Advertisement

The Multiple Roles of Glutamate and Aspartate in Neural Tissues

  • Richard P. Shank
  • Lewis T. GrahamJr.
Chapter

Abstract

l-Glutamate and l-aspartate, like many other substances, serve a number of functions in biological tissues. In virtually all types of biological cells these amino acids serve as constituents of protein, intermediates in energy and nitrogen metabolism, and as precursors of other biochemical compounds. In many cells, particularly neurons, these amino acids are utilized for even more functions. Both glutamate and aspartate are probably major excitatory neurotransmitters, and both make a significant contribution to the osmotic and ionic state of nerve cells. They are also immediate precursors of other compounds which have unique physiological roles in nerve tissues. For example, glutamate is the metabolic precursor of γ-aminobutyrate (GABA) which serves as a major inhibitory neurotransmitter (in addition to other possible functions), and aspartate is an immediate precursor of N-acetylaspartate, whose neural functions include a role in the maintenance of intracellular ionic balance. Because most of the functions mediated by glutamate and aspartate are common to both, we have chosen to include in this chapter the functions of both amino acids.

Keywords

Free Amino Acid Synaptic Vesicle Nerve Terminal Neural Tissue Glia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H. C., Davis, J. M., and Himwich, W. A., 1968, Developmental changes in mouse brain: Weight, water content and free amino acids, J. Neurochem. 15: 917–921PubMedGoogle Scholar
  2. Altmann, H., Ten Bruggencate, G., Pickelmann, P., and Steinberg, R., 1976, Effects of glutamate, aspartate, and two presumed antagonists on feline rubrospinal neurones, Pflugers Arch. 364: 249–255.PubMedGoogle Scholar
  3. Anwyl, R., and Usherwood, P. N. R., 1974, Voltage clamp studies of a glutamate synapse, Nature 252: 591–593.PubMedGoogle Scholar
  4. Aprison, M. H., and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 4: 2075–2083.PubMedGoogle Scholar
  5. Aprison, M. H., and Werman, R., 1968, A combined neumchemical and neurophysiological approach to identification of central nervous system transmitters, in: Neurosciences Research ( S. Ehrenpreis and O. S. Solnitzky, eds.), Vol. 1, pp. 143–174, Academic Press, New York.Google Scholar
  6. Aprison, M. H., McBride, W. J., and Freeman, A. R., 1973, The distribution of several amino acids in specific ganglia and nerve bundles of the lobster, J. Neurochem. 21: 87–95.PubMedGoogle Scholar
  7. Awapara, J., 1962, Free amino acids in invertebrates: A comparative study of their distribution and metabolism, in: Amino Acid Pools ( J. T. Holden, ed.), pp. 158–175, Elsevier, Amsterdam.Google Scholar
  8. Badger, T. M., and Tumbleson, M. E., 1975, Postnatal changes in free amino acid, DNA, RNA and protein concentrations of miniature swine brain, J. Neurochem. 24: 361–366.PubMedGoogle Scholar
  9. Balâzs, R., and Cremer, J. E. (eds.), 1972, Metabolic Compartmentation in the Brain, Wiley, New York, 383 pp.Google Scholar
  10. Balcar, V. J., and Johnston, G. A. R. 1972, The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem. 19: 2657–2666.PubMedGoogle Scholar
  11. Baxter, C. F., 1970, The nature of gamma-aminobutyric acid, in: Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 3, pp.,289–353, Plenum Press, New York.Google Scholar
  12. Benjamin, A. M., and Quastel, J. H., 1972, Locations of amino acids in brain slices from the rat, Biochern. J. 128: 631–646.Google Scholar
  13. Benjamin, A. M., and Quastel, H. H., 1974, Fate of glutamate in the brain, J. Neurochem. 23: 457–464.PubMedGoogle Scholar
  14. Berl, S., and Clarke, D. D., 1969, Metabolic compartmentation of glutamate in the CNS, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 1, pp. 447–472, Plenum Press, New York.Google Scholar
  15. Berl, S., Lajtha, A., and Waelsch, H., 1961, Amino acid and protein metabolism. VI. Cerebral compartments of glutamic acid metabolism, J. Neurochem. 9: 168–197.Google Scholar
  16. Berl, S., Clarke, D. D., and Schneider, D. (eds.), 1976, Metabolic Compartmentation and Neurotransmission, Plenum Press, New York.Google Scholar
  17. Borys, H. K., Weinreich, D., and McCaman, R. E., 1973, Determination of glutamate and glutamine in individual neurons of Aplysia californica, J. Neurochem. 21: 1349–1351.PubMedGoogle Scholar
  18. Bradford, H. F., and Richards, C. D., 1976, Specific release of endogenous glutamate from piriform cortex stimulated in vitro, Brain Res. 105: 168–172.PubMedGoogle Scholar
  19. Bradford, H. F., and Ward, H. K., 1976, On glutaminase activity in mammalian synaptosomes, Brain Res. 110: 115–125.PubMedGoogle Scholar
  20. Brand, M. D., and Chappel, J. B., 1974, Glutamate and aspartate transport in rat brain mitochondria, Biochem. J. 140: 205–210.PubMedGoogle Scholar
  21. Buniatian, H. C., 1970, Deamination of nucleotides and the role of their deamino forms in ammonia formation from amino acids, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 3, pp. 399–413, Plenum Press, New York.Google Scholar
  22. Burton, R. F., 1973, The significance of ionic concentrations in the internal media of animals, Biol. Rev. 48: 195–231.PubMedGoogle Scholar
  23. Carew, T. J., Pinsker, H., Rubinson, K., and Kandel, E. R., 1974, Physiological and biochemical properties of neuromuscular transmission between identified motoneurons and gill muscle in Aplysia, J. Neurophysiol. 37: 1020–1039.PubMedGoogle Scholar
  24. Clarke, D. D., Greenfield, S., Dicker, E., Tim, L. J., and Ronan, E. J., 1975, A relationship of N-acetylaspartate biosynthesis to neuronal protein synthesis, J. Neurochem. 24: 479–486.PubMedGoogle Scholar
  25. Colquhoun, D., 1973, The relation between classical and cooperative models for drug action, in: Drug Receptors ( H. P. Rang, ed.), pp. 149–187, University Park Press, Baltimore.Google Scholar
  26. Cory, H. T., and Rose, S. P. R., 1969, Glucose and amino acid metabolism in octopus optic and vertical lobes in vitro, J. Neurochem. 16: 979–988.PubMedGoogle Scholar
  27. Coulson, R. A., and Hernandez, T., 1971, Catabolic effects of cycloheximide in the living reptile, Comp. Biochem. Physiol. 40B: 741–749.Google Scholar
  28. Crawford, I. L., and Connor, J. D., 1973, Localization and release of glutamic acid in relation to the hippocampal mossy fiber pathway, Nature 244: 442–443.PubMedGoogle Scholar
  29. Cull-Candy, S. G., 1976, Two types of extrajunctional L-glutamate receptors in locust muscle fibers, J. Physiol. 255: 449–464.PubMedGoogle Scholar
  30. Cull-Candy, S. G., Donnellan, J. F., James, R. W., and Lunt, G. G., 1976, 2-Amino-4phosphonobutyric acid as a glutamate antagonist on locust muscle, Nature 262: 408–409.Google Scholar
  31. Curtis, D. R., and Crawford, J. M., 1969, Central synaptic transmission-microelectrodestudies, Anna. Rev. Pharmacol. 9: 209–240.Google Scholar
  32. Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergebn. Physiol. 69: 97–188.PubMedGoogle Scholar
  33. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6: 117–141.PubMedGoogle Scholar
  34. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (Lond.) 150: 656–682.Google Scholar
  35. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K., and Watkins, J C., 1972, Excitation of mammalian neurones by acidic amino acids, Brain Res. 41: 283–301.PubMedGoogle Scholar
  36. D’Adamo, A. F., Jr., and Yatsu, F. M., 1966, Acetate metabolism in the nervous system. N-Acetyl-L-aspartic acid and the biosynthesis of brain lipids, J. Neurochem. 13: 961–965.PubMedGoogle Scholar
  37. Daoud, A., and Miller, R., 1976, Release of glutamate and other amino acids from arthropodnerve—muscle preparations, J. Neurochem. 26: 119–124.PubMedGoogle Scholar
  38. Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.PubMedGoogle Scholar
  39. DeBelleroche, J. S., and Bradford, H. F., 1972, Metabolism of beds of mammalian cortical synaptosomes: Response to depolarizing influences, J. Neurochem. 19: 585–602.Google Scholar
  40. DeFeudis, F. V., 1971, Effects of electrical stimulation on the efflux of L-glutamate from peripheral nerve in vitro, Exp. Neurol. 30: 291–296.PubMedGoogle Scholar
  41. Deffner, G. G. J., 1961, The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm, Biochim. Biophys. Acta 47: 378–388.PubMedGoogle Scholar
  42. De Robertis, E., and Fiszer DePlazas, S., 1976a, Differentiation of L-aspartate and L-glutamate high-affinity binding sites in a protein fraction isolated from rat cerebral cortex, Nature 260: 347–349.PubMedGoogle Scholar
  43. De Robertis, E., and Fiszer DePlazas, S., 1976b, Isolation of hydrophobic proteins binding amino acids. Stereoselectivity of the binding of L-[“Clglutamic acid in cerebral cortex, J. Neurochem. 26: 1237–1243.PubMedGoogle Scholar
  44. Dowson, R. J., and Usherwood, P. N. R., 1972, The effect of low concentrations of L-glutamate and L-aspartate on transmitter release at the locust excitatory nerve—muscle synapse, J. Physiol. (Lond.) 229: 130.Google Scholar
  45. Drainville, G., and Gagnon, A., 1972, Osmoregulation in Acanthamoeba castellanii I. Variations of the concentrations of free intracellular amino acids and of the water content, Comp. Biochem. Physiol. 45A: 379–388.Google Scholar
  46. Dudel, J., 1975, Potentiation and desensitization after glutamate-induced postsynaptic currents at the crayfish neuromusuclar junction, Pflugers Arch. 356: 317–327.PubMedGoogle Scholar
  47. Duggan, A. W., 1974, The differential sensitivity to L-glutamate and L-aspartate of spinal intemeurons and Renshaw cells, Exp. Brain Res. 19: 522–533.PubMedGoogle Scholar
  48. Duggan, A. W., and Johnston, G. A. R., 1970, Glutamate and related amino acids in cat, dog, and rat spinal roots, Comp Gen. Pharmacol. 1: 127–128.PubMedGoogle Scholar
  49. Dzubow, L. M., and Garfinkel, D., 1970, A simulation study of brain compartments, II. Atomby-atom simulation of the metabolism of specifically labelled glucose and acetate, Brain Res. 23: 407–417.PubMedGoogle Scholar
  50. Evans, P. D., 1973, Amino acid distribution in the nervous system of the crab, Carcinus maenus (L.), J. Neurochem. 21: 11–17.PubMedGoogle Scholar
  51. Fishman, R. A., 1974, Cell volume, pumps, and neurologic function: Brain’s adaptation to osmotic stress, in: Brain Dysfunction in Metabolic Disorders (F. Plum, ed.), Res. Publ. Assoc. Nerv. Ment. Dis., Vol. 53, pp. 159–177, Raven Press, New York.Google Scholar
  52. Fleming, M. C., and Lowry, O. H., 1966, The measurement of free and N-acetylated aspartic acids in the nervous system, J. Neurochem. 13: 779–783.PubMedGoogle Scholar
  53. Florey, E., 1967, Neurotransmitters and modulators in the animal kingdom, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26: 1164–1177.Google Scholar
  54. Florkin, M., and Schoffeniels, E., 1965, Euryhalinity and the concept of physiological radiation, in: Studies in Comparative Biochemistry ( K. A. Monday, ed.), pp. 6–40, Pergamon Press, Oxford.Google Scholar
  55. Frank, E., 1974, The sensitivity to glutamate of denervated muscles of the crayfish, J. Physiol. (Lond.) 242: 371–382.Google Scholar
  56. Freeman, A. R., 1976, Polyfunctional role of glutamic acid in excitatory synaptic transmission, Prog. Neurobiol. 6: 137–153.Google Scholar
  57. Gent, J. P., Morgan, R., and Wolstencroft, J. H., 1974, Determination of the relative potency of two excitant amino acids, Neuropharmacology 13: 441–447.PubMedGoogle Scholar
  58. Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 53: 1–119.PubMedGoogle Scholar
  59. Gjessing, L. R., Gjesdahl, P., and Sjoastad, O., 1972, The free amino acids in human cerebrospinal fluid, J. Neurochem. 19: 1807–1808.PubMedGoogle Scholar
  60. Gordon, M. S., 1965, Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads, Biol. Bull. 12: 218–229.Google Scholar
  61. Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, y-aminobutyric acid, glycine, and glutamine, J. Neurochem. 14: 465–472.PubMedGoogle Scholar
  62. Haldeman, S., and McLennen, H., 1972, The antagonistic action of glutamic acid diethylester towards amino acid-induced and synaptic excitations of central neurones, Brain Res. 45: 393–400.PubMedGoogle Scholar
  63. Haldeman, S., Huffman, R. D., Marshall, K. L., and McLennen, H., 1972, The antagonism of the glutamate-induced and synaptic excitations of thalamic neurones, Brain Res. 39: 419–425.PubMedGoogle Scholar
  64. Hammerschlag, R., and Weinreich, D., 1972, Glutamic acid and primary afferent transmission, in: Studies of Neurotransmitters at the Synaptic Level: Advances in Biochemical Psychopharmacology ( E. Costa, L. L. Iverson, and R. Paoletti, eds.), Vol. 6, pp. 165–180, Raven Press, New York.Google Scholar
  65. Hammerschlag, R., Potter, L. T., and Vinci, J., 1971, In vitro uptake of “C-glutamate by rat spinal cord, Trans. Am. Soc. Neurochem. 2: 78.Google Scholar
  66. Harvey, J. A., Scholfield, C. N., Graham, L. T., Jr., and Aprison, M. H., 1975, Putative transmitters in denervated olfactory cortex, J. Neurochem. 24: 445–449.PubMedGoogle Scholar
  67. Henn, F. A., Goldstein, M. N., and Hamberger, A., 1974, Uptake of the neurotransmitter candidate glutamate by glia, Nature 149: 663–664.Google Scholar
  68. Himwich, W., and Agrawal, H., 1969, Amino acids, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 1, pp. 33–52, Plenum Press, New York.Google Scholar
  69. Hirsch, W., Mex, A., and Vogel, F., 1969, Metabolic traits in mentally retarded children as compared with normal populations: Monoaminodicarboxylic acids and their half amides and total amino acids, J. Ment. Defic. Res. 13:130–142_Google Scholar
  70. Höfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G., and Arimura, A., 1976, Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat, Neuroscience 1: 131–136.Google Scholar
  71. Hösli, L., Andres, P. F., and Hösli, E., 1973, Ionic mechanisms underlying the depolarization of L-glutamate on rat and human spinal neurones in tissue culture, Experientia 29: 1244–1247.PubMedGoogle Scholar
  72. Hösli, L., Andres, P. F., and Hösli, E., 1976, Ionic mechanisms associated with the depolarization by glutamate and aspartate on human and rat spinal neurons in tissue culture, Pflugers Arch. 363: 43–48.PubMedGoogle Scholar
  73. Jacobson, K. B., 1959, Studies on the role of N-acetylaspartic acid in the mammalian brain, J. Gen. Physiol. 43: 323–333.PubMedGoogle Scholar
  74. Jasper, H., and Koyama, I., 1969, Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation, Can. J. Physiol. Pharmacol. 47: 889–905.PubMedGoogle Scholar
  75. Jasper, H. H., Khan, R. T., and Elliott, K. A. C., 1965, Rate of release of amino acids from the cerebral cortex in the cat in relation to its state of activation, Science 147: 1448–1449.PubMedGoogle Scholar
  76. Johnson, J., and Aprison, M. H., 1970, The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neuron of the cat, Brain Res. 24: 285–292.PubMedGoogle Scholar
  77. Johnson, J., and Aprison, M. H., 1971, The distribution of glutamate and total free amino acids in thirteen specific regions of the cat central nervous system, Brain Res. 26: 141–148.Google Scholar
  78. Johnston, G. A. R., Curtis, D. R., Davies, J., and McCulloch, R. M., 1974, Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid, Nature 248: 804–805.PubMedGoogle Scholar
  79. Jones, M. E., Anderson, D., Anderson, C., and Hodes, S., 1961, Citrulline synthesis in rat tissues, Arch. Biochem. Biophys. 95: 499–507.PubMedGoogle Scholar
  80. Kerkut, G. A., and Wheal, H. V., 1974, The excitatory effects of aspartate and glutamate on the crustacean neuromuscular junction, Br. J. Pharmacol. 51: 136P - 137 P.PubMedGoogle Scholar
  81. Kittridge, J. S., Simonsen, D. G., Roberts, E., and Jelinek, B., 1962, Free amino acids of marine invertebrates, in: Amino Acid Pools ( J. T. Holden, ed.), pp. 176–186, Elsevier, Amsterdam.Google Scholar
  82. Kravitz, E. A., Slater, C. R., Takahashi, K., Bownds, M. D., and Grossfeld, R. M., 1970, Excitatory transmission in invertebrates—Glutamate as a potential neuromuscular transmitter compound, in: Excitatory Synaptic Mechanisms ( P. Anderson and J. K. S. Jansen, eds.), pp. 85–93, Universitetsforlaget, Oslo.Google Scholar
  83. Krnjevié, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.Google Scholar
  84. Krnjevié, K., and Phillis, J. W., 1963, Iontophoretic studies of neurones in the mammalian cerberal cortex, J. Physiol. (Lond.) 165: 274–304.Google Scholar
  85. Kmjevié, K., and Schwartz, S., 1967, Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3: 306–319.Google Scholar
  86. Lajtha, A., 1968, Transport as a control mechanism of cerebral metabolite levels, in: Brain Barrier Systems, Progress in Brain Research ( A. Lajtha and D. Ford, eds.), Vol. 29, pp. 201–216, Elsevier, Amsterdam.Google Scholar
  87. Lajtha, A., Berl, S., and Waelsch, H., 1959, Amino acid and protein metabolism of the brain—IV. The metabolism of glutamic acid, J. Neurochem. 3: 322–332.PubMedGoogle Scholar
  88. Lang, M. A., and Gainer, H., 1969, Isosmotic intracellular regulation as a mechanism of volume control in crab muscle fibers, Comp. Biochem. Physiol. 30: 445–456.PubMedGoogle Scholar
  89. Lea, T. J., and Usherwood, P. N. R., 1972, The site of action of ibotenic acid and the identification of two populations of glutamate receptors on insect muscle fibers, Comp. Gen. Pharmacol. 4: 333–350.Google Scholar
  90. Levi, G., Kandera, J., and Lajtha, A., 1967, Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species, Arch. Biochem. Biophys. 119: 303–311.PubMedGoogle Scholar
  91. Lewis, P. R., 1952, The free amino acids of invertebrate nerve, Biochem. J. 52: 330–338.PubMedGoogle Scholar
  92. Lin, S., and Cohen, H. P., 1973, Crayfish ventral nerve cord and hemolymph: Content of free amino acids and other metabolites, Comp. Biochem. Physiol. 45B: 249–263.Google Scholar
  93. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous system, Brain Res. 42: 413–431.PubMedGoogle Scholar
  94. Lowagie, C., and Gerschenfeld, H. M., 1974, Glutamate antagonists at a crayfish neuromuscular junction, Nature 248: 421–422.Google Scholar
  95. Lux, H. D., Loracher, C., and Neher, E., 1970, The action of ammonium on postsynaptic inhibition in cat spinal motoneurons, Exp. Brain Res. 11: 431–447.PubMedGoogle Scholar
  96. Mahler, H. R., and Cotman, C. W., 1970, Insoluble proteins of the synaptic plasma membrane, in: Protein Metabolism of the Nervous System ( A. Lajtha, ed.), pp. 151–184, Plenum Press, New York.Google Scholar
  97. Mangan, J. L., and Whitaker, V. P., 1966, The distribution of free amino acids in subcellular fractions of guinea pig brain, Biochem. J. 98: 128–137.PubMedGoogle Scholar
  98. Marks, N., Datta, R. K., and Lajtha, A., 1970, Distribution of amino acids and of exo-and endopeptidases along vertebrate and invertebrate nerves, J. Neurochem. 17: 53–63.PubMedGoogle Scholar
  99. McBride, W. J., Shank, R P., Freeman, A. R., and Aprison, M. H., 1974, Levels of free amino acids in excitatory, inhibitory and sensory axons of the walking limbs of the lobster, Life Sci. 14: 1109–1120.PubMedGoogle Scholar
  100. McBride, W. J., Freeman, A. R., Graham, L. T., Jr., and Aprison, M. H., 1975, Content of amino acids in axons from the CNS of the lobster, J. Neurobiol. 6: 321–328.PubMedGoogle Scholar
  101. McBride, W. J., Aprison, M. H., and Kusano, K., 1976, Contents of several amino acids in the cerebellum, brain stem and cerebrum of the “staggerer,” “weaver” and “nervous” neurologically mutant mice, J. Neurochem. 26: 867–870.PubMedGoogle Scholar
  102. McIntosh, J. C., and Cooper, J. R., 1965, Studies on the function of N-acetylaspartic acid in brain, J. Neurochem. 12: 825–835.PubMedGoogle Scholar
  103. Meister, A., 1973, On the enzymology of amino acid transport, Science 180: 30–39.Google Scholar
  104. Meister, A., 1975, Function of glutathione in kidney via the y-glutamyl cycle, Med. Clin. North Am. 59: 649–666.PubMedGoogle Scholar
  105. Michaelis, E. K., 1975, Partial purification and characterization of a glutamate-binding membrane glycoprotein from rat brain, Biochem. Biophys. Res. Commun. 65: 1004–1011.PubMedGoogle Scholar
  106. Miledi, R., 1972, Synaptic potentials in nerve cells of the stellate ganglion of the squid, J. Physiol. (Lond.) 225: 501–514.Google Scholar
  107. Minard, F. N., and Richter, D., 1968, Electroshock-induced seizures and the turnover of brain protein in the rat, J. Neurochem. 18: 1463–1468.Google Scholar
  108. Minchin, M. C. W., and Iversen, L. L., 1974, Release of [3H]gamma-aminobutyric acid from glial cells in rat dorsal root ganglia, J. Neurochem. 23: 533–540.PubMedGoogle Scholar
  109. Morgan, R., Vrbova, G., and Wolstencroft, J. H., 1972, Correlation between the retinal input to the lateral geniculate neurones and their relative response to glutamate and aspartate, J. Physiol. (Loud.) 224: 41P - 42 P.Google Scholar
  110. Moore, B. W., 1965, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739–744.PubMedGoogle Scholar
  111. Moore, B. W., 1975, Brain–specific proteins: S–100 protein, 14–3–2 protein and glial fibrillary protein, in: Advances in Neurochemistry ( B. W. Agranoff and M. H. Aprison, eds.), Vol. 1, pp. 137 – 155, Plenum Press, New York.Google Scholar
  112. Murthy, M. R. V., and Roux, H., 1974, Reactions of free and tRNA bound glutamate and glutamine, J. Neurochem. 23: 645–649.PubMedGoogle Scholar
  113. Nagy, A., Baker, R. R., Morris, S. J., and Whitaker, V. P., 1976, The preparation and characterization of synaptic vesicles of high purity, Brain Res. 109: 285–309.PubMedGoogle Scholar
  114. Nistri, A., and Constanti, A., 1975, Effects of glutamate and glutamic acid diethyl ester on the lobster muscle fibre and the frog spinal cord, Eur. J. Pharmacol. 31: 377–379.PubMedGoogle Scholar
  115. Okumura, N., Otsuka, S., and Aoyama, T., 1959, Studies on the free amino acids and related compounds in the brains of fish, amphibia, reptile, ayes, and mammal by ion exchange chromatography, J. Biochem. (Tokyo) 46: 207–212.Google Scholar
  116. Oldendorf, W., 1971, Brain uptake of radiolabelled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol. 221: 1629–1639.PubMedGoogle Scholar
  117. Olney, J. W., Rhee, V., and Ho, O. L., 1974, Kainic acid: A powerful neurotoxic analogue of glutamate, Brain Res. 77: 507–512.PubMedGoogle Scholar
  118. Onodera, K., and Takeuchi, A., 1975, Ionic mechanism of the excitatory synaptic membrane of the crayfish neuromuscular junction, J. Physiol. (Lond.) 252: 295–318.Google Scholar
  119. Osborne, R. H., and Bradford, H. F., 1975, The influence of sodium, potassium, and lanthanum on amino acid release from spinal-medullary synaptosomes, J. Neurochem. 25: 35–41.PubMedGoogle Scholar
  120. Osborne, R. H., Bradford, H. F., and Jones, D. G., 1973, Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla, J. Neurochem. 21: 407–419.PubMedGoogle Scholar
  121. Otsuka, M., 1977, Substance P and sensory transmitter, in: Advances in Neurochemistry ( B. W. Agranoffand M. H. Aprison, eds.), Vol. 2, pp. 193–208, Plenum Press, New York.Google Scholar
  122. Otsuka, M., Konishi, S., and Takahasi, T., 1975, Hypothalamic substance Pas a candidate for transmitter of primary afferent neurons, Fed. Proc. 34: 1922–1928.PubMedGoogle Scholar
  123. Perry, T. L., Hansen, S., Berry, K., Mok, C., and Lesk, D., 1971, Free amino acids and related compounds in biopsies of human brain, J. Neurochem. 18: 521–528.PubMedGoogle Scholar
  124. Peterkofsky, A., 1973, Involvement of glutamic acid and glutamine in protein synthesis and maturation, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadtman, eds.), pp. 331–342, Academic Press, New York.Google Scholar
  125. Pierce, S. K., Jr., and Greenberg, M. J., 1973, The initiation and control of free amino acid regulation of cell volume in salinity-stressed marine bivalves, J. Exp. Biol. 59: 435–440.Google Scholar
  126. Potts, W. T. W., and Parry, G., 1964, Osmotic and Ionic Regulation in Animals, Pergamon Press, Oxford.Google Scholar
  127. Quastel, J. H., 1974, Amino acids and the brain, Biochem. Soc. Trans. 2: 765–780.Google Scholar
  128. Quastel, J. H., and Wheatley, A. H. M., 1932, Oxidations by the brain, Biochem. J. 26: 725–744.PubMedGoogle Scholar
  129. Raiteri, M., Federico, R., Coletti, A., and Levi, G., 1975, Release and exchange studies relating to the synaptosomal uptake of GABA, J. Neurochem. 24: 1243–1250.PubMedGoogle Scholar
  130. Rassin, D. K., 1972, Amino acids as putative transmitters: Failure to bind to synaptic vesicles of guinea pig cerebral cortex, J. Neurochem. 19: 139–148.PubMedGoogle Scholar
  131. Ratner, S., Morell, H., and Caravalho, E., 1960, Enzymes of arginine metabolism in brain, Arch. Biochem. Biophys. 91: 280–289.PubMedGoogle Scholar
  132. Reichelt, K. L., 1970, The isolation of gamma-glutamyl peptides from monkey brain, J. Neurochem. 17: 19–25.PubMedGoogle Scholar
  133. Reichelt, K. L., and Fonnum, F., 1969, Subcellular localization of N-acetylaspartyl-glutamate and glutathione in brain, J. Neurochem. 16: 1409–1416.PubMedGoogle Scholar
  134. Reiffenstein, R. J., and Neal, M. J., 1974, Uptake, storage, and release of y-aminobutyrate in normal and chronically denervated cat cerebral cortex, Can. J. Physiol. Pharmacol. 52: 286–290.PubMedGoogle Scholar
  135. Reif-Lehrer, L., 1976, Possible significance of adverse reactions to glutamate in humans, Fed. Proc. 35: 2205–2211.PubMedGoogle Scholar
  136. Roberts, E., Baxter, C. F., Van Harreveld, A., Wiersma, C. A. G., Adey, W. R., and Killam, K. F. (eds.), 1960, Inhibition in the Nervous System and Gamma-Aminobutyric Acid, Pergamon Press, Oxford.Google Scholar
  137. Roberts, E., Chase, T. N., and Tower, D. B. (eds.), 1976, GABA in Nervous System Function, Raven Press, New York.Google Scholar
  138. Roberts, P. J., 1974a, Amino acid release from isolated rat dorsal root ganglia, Brain Res. 74: 327–332.PubMedGoogle Scholar
  139. Roberts, P. J., 1974b, Glutamate receptors in the rat central nervous system, Nature 252: 399–401.PubMedGoogle Scholar
  140. Roberts, P. J., and Watkins, J. C., 1975, Structural requirements for the inhibition for L-glutamate uptake by glia and nerve endings, Brain Res. 85: 120–125.PubMedGoogle Scholar
  141. Sadasivudu, B., and Hanumantharao, T. I., 1974, Studies on the distribution of urea cycle enzymes in different regions of the rat brain, J. Neurochem. 23: 267–269.PubMedGoogle Scholar
  142. Sano, I., Kakimoto, Y., Kanazawa, A., Nakajima, T., and Shimizu, H., 1966, Identification of glutamylpeptides in brain, J. Neurochem. 13: 711–719.PubMedGoogle Scholar
  143. Schmidt-Nielsen, B., 1975, Comparative physiology of cellular ion and volume regulation, J. Exp. Zool. 194: 207–219.PubMedGoogle Scholar
  144. Schoffeniels, E., 1964, Cellular aspects of active transport, in: Comparative Biochemistry ( M. Florkin and H. S. Mason, eds.), Vol. 7, pp. 137–202, Academic Press, New York.Google Scholar
  145. Schoffeniels, E., 1970, Isosmotic intracellular regulation in “Maja squinado” risso and “Penaeus aztecus” yves, Arch. Mt. Physiol. Biochim. 78: 461–466.Google Scholar
  146. Schoffeniels, E., and Gilles, R., 1970, Osmoregulation in aquatic arthropods, in: Chemical Zoology ( M. Florkin and B. T. Sheer, eds.), pp. 255–286, Academic Press, New York.Google Scholar
  147. Schultz, V., and Lowenstein, J. M., 1976, Purine nucleotide cycle—Evidence for the occurrence in brain, J. Biol. Chen. 251: 485–492.Google Scholar
  148. Shank, R. P., and Aprison, M. H., 1970, The metabolism in vivo of glycine and serine in eight areas of the rat central nervous system, J. Neurochem. 17: 1461–1475.PubMedGoogle Scholar
  149. Shank, R. P., and Aprison, M. H., 1977, Glutamine uptake and metabolism by the isolated toad brain: Evidence pertaining to its proposed role as a transmitter precursor, J. Neurochem. 28: 1189–1196.PubMedGoogle Scholar
  150. Shank, R. P., and Baxter, C. F., 1973, Metabolism of glucose, amino acids, and some related metabolites in the brain of toads (Bufo boreas) adapted to fresh water or hyperosmotic environments, J. Neurochem. 21: 301–313.PubMedGoogle Scholar
  151. Shank, R. P., and Baxter, C. F., 1975, Uptake and metabolism of glutamate by isolated toad brains containing different levels of endogenous amino acids, J. Neurochem. 24: 641–646.PubMedGoogle Scholar
  152. Shank, R. P., and Freeman, A. R., 1975, Cooperative interaction of glutamate and aspartate with receptors in the neuromuscular excitatory membrane in walking limbs of the lobster, J. Neurobiol. 6: 289–303.PubMedGoogle Scholar
  153. Shank, R. P., and Freeman, A. R., 1976, Agonistic and antagonistic activity of glutamate analogs on neuromuscular excitation in the walking limbs of lobster, J. Neurobiol. 7: 23–26.PubMedGoogle Scholar
  154. Shank, R. P., Whiten, J. T., and Baxter, C. F., 1973, Glutamate uptake by isolated toad brain, Science 181: 860–862.PubMedGoogle Scholar
  155. Shank, R. P., Freeman, A. R., McBride, W. J., and Aprison, M. H., 1975, Glutamate and aspartate as mediators of neuromuscular excitation in the lobster, Comp. Biochem. Physiol. 500: 127–132.Google Scholar
  156. Shinozaki, H., and Shibuya, I., 1974, Potentiation of glutamate-induced depolarization by kainic acid in the crayfish opener muscle, Neuropharmacology 13: 1057–1065.PubMedGoogle Scholar
  157. Silber, R. H., and Schmitt, F. O., 1940, The role of free amino acids in electrolyte balance of nerve, J. Cell. Comp. Physiol. 16: 247–254.Google Scholar
  158. Simon, J. R., Contrera, J. F., and Kuhar, M. J., 1976, Binding of3H-kainic acid, an analogue of L-glutamate of brain membranes, J. Neurochem. 26: 141–148.PubMedGoogle Scholar
  159. Snyder, S. H., Young, A. B., Bennett, J. P., and Mulder, A. H., 1973, Synaptic biochemistry of amino acids, Fed. Proc. 32: 2039–2047.PubMedGoogle Scholar
  160. Sorenson, M. M., 1973, The free amino acids in peripheral nerves and in isolated inhibitory and excitatory nerves of Cancer magister, J. Neurochem. 20: 1231–1245.PubMedGoogle Scholar
  161. Spencer, H. J., 1976, Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: Evidence for glutamic acid as an excitatory transmitter in the rat striatum, Brain Res. 102: 91–101.PubMedGoogle Scholar
  162. Takahashi, T., and Otsuka, M., 1975, Regional distribution of substance P in the spinal cord and nerve roots of the cat and the effects of dorsal roots section, Brain Res. 87: 1–11.PubMedGoogle Scholar
  163. Takeuchi, A., and Onodera, K., 1973, Reversal potenials of the excitatory transmitter and Lglutamate at the crayfish neuromuscular junction, Nature New Biol. 242: 124–126.PubMedGoogle Scholar
  164. Takeuchi, A., and Takeuchi, N., 1972, Actions of transmitter substances on neuromuscular junctions of vertebrates and invertebrates, Adv. Biophys. 3: 45–95.PubMedGoogle Scholar
  165. Tallan, H. H., 1962, A survey of the amino acids and related compounds in nervous tissue, in: Amino Acid Pools (J. T. Holden, ed.), pp. 471–485, Elsevier, Amsterdam.Google Scholar
  166. Taraskevich, P. S., 1971, Reversal potentials of L-glutamate and the excitatory transmitter at the neuromuscular junction of the crayfish, Biochem. Biophys. Acta 241: 700–702.PubMedGoogle Scholar
  167. Thurston, J. H., Hauhart, R. E., Jones, E. M., and Alter, J. L., 1975, Effect of salt and water loading on carbohydrate and energy metabolism and levels of selected amino acids in the brains of young mice, J. Neurochem. 24: 953–957.PubMedGoogle Scholar
  168. Tower, D. B., and Wherrett, J. R., 1971, Glutamyl and aspartyl moieties of cerebral proteins: Enrichment in membrane-containing microsomal subfractions, J. Neurochem. 18: 1043–1051.PubMedGoogle Scholar
  169. Triggle, D. J., 1971, Neurotransmitter Receptor Interactions, Academic Press, New York.Google Scholar
  170. Tsukada, Y, Nagata, Y., Hirano, S., and Matsutani, T., 1963, Active transport of amino acids into cerebral slices, J. Neurochem. 10: 241–256.PubMedGoogle Scholar
  171. Van den Berg, C. J., 1970, Glutamate and glutamine, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 3, pp. 355–379, Plenum Press, New York.Google Scholar
  172. Van den Berg, C. J., Reignierse, G. L. A., Blochuis, G. G. C., Kron, M. C., Ronda, G., Clarke, D. D., and Garfinkel, D., 1976, A model of glutamate metabolism in brain: A biochemical analysis of a heterogeneous structure, in: Metabolic Compartmentation and Neurotransmission—Relation to Brain Structure and Function ( S. Berl, D. D. Clarke, and S. Schneider, eds.), pp. 515–544, Plenum Pres, New York.Google Scholar
  173. Van Gelder, N. M., and Courtois, A., 1972, Close correlation between changing content of specific amino acids in epileptogenic cortex of cats, and severity of epilepsy, Brain Res. 43: 477–484.PubMedGoogle Scholar
  174. Van Harreveld, A., and Fifkova, E., 1970, Glutamate release from the retina during spreading depression, J. Neurobiol. 2: 13–29.PubMedGoogle Scholar
  175. Virkar, R. A., and Webb, K. L., 1970, Free amino acid composition of the soft-shell clam, Mya arenaria in relation to salinity of the medium, Comp. Biochem. Physiol. 32: 775–783.Google Scholar
  176. Wajda, I. J., 1970, Transglutaminase changes in the brain and other tissues during allergic encephalomyelitis, in: Protein Metabolism of the Nervous System ( A. Lajtha, ed.), pp. 671–684, Plenum Press, New York.Google Scholar
  177. Weil-Malherbe, H., 1950, Significance of glutamic acid for the metabolism of nervous tissue, Physiol. Rev. 30: 549–568.PubMedGoogle Scholar
  178. Weil-Malherbe, H., 1975, Further studies on ammonia formation in brain slices: The effect of hadacidin, Neuropharmacology 14: 175–180.PubMedGoogle Scholar
  179. Weinreich, D., and Hammerschlag, R., 1975, Nerve impulse-enhanced release of amino acids from nonsynaptic regions of peripheral and central nerve trunks of bullfrog, Brain Res. 84: 137–142.PubMedGoogle Scholar
  180. Wheal, H. V., and Kerkut, G. A., 1975, The effect of diethyl ester L-glutamate on evoked excitatory junction potentials at the crustacean neuromuscular junction, Brain Res. 82: 338–340.Google Scholar
  181. Wheeler, D. D., Boyarsky, L. L., and Brooks, W. H., 1966, The release of amino acids from nerve during stimulation, J. Cell. Physiol. 67: 141–148.PubMedGoogle Scholar
  182. Wherrