitters: Glycine and serine, Science 176: 292–294.

    Article  PubMed  CAS  Google Scholar 

  • Boehme, D. H., Fordice, M. W., Marks, N., and Vogel, W., 1973, Distribution of glycine in human spinal cord and selected regions of brain, Brain Res. 50: 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Boehme, D. H., Marks, N., and Fordice, M. W., 1976, Glycine levels in the degenerated human spinal cord, J. Neurol. Sci. 27: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, E. S., Meritt, D. A., and Gardner, C., 1966, The effect of convulsant drugs on transmission through the cuneate nucleus, J. Pharmacol. Exp. Ther. 154: 398–409.

    PubMed  CAS  Google Scholar 

  • Bradford, H. F., 1969, Respiration in vitro of synaptosomes from mammalian cerebral cortex, J. Neurochem. 16: 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H. F., 1970, Metabolic response of synaptosomes to electrical stimulation: Release of amino acids, Brain Res. 19: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H. F., and Thomas, A. J., 1969, Metabolism of glucose and glutamate by synaptosomes from mammalian cerebral cortex, J. Neurochem. 16: 1495–1504.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H. F., Bennett, G. W., and Thomas, A. J., 1973, Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes, J. Neurochem. 21: 495–505.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, K., Easton, D. M., and Eccles, J. C., 1953, An investigation of primary or direct inhibition, J. Physiol. 122: 474–488.

    PubMed  CAS  Google Scholar 

  • Brandt, N. J., Rasmussen, K., Brandt, S., Kolvraa, S., and Schonheyder, F., 1976, D-Glyceric-acidaemia and nonketotic hyperglycinaemia, Acta Paediatr. Scand. 65: 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Bridgers, W. F., 1965, The biosynthesis of serine in mouse brain extracts, J. Biol. Chem. 240: 4591–4597.

    PubMed  CAS  Google Scholar 

  • Bridgers, W. F., 1967, Mouse brain phosphoserine phosphohydrolase and phosphotransferase, J. Biol. Chem. 242: 2080–2085.

    PubMed  CAS  Google Scholar 

  • Bridgers, W. F., 1968, Serine transhydroxymethylase in developing mouse brain, J. Neurochem. 15: 1325–1328.

    Article  PubMed  CAS  Google Scholar 

  • Broderick, D. S., Candland, K. L., North, J. A., and Mangum, J. H., 1972, The isolation of serine transhydroxymethylase from bovine brain, Arch. Biochem. Biophys. 148: 196–198.

    Article  PubMed  CAS  Google Scholar 

  • Brody, T., Shin, Y. S., and Stokstad, E. L. R., 1976, Rat brain folate identification, J. Neurochem. 27: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, V. B., Curtis, D. R., and Eccles, J. C., 1957, The action of tetanus toxin on the inhibition of motoneurones, J. Physiol. 135: 655–672.

    PubMed  CAS  Google Scholar 

  • Bruin, W. J., Frantz, B. M., and Sallach, H. J., 1973, The occurrence of a glycine cleavage system in mammalian brain, J. Neurochem. 20: 1649–1658.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, D. A., 1972, Effects of picrotoxin and strychnine upon electrical activity of the proximal retina, Brain Res. 43: 246–249.

    Article  PubMed  CAS  Google Scholar 

  • Burton, E. G., and Sallach, H. J., 1975, Methylenetetrahydrofolate reductase in the rat central nervous system: Intracellular and regional distribution, Arch. Biochem. Biophys. 166: 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y. D., Martin, R. O., and Tunnicliff, G., 1973, Uptake of [3H]glycine and [C]glutamate by cultures of chick spinal cord, J. Physiol. 235: 437–446.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., Cooper, P. E., Johnson, R. D., and Lynch, E. L., 1947, Glycine and alanine concentrations of body fluids, experimental modification, J. Biol. Chem. 168: 191–196.

    PubMed  CAS  Google Scholar 

  • Cohen, A. I., McDaniel, M. L., and Orr, H. T., 1973, Absolute levels of some free amino acids in normal and biologically fractioned retinas, Invest. Ophthalmol. 12: 686–693.

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The inhibitory suppression of reflex discharges from motoneurones, J. Physiol. (Lond.) 130: 396–413.

    CAS  Google Scholar 

  • Corbeel, L., Tada, K., Colombo, J. P., Eeckels, R., Eggermont, E., Jaekan, J., Den Tandt, W., Harvengt, L., Delhaye, J., and Deloecker, W., 1975, Methylmalonic acidaemia and nonketotic hyperglycinaemia: Clinical and biochemical aspects, Arch. Dis. Child. 50: 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Corbett, J. L., and Harris, P. J., 1973, Studies on the sympathetic nervous system in tetanus, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 447–460.

    Article  CAS  Google Scholar 

  • Crawford, J. M., and Curtis, D. R., 1964, The excitation and depression of mammalian cortical neurones by amino acids, Br. J. Pharmacol. Chemother. 23: 313–329.

    PubMed  CAS  Google Scholar 

  • Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1963, Strychnine and cortical inhibition, Nature 200: 845–846.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., 1959, Pharmacological investigations upon the inhibition of spinal motoneurones, J. Physiol. (Lond.) 145: 175–192.

    CAS  Google Scholar 

  • Curtis, D. R., 1962, The depression of spinal inhibition by electrophoretically administered strychnine, Int. J. Neuropharmacol. 1: 239–250.

    Article  CAS  Google Scholar 

  • Curtis, D. R., 1963, The pharmacology of central and peripheral inhibition, Pharmacol. Rev. 15: 333–364.

    PubMed  CAS  Google Scholar 

  • Curtis, D. R., and DeGroat, W. C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., and Johnston, G. A., 1970, Strychnine, glycine and vertebrate postsynaptic inhibition, Nature 225: 12–58.

    Article  Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian Central nervous system, Ergebn. Physiol. 69: 98–188.

    Google Scholar 

  • Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurons by structurally related amino acids, J. Neurochem. 6: 117–141.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., and Watkins, J. C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J. Physiol. (Lond.) 166: 1–14.

    CAS  Google Scholar 

  • Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to gammaaminobutyric acid, Pharmacol. Rev. 17: 347–392.

    PubMed  CAS  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J C, 1959, The depression of spinal neurones by yamino-n-butyric acid and /3-alanine, J. Physiol. (Lond.) 146: 185–203.

    CAS  Google Scholar 

  • Curtis, D. R., Phillis, J W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (Lond.) 150: 656–682.

    CAS  Google Scholar 

  • Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1968a, The hyperpolarization of spinal interneurones by glycine and related amino acids, Exp. Brain Res. 5: 235–258.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968b, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6: 118.

    Article  Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971, The specificity of strychine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res. 12: 547–565.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Felix, D., Game, C. J. A., and McCulloch, R. M., 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Game, C. J. A., and Lodge, D., 1976a, The in vivo inactivation of GABA and other inhibitory amino acids in the cat nervous system, Exp. Brain Res. 25: 413–428.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Game, C. J. A_, and Lodge, D., 1976b, Benzodiazepines and central glycine receptors, Br. J. Pharmacol. 56: 307–311.

    PubMed  CAS  Google Scholar 

  • Curtis, D. R., Game, C. J. A., Lodge, D., and McCulloch, R. M., 1976c, A pharmacological study of Renshaw cell inhibition, J. Physiol. (Lond.) 258: 227–242.

    CAS  Google Scholar 

  • Curtis, D. R., Lodge, D., Johnston, G. A. R., and Brand, S. J., 1976d, Central actions of benzodiazepines, Brain Res. 118: 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, R. W. P., 1975, Glycine release from rat spinal cord, American Society of Neurochemistry, Abstract, 6th Meeting, p. 191.

    Google Scholar 

  • Cutler, R. W. P., Hammerstad, J. P., Cornick, L. R., and Murray, J. E., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. I. Factors influencing the spontaneous efflux of [14C]glycine and 3H-GABA, Brain Res. 35: 337–355.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, R. W. P., Murray, J. E., and Hammerstad, J. P., 1972, Role of mediated transport in the electrically induced release of [’4C]glycine from slices of rat spinal cord, J. Neurochem. 19: 539–542.

    Article  PubMed  CAS  Google Scholar 

  • Daly, E. C., and Aprison, M. H., 1974, Distribution of serine hydroxymethyltransferase and glycine transaminase in several areas of the central nervous system of the rat, J. Neurochem. 22: 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Daly, E. C., Nadi, N. S., and Aprison, M. H., 1976, Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: Evidence for an endogenous inhibitor during in vitro assay, J. Neurochem. 26: 179–185.

    PubMed  CAS  Google Scholar 

  • Davidoff, R. A., and Adair, R., 1976, GABA and glycine transport in frog CNS: High affinity uptake and potassium-evoked release in vitro, Brain Res. 118: 403–415.

    Article  CAS  Google Scholar 

  • Davidoff, R. A., Shank, R. P., Graham, L. T., Jr., Aprison, M. H., and Werman, R., 1967a, Association of glycine with spinal interneurons, Nature 214: 680–681.

    Article  PubMed  CAS  Google Scholar 

  • Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 19676, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.

    Google Scholar 

  • Davidoff, R. A., Aprison, M. H., and Werman, R., 1969, The effects of strychnine on the inhibition of interneurons by glycine and y-aminobutyric acid, Int. J. Neuropharmacol. 8: 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, N., and Southwick, C. A. P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (Lond.) 219: 689–708.

    CAS  Google Scholar 

  • Davidson, N., and Suckling, E. E., 1967, Studies on corticofugal inhibition in the rat dorsal column nuclei, Fed. Proc. 26: 491.

    Google Scholar 

  • Davies, L. P., and Johnston, G. A. R., 1973, Serine hydroxymethyltransferase in the central nervous system regional and subcellular distribution studies, Brain Res. 54: 149–156.

    Article  CAS  Google Scholar 

  • Davies, L. P., and Johnston, G. A. R., 1974, Postnatal changes in the levels of glycine and the activities of serine hydroxymethyltransferase and glycine:2-oxoglutarate aminotransferase in the rat central nervous system, J. Neurochem. 22: 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Davies, L. P., Johnston, G. A. R., and Stephanson, A. L., 1975, Postnatal changes in the potassium-stimulated, calcium-dependent release of radioactive GABA and glycine from slices of rat central nervous tissue, J. Neurochem. 25: 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R., and Huffmann, R. D., 1969, Pharmacology of the brachium conjunctivum-red nucleus synaptic system in the baboon, Fed. Proc. 28: 775.

    Google Scholar 

  • Dayson, H., 1967, Physiology of the Cerebrospinal Fluid, Little, Brown, Boston, Mass.

    Google Scholar 

  • De Belleroche, J. S., and Bradford, H. F., 1972, Metabolism of beds of mammalian cortical synaptosomes: Response to depolarizing influences, J. Neurochem. 19: 585–602.

    Article  PubMed  Google Scholar 

  • De Belleroche, J. S., and Bradford, H. F., 1973, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem. 21: 441–451.

    Article  PubMed  Google Scholar 

  • De Belleroche, J. S., and Bradford, H. F., 1977, On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro, J. Neurochem. 29: 335–343.

    Article  Google Scholar 

  • Deffner, G. G. J., 1961, The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm, Biochim. Biophys. Acta 47: 378–388.

    Article  PubMed  CAS  Google Scholar 

  • DeGroat, W. C., 1970, The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18: 542–544.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, C. J., Troelstra, J. A., and Hommes, F. A., 1970, Nonketotic hyperglycinemia: An in vitro study of the glycine-serine conversion in liver of three patients and the effect of dietary methionine, Pediatr. Res. 4: 238–243.

    Article  PubMed  Google Scholar 

  • De Groot, C. J., Vandenberg, H., and Hommes, F. A., 1975, Studies on valine sensitivity in nonketotic hyperglycinemia, Helv. Paediatr. Acta 30: 247–254.

    PubMed  Google Scholar 

  • De Groot, C. J., Hommes, F. A., and Touwen, B. C. L., 1977, The altered toxicity of glycine in nonketotic hyperglycinemia, Hum. Hered. 27: 178.

    Google Scholar 

  • DeMarchi, W. J., and Johnston, G. A. R., 1969, The oxidation of glycine by D-amino acid oxidase in extracts of mammalian central nervous tissue, J. Neurochem. 16: 335–361.

    Google Scholar 

  • Dennison, M. E., Jordan, C. C., and Webster, R. A., 1976, Distribution and localization of tritiated amino acids by autoradiography in the cat spinal cord in vivo, J. Physiol. (Lond.) 258: 55P - 56 P.

    CAS  Google Scholar 

  • De Robertis, E., Pellegrino De Iraldi, A., Rodriquez De Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergic and noncholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase, J. Neurochem. 9: 23–35.

    Google Scholar 

  • Diamond, J., Roper, S., and Yasargil, G. M., 1973, The membrane effects, and sensitivity to strychnine, of neural inhibition of the mauthner cell, and its inhibition by glycine and GABA, J. Physiol. 232: 87–111.

    PubMed  CAS  Google Scholar 

  • Dickinson, J. C., and Hamilton, P. B., 1966, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13: 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  • Dimfel, W., and Habermann, E., 1973, Histoautoradiographic localization of 125I-labelled tetanus toxin in rat spinal cord, Nauyn-Schmiedebergs Arch. Pharmacol. 280: 177–182.

    Article  Google Scholar 

  • Dray, A., and Straughan, D. W., 1976, Benzodiazepines: GABA and glycine receptors on single neurons in the rat medulla, J. Pharm. Pharmacol. 28: 314–315.

    Article  PubMed  CAS  Google Scholar 

  • Dudzinski, D. S., and Cutler, R. W. P., 1974, Spinal subarachnoid perfusion in the rat: Glycine transport from spinal fluid, J. Neurochem. 22: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, A. W., and McLennan. H., 1971, Bicuculline and inhibition in the thalamus, Brain Res. 25: 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, A. W., Lodge, D., and Biscoe, T. J., 1973, The inhibition of hypoglossal motoneurones by impulses in the glossopharyngeal nerve of the rat, Exp. Brain Res. 17: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C. (ed.), 1964, The Physiology of Synapses, Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Edwardson, J. A., Bennett, G. W., and Bradford, H. F., 1972, Release of amino acids in neurosecretory substances after stimulation of nerve-endings (synaptosomes isolated from the hypothalamus), Nature 240: 554–556.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B., and Lindberg-Bauer, B., 1976, Light-evoked release of glycine from cat and rabbit retina, Brain Res. 113: 535–549.

    Article  PubMed  CAS  Google Scholar 

  • Fagg, G. E., Jordon, C. C., and Webster, R. A., 1976, The release of endogenous amino acids from the cat spinal cord, Br. J. Pharmacol. 58: 440P - 441 P.

    PubMed  CAS  Google Scholar 

  • Farriaux, J. P., Morel, P., and Hommes, F. A., 1976, Nonketotic hyperglycinemia with increased propionic acid excretion and hyperammonemia, N. Engl. J. Med. 294: 558.

    PubMed  CAS  Google Scholar 

  • Fedineé, A. A., 1967, Absorption and distribution of tetanus toxin in experimental animals, in: Principles of Tetanus ( L. Echmann, ed.), pp. 169–176, Huber, Bern.

    Google Scholar 

  • Fedineé, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in rat spinal cord, J. Neurochem. 18: 2229–2234.

    Article  Google Scholar 

  • Feld, R. D., and Sallach, H. J., 1974, The regulation of D-glycerate dehydrogenase from porcine spinal cord, Brain Res. 73: 558–562.

    Article  PubMed  CAS  Google Scholar 

  • Felix, D., and McLennan, H., 1971, The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb, Brain Res. 25: 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Filipovic, N., Stern, P., and Fuks, Z., 1976, Effects of serine on morphine-dependent mice, Pharmacology 14: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, G. M., Dudzinski, D. S., and Cutler, R. W. P., 1975, Amino acid transport into the cerebrospinal fluid of the rat, J. Neurochem. 24: 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, A. R., 1973, Electrophysiological analysis of the actions of strychnine, bicuculline and picrotoxin on the axonal membrane, J. Neurobiol. 4: 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Frontali, N., 1964, Brain glutamic acid decarboxylase and synthesis of y-aminobutyric acid in vertebrate and invertebrate species, in: Comparative Neurochemistry (D. Richter, ed_), pp. 185–192, Macmillan, New York.

    Google Scholar 

  • Gahwiler, B. H., 1976, Spontaneous bioelectric activity of cultured Purkinje cells during exposure to glutamate, glycine, and strychnine, J. Neurobiol. 7: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Gaitonde, M. K., Fayein, N. A., and Johnson, A. L., 1975, Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine, J. Neurochem. 24: 1215–1223.

    Article  PubMed  CAS  Google Scholar 

  • Galindo, A., Krnjevié, K., and Schwartz, S., 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. (Lond.) 192: 359–377.

    CAS  Google Scholar 

  • Gaull, G. E., von Berg, W., Räihä, N. C. R., and Sturman, J. A., 1973, Development of methyltransferase activities of human fetal tissues, Pediatr. Res. 7: 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Geison, R. L., O’Neill Rowley, B., and Gerritsen, T., 1975, Urinary organic acid analysis in nonketotic hyperglycinemia: Nonspecific occurrence of free benzoic acid due to a /3- streptococcus infection, Clin. Chico. Acta 60: 137–142.

    Article  CAS  Google Scholar 

  • Gelfan, S., and Tarlov, I. M., 1963, Altered neuron population in L7 segment of dogs with experimental hind-limb rigidity, Am. J. Physiol. 205: 606–616.

    PubMed  CAS  Google Scholar 

  • Geller, H. M., and Woodward, D. J., 1974, Responses of cultured cerebellar neurons to iontophoretically applied amino acids, Brain Res. 74: 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen, T., Nyhan, W. L., Rehberg, M. L., and Ando, T., 1969, Metabolism of glyoxylate in nonketotic hyperglycinemia, Pediatr. Res. 3: 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Gilles, R., and Schoffeniels, E., 1964, Action de la veratrine, de la cocaine et de la stimulation électrique sur la synthèse et sur le pool des acides amines de la chaine nerveuse ventrale du homard, Biochim. Biophys. Acta 82: 525–537.

    Article  PubMed  CAS  Google Scholar 

  • Gitzelmann, R., Cuenod, M., Otten, A., Steinmann, B., and Dumermuth, G., 1977, Nonketotic hyperglycinemia treated with strychnine, Pediatr. Res. 11: 1016.

    Google Scholar 

  • Graham, L. T., Jr., and Aprison, M. H., 1966, Fluorometric determination of aspartate, glutamate and y-aminobutyrate in nerve tissue by using enzymic methods, Anal. Biochem. 15: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter candidates in cat spinal cord: Glutamic acid, aspartic acid, yaminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electron microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96: 79–88.

    PubMed  CAS  Google Scholar 

  • Gray, E. G., and Willis, R. A., 1970, On synaptic vesicles, complex vesicles and dense projections, Brain Res. 24: 149–168.

    Article  PubMed  CAS  Google Scholar 

  • Gregson, N. A., and Williams, P L, 1969, A comparative study of brain and liver mitochondria from newborn and adult rats, J. Neurochem. 16: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Gushchin, S., Kozhechkin, S. N., and Sverdlov, Y. S., 1969, Presynaptic nature of depression by tetanus toxin of postsynaptic inhibition, Dokl. Akad. Nauk. (U.S.S.R.) 187: 604–606.

    Google Scholar 

  • Haas, H. L., and Hösli, L., 1973a, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res. 52: 399–402.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., and Hösli, L., 1973b, Strychnine and inhibition of bulbar reticular neurones, Experientia 29: 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Habermann, E., 1973, Interaction of labelled tetanus toxin and toxoid with substituents of rat brain and spinal cord in vitro, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 341–359.

    Article  CAS  Google Scholar 

  • Habermann, E., and Wellhöner, H. H., 1974, Advances in tetanus research, Klin. Wochenschr. 52: 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Habermann, E., Dimfel, W., and Raker, K. O., 1973, Interaction of labelled tetanus toxin with substructures of rat spinal cord in vivo, Nauyn-Schmiedebergs Arch. Pharmacol. 276: 361–373.

    Article  CAS  Google Scholar 

  • Hadzovié, S., and Brankov, K., 1974, Inhibitory transmitters in tetanus therapy, Nauyn Schmiedebergs Arch. Pharmacol. 248: R27.

    Google Scholar 

  • Hall, P. V., Smith, J. E., Campbell, R. L., Felten, D. L., and Aprison, M. H., 1976, Neurochemical correlates of spasticity, Life Sci. 18: 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  • Hammerstad, J. P., Murray, J. E., and Cutler, R. W. P., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [“C]glycine and 3H-GABA, Brain Res. 35: 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, J. L., and Sallach, H. J., 1964, The nonoxidative decarboxylation of hydroxypyruvate in mammalian systems, Arch. Biochem. Biophys. 105: 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973, Amino acid antagonists and the depression of cuneate neurones by y-aminobutyric acid (GABA) and glycine, Br. J. Pharmaol. 47: 642–643.

    Google Scholar 

  • Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1976, Antagonism of y-aminobutyric acid and glycine by convulsants in the cuneate nucleus of cat, Br. J. Pharmacol. 56: 9–19.

    PubMed  CAS  Google Scholar 

  • Hillman, R. E., and Keating, J. P., 1974, Beta-ketothiolase deficiency as a cause of the “ketotic hyperglycinemia syndrome,” Pediatrics 53: 221–225.

    PubMed  CAS  Google Scholar 

  • Hillman, R. E., and Otto, E. F., 1974, Inhibition of glycine-serine interconversion in cultured human fibroblasts by products of isoleucine catabolism, Pediatr. Res. 8: 941–945.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, R. E., Sowers, L. H., and Cohen, J. L., 1973, Inhibition of glycine oxidation in cultured fibroblasts by isoleucine, Pediatr. Res. 7: 945–947.

    Article  PubMed  CAS  Google Scholar 

  • Ho, C. K., and Hillman, R. E., 1974, Studies on ketotic hyperglycinemia-inhibitors of serine hydroxymethyltransferase, Pediatr. Res. 8: 433.

    Article  Google Scholar 

  • Hökfelt, T., and Ljungdahl, A., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine, Brain Res. 32: 189–194.

    Article  PubMed  Google Scholar 

  • Holmgren, G., and Blomquist, H. K., 1977, Nonketotic hyperglycinemia in two sibs with mild psychoneurological symptoms, Neuropaediatric 8: 67–72.

    Article  CAS  Google Scholar 

  • Holtzman, E., Freeman, A. R., and Kashner, L. A., 1971, Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions, Science 173: 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Hopkin, J. M., and Neal, M. J., 1970, The release of “C-Glycine from electrically stimulated rat spinal cord slices, Proc. Br. Pharmacol. Soc. 4: 136–137 P.

    Google Scholar 

  • Hopkin, J. M., and Neal, M. J., 1971, Effect of electrical stimulation and high potassium concentrations on the efflux of (14C)glycine from slices of spinal cord, Br. J. Pharmacol. 42: 215–223.

    PubMed  CAS  Google Scholar 

  • Hösli, L., and Haas, H. L., 1972, The hyperpolarization of neurones of the medulla oblongata by glycine. Experientia 28: 1057–1058.

    Article  PubMed  Google Scholar 

  • Hösli, L., and Hösli, E., 1972, Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata, Brain Res. 45: 612–616.

    Article  PubMed  Google Scholar 

  • Hösli, L., Tebécis, A. K., and Schonwetter, H. P., 1971a, A comparison of the effects of monoamines on neurones of the bulbar reticular formation, Brain Res. 25: 357–370.

    Article  PubMed  Google Scholar 

  • Hösli, L., Andrès, P. F., and Hösli, E., 1971b, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34: 399–402.

    Article  PubMed  Google Scholar 

  • Hösli, E., Ljungdahl, A., Hökfelt, T., and Hösli, L., 1972a, Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28: 1342–1344.

    Article  PubMed  Google Scholar 

  • Hösli, L., Andrès, P. F., and Hösli, E., 19726, Effects of potassium on the membrane potential of spinal neurones in tissue culture, Pflugers Arch. Ges. Physiol. 333: 362–365.

    Google Scholar 

  • Hösli, L., Hösli, E., and Andrès, P. F., 1973a, Nervous tissue culture—A model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62: 597–602.

    Article  PubMed  Google Scholar 

  • Hösli, L., Hösli, E., and Andrès, P. F., 19736, Uptake and action of glycine in cultures of central nervous tissue from rat, in: Central Nervous System—Studies on Metabolic Regulation and Function (E. Genazzani and H. Herken, eds.), pp. 77–83, Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Hösli, L., Andrès, P. F., and Hösli, E., 1976, Action of amino acid transmitters on glial cells in tissue culture, Neurosci. Lett. 2: 223–227.

    Article  PubMed  Google Scholar 

  • Hsia, Y. E., Scully, K. J., and Rosenberg, L. E., 1969, Defective propionate carboxylation in ketotic hyperglycinemia, Lancet 1: 757–758.

    Article  PubMed  CAS  Google Scholar 

  • Humoller, F. L., Mahler, D. J., and Parker, M. M., 1966, Distribution of amino acids between plasma and spinal fluid, Int. J. Neuropsychiatry 2: 293–297.

    PubMed  CAS  Google Scholar 

  • Iliffe, T. M., McAdoo, D. J., Beyer, C. B., and Haber, B., 1977, Amino acid concentration in the aplysia nervous system: Neurons with high glycine concentrations, J. Neurochem. 28: 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3H-GABA and [3H]glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., 1968, The intraspinal distribution of some depressant amino acids, J.Neurochem. 15: 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., and Iversen, L. L., 1971, Glycine uptake in the central nervous system slices and homogenates: Evidence for different uptake mechanisms in spinal cord and cerebral cortex, J. Neurochem. 18: 1951–1961.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., and Vitali, M. V., 1969a, Glycine producing transaminase activity in extracts of spinal cord, Brain Res. 15: 471–472.

    Article  Google Scholar 

  • Johnston, G. A. R., and Vitali, M. V., 1969b, Glycine-2-oxoglutarate transaminase in rat cerebral cortex, Brain Res. 15: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., DeGroat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16: 797–800.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., Vitali, M. V., and Alexander, H. M., 1970, Regional and subcellular distribution studies on glycine:2-oxoglutarate transaminase activity in cat spinal cord, Brain Res. 20: 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. G., and Bradford, H. F., 1971, Observations on the morphology of mammalian synaptosomes following their incubation and electrical stimulation, Brain Res. 28: 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, C. C., and Webster, R. A., 1971, Release of acetylcholine and “C-glycine from the cat spinal cord in vivo, Br. J. Pharmacol. 43: 441 P.

    Google Scholar 

  • Kaeser, H., and Saner, A., 1970, The effect of tetanus toxin on neuromuscular transmission, Eur. Neural. 3: 193–205.

    Article  CAS  Google Scholar 

  • Kawamura, H., and Provini, L., 1970, Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids, Brain Res. 24: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S., and Krnjevié, K., 1969, The action of glycine on cortical neurones, Exp. Brain Res. 9: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1971, Postsynaptic inhibition in the cuneate blocked by GABA antagonists, Nature New Biol. 232: 25–26.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973a, On the pharmacology of the y-aminobutyric acid receptors on cuneo-thalamic relay cells of the cat, Br. J. Pharmacol. 48: 369–386.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973b, On the pharmacology of the glycine receptors on the cuneo-thalamic relay cells in the cat, Br. J. Pharmacol. 48: 387–395.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973c, On the pharmacology of ascending, descending and recurrent postsynaptic inhibition of cuneothalamic relay cells in the cat, Br. J. Pharmacol. 48: 396–408.

    PubMed  CAS  Google Scholar 

  • Kennedy, A. J., Neal, M. J., and Lolley, R. N., 1977, The distribution of amino acids within the rat retina, J. Neurochem. 29: 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, G., 1973, The glycine cleavage system: Composition reaction mechanism and physiological significance, Mol. Cell. Biol. 1: 169–187.

    CAS  Google Scholar 

  • King, L. E., and Fedineé, A. A., 1974, Pathogenesis of local tetanus in rats: Neural ascent of tetanus toxin, Nauyn-Schmiedebergs Arch. Pharmacol. 281: 391–401.

    Article  CAS  Google Scholar 

  • Koechlin, B. A., 1955, On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern, J. Biophys. Biochem. Cytol. 1: 511–529.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H., 1958, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4: 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Kolvraa, S., Rasmussen, K., and Brandt, N. J., 1976, D-Glyceric acidemia: Biochemical studies of a new syndrome, Pediatr. Res. 10: 825–830.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashova, M. N., and Rodionova, M. A., 1971, Realization of the glyoxylate cycle in animal cell mitochondria, Dokl. Akad. Nauk SSSR, 196: 1225–1227.

    PubMed  CAS  Google Scholar 

  • Korol, S., and Owens, G. W., 1974, Glycine, strychnine and retinal inhibition, Experientia 30: 1161–1162.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, I., and Hart, Z. H., 1974, Valine-sensitive nonketotic hyperglycinemia, J. Pediatr. 85: 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, I., Winbaum, E. S., and Eisenbrey, A. B., 1977, Cerebrospinal fluid glycine in nonketotic hyperglycinemia. Effect of treatment with sodium benzoate and a ventricular shunt, Metabolism 26: 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevié, K., and Phillis, J. W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. (Land.) 165: 274–304.

    Google Scholar 

  • Krnjevié, K., and Schwartz, S., 1966, Cortical inhibition and GABA, Fed. Proc. 25: 627.

    Google Scholar 

  • Krnjevié, K., Randic, M., and Straughan, D. W., 1966, Pharmacology of cortical inhibition, J. Physiol. (Lond.) 184: 78–105.

    Google Scholar 

  • Krnjevié, K., Puil, E., and Werman, R., 1977, GABA and glycine actions on spinal motoneurons, Can. J. Physiol. Pharmacol. 55: 658–669.

    Article  Google Scholar 

  • Kryzhanovsky, G. N., 1973, The mechanism of action of tetanus toxin: Effect on synaptic processes and some particular features of toxin binding by nervous tissue, NauynSchmiedebergs Arch. Pharmacol. 276: 247–270.

    Article  CAS  Google Scholar 

  • Kryzhanovsky, G. N., 1975, Present data on the pathogenesis of tetanus, Prog. Drug Res. 19: 301–313.

    PubMed  CAS  Google Scholar 

  • Kryzhanovsky, G. N., and Sheykhon, F. D., 1973, Descending supraspinal effect in tetanus intoxication of the spinal cord, Exp. Neurol. 38: 110–122.

    Article  PubMed  CAS  Google Scholar 

  • Kuno, M., and Muneoka, A., 1962, Further studies on site of action of systematic omega-amino acids in the spinal cord, Jap. J. Physiol. 12: 397–410.

    Article  CAS  Google Scholar 

  • Laborit, H., Baron, C., London, A., and Olympie, J., 1971, Central nervous activity and comparative general pharmacology of glyoxylate, glycolate and glycoaldehyde, Agressologie 12: 187–211.

    PubMed  CAS  Google Scholar 

  • Lajtha, A., and Toth, J., 1961, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216–225.

    Article  PubMed  CAS  Google Scholar 

  • Lajtha, A., and Toth, J., 1963, The brain barrier system. V. Stereospecificity of amino acid uptake, exchange and efflux, J. Neurochem. 10: 909–920.

    Article  PubMed  CAS  Google Scholar 

  • Lamothe, C., Thuret, F., and Laborit, H., 1971, The action of glyoxylic acid, glycolic acid and glycoaldehyde, in vivo and in vitro, on some phases of energy metabolism in cerebral cortex, liver and myocardial slices of the rat, Agressologie 12: 233–240.

    CAS  Google Scholar 

  • Lane, J. D., Smith, J. E., Hall, P. V., Campbell, R. L., and Aprison, M. H., 1977, Levels of taurine in eight areas of the canine lumbar spinal cord, Abstract, 6th International Meeting of the International Society of Neurochemistry.

    Google Scholar 

  • Larson, M. D., 1969, An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord, Brain Res. 15: 185–200.

    Article  PubMed  CAS  Google Scholar 

  • Levy, H. L., Nishimura, R. N., Erickson, A. M., and Janowska, S. E., 1972, Hyperglycinemia: In vivo comparison of nonketotic and ketotic (propionic acidemia) forms. I. CSF glycine and blood/CSF glycine, Pediatr. Res. 6: 400.

    Google Scholar 

  • Lewis, P. R., 1952, The free amino acids of invertebrate nerve, Biochem. J. 52: 330–338.

    PubMed  CAS  Google Scholar 

  • Liang, C. C., 1962, Studies on experimental thiamine deficiency. Trends of keto acid formation and detection of glyoxylic acid, Biochem. J. 82: 429–434.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, A., and Hökfelt, T., 1973, Autoradiographic uptake patterns of [3H]GABA and [3H]glycine in central nervous tissues with special reference to the cat spinal cord, Brain Res. 62: 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1971, Glycine, glutamic and aspartic acids: Unique high affinity uptake systems in central nervous tissue of the rat, Nature 234: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42: 413–431.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, J. L., and Whittaker, V. P., 1966, The distribution of free amino acids in subcellular fractions of guinea pig brain, Biochem. J. 98: 128–137.

    PubMed  CAS  Google Scholar 

  • Matus, A. I., and Dennison, M. E., 1971, Autoradiographic localization of tritiated glycine at “flat vesicle” synapses in spinal cord, Brain Res. 32: 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. I., and Dennison, M. E., 1972, An autoradiographic study of uptake of exogenous glycine by vertebrate spinal cord slices in vitro, J. Neurocytol. 1: 27–34.

    Article  CAS  Google Scholar 

  • McBride, W. J., Daly, E., and Aprison, M. H., 1973, Interconversion of glycine and serine in a synaptosome fraction isolated from the spinal cord, medulla oblongata, telencephalon, and cerebellum of the rat, J. Neurobiol. 4: 557–566.

    Article  PubMed  CAS  Google Scholar 

  • McBride, W. J., Shank, R. P., Freeman, A. R., and Aprison, M. H., 1974, Levels of free amino acids in excitatory, inhibitory and sensory axons of the walking limbs of the lobster, Life Sci. 14: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • McClain, L. D., Carl, G. F., and Bridgers, W. F., 1975, Distribution of folic acid coenzymes and folate-dependent enzymes in mouse brain, J. Neurochem. 24: 719–722.

    PubMed  CAS  Google Scholar 

  • McGale, E. H. F., Pye, I. F., Stonier, C., Hutchinson, E. C., and Aber, G. M., 1977, Studies on the interrelationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals, J. Neurochem. 29: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Yu, J. Y., 1975, Immunocytochemical localization of glutamate decarboxylase in rat spinal cord, J. Comp. Neural. 164: 305–321.

    Article  CAS  Google Scholar 

  • Mellanby, J., and Whittaker, V P., 1968, The fixation of tetanus toxin by synaptic membranes, J. Neurochem. 15: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby, J., van Heyningen, W. E., and Whittaker, V. P., 1965, Fixation of tetanus toxin by subcellular fractions of brain, J. Neurochem. 12: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J. F., and Millis, J W., 1962, Cholinergie transmission in the frog spinal cord, Br. J. Pharmacol. Chemother. 19: 534–542.

    PubMed  CAS  Google Scholar 

  • Miyata, Y., and Otsuka, M., 1975, Quantitative histochemistry of y-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition, J. Neurochem. 25:239–244. Morimoto, T., Takata, M., and Kawamura, Y., 1968, Effect of lingual nerve stimulation on hypoglossal motoneurons, Exp. Neurol. 22: 174–190.

    Google Scholar 

  • Motokawa, Y., and Kikuchi, G., 1971, Glycine metabolism in rat liver mitochondria: V. Intramitochòndrial localization of the reversible glycine cleavage system and serine hydroxymethyltransferase, Arch. Biochem. Biophys. 146: 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Motokawa, Y., Kikuchi, G., Narisawa, K., and Arakawa, T., 1977, Reduced level of glycine cleavage system in the liver of hyperglycinemia patients, Clin. Chim. Acta 79: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Mulder, A. H., and Snyder, S. H., 1974, Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat, Brain Res. 76: 297–308.

    Google Scholar 

  • Murakami, M., Ohtsu, K., and Ohtsuka, T., 1972, Effects of chemicals on receptors and horizontal cells in the retina, J. Physiol. (Lond.) 227: 899–913.

    CAS  Google Scholar 

  • Murayama, S., and Smith, C. M., 1965, Rigidity of hind limbs of cats produced by occulsion of spinal cord blood supply, Neurology 15: 565–579.

    PubMed  CAS  Google Scholar 

  • Murray, J. E., and Cutler, R. W. P., 1970, Clearance of glycine from cat cerebrospinal fluid: Faster clearance from spinal subarachnoid than from ventricular compartment, J. Neurochem. 17: 703–704.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Fujioka, M., and Wada, H., 1968, Studies on serine hydroxymethylase isoenzymes from rat liver, Biochim. Biophys. Acta 159: 19–26.

    PubMed  CAS  Google Scholar 

  • Neal, M. J., 1969, Uptake of [“C]glycine by rat spinal cord, Br. J. Pharmacol. 36: 205P - 206 P.

    PubMed  CAS  Google Scholar 

  • Neal, M. J., 1971, The uptake of [’“C]glycine by slices of mammalian spinal cord, J. Physiol. (Lond.) 215: 103–117.

    CAS  Google Scholar 

  • Neal, M. J., and Pickles, H., 1969, Uptake of [’“C]glycine by spinal cord, Nature 223: 679.

    Article  Google Scholar 

  • Neal, M. J., Peacock, D. J., and White, R. D., 1973, Kinetic analysis of amino acid uptake by the rat retina in vitro, Br. J. Pharmacol. 47: 656–657.

    Google Scholar 

  • Nelson-Krause, D. C., and Howard, B. D., 1976, Release of glycine and GABA from synaptosomes prepared from rat central nervous tissue, Fed. Proc. 35: 543.

    Google Scholar 

  • Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35: 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, Y., Tada, K., and Arakawa, T., 1974, Coexistence of defective activity in glycine-cleavage reaction and propionyl-CoA carboxylase in the liver of a hyperglycinemic child, Tohoku J. Exp. Med. 113: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Nyhan, W. L., 1967, Treatment of hyperglycinemia, Am. J. Dis. Child. 113: 129–133.

    PubMed  CAS  Google Scholar 

  • Obata, K., 1965, Pharmacological study on postsynaptic inhibition of Deiters’ neurons, Abstract, 23rd International Congress of Physiological Sciences, p. 406.

    Google Scholar 

  • Obata, K., Takeda, K., and Shinozaki, H., 1970, Further study on pharmacological properties of the cerebellar-induced inhibition of Deiters’ neurones, Exp. Brain Res. 11: 327–342.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221: 1629–1639.

    PubMed  CAS  Google Scholar 

  • Oppenheim, R. W., and Reitzel, J., 1975, Ontogeny of behavioral sensitivity to strychnine in the chick embryo: Evidence for the early onset of CNS inhibition, Brain Behay. Evol. 11: 130–159.

    Article  CAS  Google Scholar 

  • Ordonez, L. A., and Wurtman, R. J., 1973, Enzymes catalyzing the de novo synthesis of methyl groups in the brain and other tissues of the rat, J. Neurochem. 21: 1447–1455.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, R. H., and Bradford, H. F., 1973, Tetanus toxin inhibits amino acid release from nerve ending in vitro, Nature New Biol. 244: 157–158.

    CAS  Google Scholar 

  • Osborne, R. H., Bradford, H. F., and Jones, D. G., 1973, Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla, J. Neurochem. 21: 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., 1977, Substance P and sensory transmitter, in: Advances in Neurochemistry ( B. W. Agranoff and M. H. Aprison, eds.), Vol. 2, pp. 193–211, Plenum Press, New York.

    Google Scholar 

  • Pavone, L., Monica, F., and Levy, H. L., 1975, Asymptomatic type II hyperprolinaemia associated with hyperglicinaemia in three sibs, Arch. Dis. Child. 50: 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Berry, K., Hansen, S., Diamond, S., and Mok, C., 1971a, Regional distribution of amino acids in human brain obtained at autopsy, J. Neurochem. 18: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., Berry, K., Mok, C., and Lesk, D., 1971b, Free amino acids and related compounds in biopsies of human brain, J. Neurochem. 18: 521–528.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., and Kennedy, J., 1975a, CSF amino acids and plasma—CSF amino acid ratio in adults, J. Neurochem. 24: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Urquhart, N., Maclean, J., Evans, M. E., Hansen, S., Davidson, A. G. F., Applegarth, D. A., Macleod, P. J., and Lock, J. E., 1975b, Nonketotic hyperglycinemia glycine accumulation due to absence of glycine cleavage in brain, N. Engl. J. Med. 292: 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Urquhart, N., Maclean, J., and Hansen, J., 1975c, Reply to the letter of Sciver, C. R., Sprague, W., and Harwood, S. P., N. Engl. J. Med. 293: 778.

    Google Scholar 

  • Piepho, R. W., and Friedman, A. H., 1971, Twenty-four hour rhythms in the glycine content of rat hindbrain and spinal cord, Life Sci. 10: 1355–1362.

    Article  CAS  Google Scholar 

  • Pollay, M., 1976, Movement of glycine across the blood—brain barrier of the rabbit, J. Neurobiol. 7: 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Precht, W., Baker, R., and Okada, Y., 1973, Evidence for GABA as the synaptic transmitter of the inhibitory vestibulo-ocular pathway, Exp. Brain Res. 18: 415–428.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. L., Griffin, J., Young, A., Peck, K., and Stocks, A., 1975, Tetanus toxin: Direct evidence for retrograde intraaxonal transport, Science 188: 945–947.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. L., Stocks, A., Griffin, J. W., Young, A., and Peck, K., 1976, Glycine-specific synapses in rat spinal cord: Identification by electron microscope autoradiography, J. Cell Biol. 68: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. L., Griffin, J. W., and Peck, K., 1977, Tetanus toxin: Evidence for binding at presynaptic nerve endings, Brain Res. 121: 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D. P., Girado, M., Smith, T. G., Callan, D. A., and Grundfest, H., 1959, Structure—activity determinants of pharmacological effects of amino acids and related compounds on central synapses, J. Neurochem. 3: 238–266.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, B. R., and Nelson, P. G., 1976, Possible pathophysiology of neurologic abnormalities associated with nonketotic hyperglycinemia, N. Engl. J. Med. 294: 1295–1296.

    PubMed  CAS  Google Scholar 

  • Rassin, D. K., and Gaull, G. E., 1975, Subcellular distribution of enzymes of transmethylation and transsulphuration in rat brain, J. Neurochem. 24: 969–978.

    Article  PubMed  CAS  Google Scholar 

  • Reploh, H., Grobe, H., Dickmann, L., Palm, D., v. Bassewitz, D. B., and Jenett, W., 1973, The clinical findings in a patient with nonketotic hyperglycinemia, Z. Kinderkeilkd. 114: 191–204.

    CAS  Google Scholar 

  • Reubi, J. C., and Cuenod, M., 1976, Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus, Brain Res. 112: 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Revsin, B., and Morrow, G., 1976, Glycine transport in normal and nonketotic hyperglycinemic human diploid fibroblasts, Exp. Cell Res. 100: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Revsin, B., Lebowitz, J., and Morrow, G., 1977, Effect of valine on propionate metabolism in control and hyperglycinemia fibroblasts and in rat liver, Pediatr. Res. 11: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Rexed, B., 1954, A cytoarchitectonic atlas of the spinal cord in the cat, J. Comp. Neurol. 100: 297–379.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, T. W., Aprison, M. H., and Werman, R., 1965, An automatic direct-current operating temperature-control device, J. Appl. Physiol. 20: 1355–1356.

    Google Scholar 

  • Roberts, P. J., 1974, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res. 67: 419–428.

    CAS  Google Scholar 

  • Roberts, P. J., and Mitchell, J. F., 1972, The release of amino acids from the hemisected spinal cord during stimulation, J. Neurochem. 19: 2473–2481.

    Article  PubMed  CAS  Google Scholar 

  • Romano, M., and Cerra, M., 1967, Further studies on the toxicity of glyoxylate in the rat, Gazz. Biochem. 16: 354–358.

    CAS  Google Scholar 

  • Roper, S., and Diamond, J., 1970, Strychnine antagonism and glycine: A reply, Nature 225: 1259.

    Article  PubMed  CAS  Google Scholar 

  • Roper, S., Diamond, J., and Yasargil, G., 1969, Does strychnine block inhibition postsynaptically?, Nature 223: 1168–1169.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L. E., Lilljequist, A., and Hsia, Y. E., 1968, Methylmalonic acidiria: An inborn error leading to metabolic acidosis, long-chain ketouria and intermittent hyperglycinemia, N. Engl. J. Med. 278: 1319–1322.

    Article  PubMed  CAS  Google Scholar 

  • Ryall, R. W., Piercey, M. F., and Polosa, C., 1972, Strychnine-resistant mutual inhibition of Renshaw cells, Brain Res. 41: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Kochi, H., Sato, N., and Kikuchi, G., 1969, Glycine metabolism by rat liver mitochondria, J. Biochem. 65: 77–83.

    PubMed  CAS  Google Scholar 

  • Scriver, C. R., Sprague, W., and Horwood, S. P., 1975, Plasma-CSF glycine in normal and nonketotic hyperglycinemic subjects (letter), N. Engl. J. Med. 293: 778.

    PubMed  CAS  Google Scholar 

  • Schwab, M. E., and Thoenen, H., 1976, Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study, Brain Res. 105: 213–227.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M. E., and Thoenen, H., 1977, Selective transsynaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: A comparison with nerve growth factor, Brain Res. 122: 459–474.

    Article  PubMed  CAS  Google Scholar 

  • Schwander, J., and Lamarche, M., 1972, Inhibition of oxygen consumption in rat brain homogenate by sodium glyoxylate, C.R. Seances Soc. Biol. 166: 186–189.

    CAS  Google Scholar 

  • Semba, T., and Kano, M., 1969, Glycine in the spinal cord of cats with local tetanus rigidity, Science 164: 571–572.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R. P., and Aprison, M. H., 1970a, The metabolism of glycine and serine in eight different areas of the rat central nervous system. J. Neurochem. 17: 1461–1475.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R. P., and Aprison, M. H., 19706, Method for multiple analyses of concentration and specific radioactivity of individual amino acids in nervous tissue extracts, Anal. Biochem. 35: 136–145.

    Google Scholar 

  • Shank, R. P., Aprison, M. H., and Baxter, C. F., 1973, Precursors of glycine in the central nervous system: Comparison of specific activities in glycine and other amino acids after administration of [U14C]glucose, [3,414C]glucose, [1–14C]glucose, [U-14C]serine or [1,514C]citrate to the rat, Brain Res. 52: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. K., and Heine, J. D., 1965, Ninhydrin positive substances present in different areas of normal rat brain, J. Neurochem. 12: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Sky-Peck, H. H., Rosenbloom, C., and Winzler, R. J., 1966, Incorporation of glucose into the protein-bound amino acids of one-day-old mouse brain in vitro, J. Neurochem. 13: 223–228.

    Article  CAS  Google Scholar 

  • Smith, J. E., Hall, P. V., Campbell, R. L., Jones, A. R., and Aprison, M. H., 1976, Levels of y-aminobutyric acid in the dorsal grey lumbar spinal cord during the development of experimental spinal spacticity, Life Sci. 19: 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. E., Hall, P. V., Galvin, M. R., Jones, A. R., and Campbell, R. L., 1977, The effects of glycine replacement on canine spinal spasticity, Trans. Am. Soc. Neurochem. 8: 210.

    Google Scholar 

  • Snodgrass, S. R., Cutler, R. W. P., Kang, E. S., and Lorenzo, A. V., 1969, Transport of neutral amino acids from feline cerebrospinal fluid, Am. J. Physiol. 217: 974–980.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., 1975, The glycine synaptic receptor in the mammalian central nervous system, Br. J. Pharmacol. 53: 473–484.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., and Enna, S. J., 1975, The role of central glycine receptors in the pharmacologic actions of benzodiazepines, Adv. Biochem. Psychopharmacol. 14: 81–91.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., Logan, W. J., Bennett, J. P., and Arregui, A., 1973a, Amino acids as central nervous transmitters: Biochemical studies, in: Neurosciences Research, Vol. 5: Chemical Approaches to Brain Function ( S. Ehrenpreis and I. J. Kopin, eds.), pp. 131–157, Academic Press, New York.

    Google Scholar 

  • Snyder, S. H., Young, A. B., Bennett, J. P., and Mulder, A. H., 19736, Synaptic biochemistry of amino acids, Fed. Proc. 32: 2039–2047.

    Google Scholar 

  • Starr, H. S., 1973, Effect of dark adaptation on GABA system in retina, Brain Res. 59: 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P., and Bokonjié, R., 1974, Glycine therapy in 7 cases of spasticity, a pilot study, Pharmacology 12: 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P., and Hadzovie, J., 1970, Effect of glycine on experimental hindlimb rigidity in rats, Life Sci. 9: 955–959.

    Article  CAS  Google Scholar 

  • Stern, P., and Hadzovié, J., 1973, Pharmacological analysis of central actions of substance P, Arch. Int. Pharmacodyn. 202: 259–262.

    PubMed  CAS  Google Scholar 

  • Stern, P., Catovié, S., and Filipovic, N., 1973, The metabolism of glycine in mice treated acutely and chronically with morphine, Pharmacology 10: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P., Catovié, S., and Stern, M., 1974, Mechanism of action of substance P, NaunynSchmiedebergs Arch. Pharmacol. 281: 233–239.

    Article  CAS  Google Scholar 

  • Stokes, B. T., and Bignall, K. E., 1974, The emergence of inhibition in the chick embryo spinal cord, Brain Res. 77: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Straschill, M., 1968, Action of drugs on single neurons in the cat’s retina, Vision Res. 8: 35–47.

    Article  CAS  Google Scholar 

  • Straughan, D. W., 1974, Convulsant drugs: Amino acid antagonism and central inhibition, Neuropharmacology 13: 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Tada, K., Narisawa, K., Yoshida, T., Konno, T., Yokayama, Y., Nakagawa, H., Tanno, K., Mochizuki, K., Arakawa, T., Yoshida, T., and Kikuchi, G., 1969, Hyperglycinemia: A defect in glycine cleavage reaction, Tohoku J. Exp. Med. 98: 289.

    Article  PubMed  CAS  Google Scholar 

  • Tada, K., Corbeel, L. M., Eeckels, R., and Eggermont, E., 1974, A block in glycine cleavage reaction as a common mechanism in ketotic and nonketotic hyperglycinemia, Pediatr. Res. 8: 721–723.

    Article  PubMed  CAS  Google Scholar 

  • Takano, K., and Neumann, K., 1972, Effect of glycine upon stretch reflex tension, Brain Res. 36: 474–475.

    Article  PubMed  CAS  Google Scholar 

  • Tebécis, A. K., and DiMaria, A., 1972, Strychnine-sensitive inhibition in the medullary reticular formation: Evidence for glycine as an inhibitory transmitter, Brain Res. 40: 373–383.

    Article  PubMed  Google Scholar 

  • Tebécis, A. K., and Ishikawa, T., 1973, Glycine and GABA as inhibitory transmitters in the medullary reticular formation studies involving intra-and extracellular recording, Pflugers Arch. 338: 273–278.

    Article  PubMed  Google Scholar 

  • Tebécis, A. K., and Phillis, J. W., 1969, The use of convulsants in studying possible functions of amino acids in the toad spinal cord, Comp. Biochem. Physiol. 28: 1303.

    Article  PubMed  Google Scholar 

  • Tebécis, A. K., Hösli, L., and Haas, H., 1971, Bicuculline and the depression of medullary reticular neurones by GABA and glycine, Experientia 27: 548.

    Article  PubMed  Google Scholar 

  • Ten Bruggencate, G., and Engberg, I., 1968, Analysis of glycine actions on spinal interneurones by intracellular recording, Brain Res. 11: 446–450.

    Article  PubMed  Google Scholar 

  • Ten Bruggencate, G., and Engberg, I., 1971, Iontophoretic studies in Deiters’ nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin, Brain Res. 25: 431–448.

    Article  PubMed  Google Scholar 

  • Ten Bruggencate, G., and Sonnhof, U., 1972, Effects of glycine and GABA, and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus, Arch. Ges. Physiol. 334: 240–252.

    Article  Google Scholar 

  • Trijbels, J. M. F., Monnens, L. A. H., van der Zee, S. P. M., Vrenken, J. A. Th., Sengers, R. C. A., and Schretlen, E. D. A. M., 1974, A patient with nonketotic hyperglycinemia: Biochemical findings and therapeutic approaches, Pediatr. Res. 8: 598–605.

    Article  PubMed  CAS  Google Scholar 

  • Tsukada, Y., Nagata, Y., Hirano, S., and Matsutani, T., 1963, Active transport of amino acid into cerebral cortex slices, J. Neurochem. 10: 241–256.

    Article  PubMed  CAS  Google Scholar 

  • Tureen, L. L., 1936, Effect of experimental temporary vascular occlusion on the spinal cord. I. Correlation between structural and functional changes, A.M.A. Arch. Neurol. Psychiatry 35: 789–807.

    Google Scholar 

  • Uchizono, K., 1965, Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat, Nature 207: 642–643.

    Article  PubMed  CAS  Google Scholar 

  • Uhr, M. L., 1973, Glycine decarboxylation in the central nervous system. J. Neurochem. 20: 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  • Uhr, M. L., and Sneddon, M. K., 1971, Glycine and serine inhibition of d-glycerate dehydro- genase and 3-phosphoglycerate dehydrogenase of rat brain, FEES Lett. 17: 137–140.

    Article  CAS  Google Scholar 

  • Uhr, M. L., and Sneddon, M. K., 1972, The regional distribution of d-glycerate dehydrogenase and 3-phosphoglycerate dehydrogenase in the cat central nervous system: Correlation with glycine levels, J. Neurochem. 19: 1495–1500.

    Article  PubMed  CAS  Google Scholar 

  • van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature 249: 415–417.

    Article  Google Scholar 

  • Voaden, M. J., Marshall, J., and Murani, N., 1974, The uptake of [3H]-y-aminobutyric acid and [3H]glycine by the isolated retina of the frog, Brain Res. 67: 115–132.

    Article  PubMed  CAS  Google Scholar 

  • Wada, Y., Tada, K., Takada, G., Omura, K., Yoshida, T., Kuniya, T., Aoyama, T., Hakui, T., and Harada, S., 1972, Hyperglycinemia associated with hyperammonemia: In vitro glycine cleavage in liver, Pediatr. Res. 6: 622–625.

    PubMed  CAS  Google Scholar 

  • Wadlington, W. B., Kilroy, A., Ando, T., Sweetman, L., and Nyhan, W. L., 1975, Hyperglycinemia and propionyl CoA carboxylase deficiency and episodic severe illness without consistent ketosis, J. Pediatr. 86: 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Werman, R., 1972, CNS cellular level: Membranes, Annu. Rev. Physiol. 34: 337–374.

    Article  PubMed  CAS  Google Scholar 

  • Werman, R., and Aprison, M. H„ 1968, Glycine: The search for a spinal cord inhibitory transmitter, in: Structure and Functions of Inhibitory Neuronal Mechanisms ( C. von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 473–486, Pergamon Press, Oxford.

    Google Scholar 

  • Werman, R., Davidoff, R. A., and Aprison, M. H., 1966, Glycine and postsynaptic inhibition in cat spinal cord, Physiologist 9: 318.

    Google Scholar 

  • Werman, R., Davidoff, R. A., and Aprison, M. H., 1967, Inhibition of motoneurones by iontophoresis of glycine, Nature 214: 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Werman, R., Davidoff, R. A., and Aprison, M. H., 1968, Inhibitory action of glycine on spinal neurons in the cat, J. Neurophysiot. 31: 81–95.

    CAS  Google Scholar 

  • Wiechert, P., 1963, Über die Permeabilität der Blut-liquao-schranke für einige Aminosäuren, Acta Biol. Med. Germ. 10: 305–310.

    PubMed  CAS  Google Scholar 

  • Wiechert, P., and Schroter, P., 1964, Der Einfluss von y-Aminobuttersaure, L-Glutaminsaure und Glycin auf die Blut-hirn-schranke und die Enzymaktivitaten des Kaninchengehirnes, Acta Biol. Med. Germ. 12: 475–580.

    PubMed  CAS  Google Scholar 

  • Wilson, V. J., Diecke, F. P. J., and Talbot, W. H., 1960, Action of tetanus toxin on conditioning of spinal motoneurones, J. Neurophysiol. 23: 659–666.

    PubMed  CAS  Google Scholar 

  • Yagi, K., and Sawaki, Y., 1975, Recurrent inhibition and facilitation: Demonstration in the tubero-infundibular system and effects of strychnine and picrotoxin, Brain Res. 84: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., and Kikuchi, G., 1970, Major pathways of glycine and serine catabolism in rat liver, Arch. Biochem. Biophys. 139: 380–392.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., and Kikuchi, G., 1973, Major pathways of serine and glycine catabolism in various organs of the rat and cock, J. Biochem. 73: 1013–1022.

    PubMed  CAS  Google Scholar 

  • Yoshida, T., Kikuchi, G., Tada, K., Narisawa, K., and Arakawa, T., 1969, Physiological significance of glycine cleavage system in human liver as revealed by the study of a case of hyperglycinemia, Biochem. Biophys. Res. Commun. 35: 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B., and Snyder, S. H., 1973, Strychnine binding associated with glycine receptors of the central nervous system, Proc. Natl. Acad. Sci. U.S.A. 70: 2832–2836.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B., and Snyder, S. H., 1974a, Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: Cooperativity of glycine interactions, Mol. Pharmacol. 10: 790–809.

    CAS  Google Scholar 

  • Young, A. B., and Snyder, S. H., 19746, The glycine synaptic receptor—Evidence that strychnine binding is associated with the ionic conductance mechanism, Proc. Natl. Acad. Sci. U.S.A. 71: 4002–4005.

    Google Scholar 

  • Young, A. B., Zukin, S. R., and Snyder, S. H., 1974, Interaction of benzodiazepines with central nervous glycine receptors: Possible mechanism of action, Proc. Natl. Acad. Sci. U.S.A. 71: 2246–2250.

    Article  PubMed  CAS  Google Scholar 

  • Zacks, S. J., and Sheff, M. F., 1970, Pathobiological aspects of the action of tetanus toxin in the nervous system and skeletal muscle, Neurosci. Res. 3: 210–287.

    Google Scholar 

  • Zukin, S. R., Young, A. B., and Snyder, S. H., 1975, Development of the synaptic glycine receptor in chick embryo spinal cord, Brain Res. 83: 525–530.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Aprison, M.H., Daly, E.C. (1978). Biochemical Aspects of Transmission at Inhibitory Synapses: The Role of Glycine. In: Agranoff, B.W., Aprison, M.H. (eds) Advances in Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8240-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8240-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8242-7

  • Online ISBN: 978-1-4615-8240-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics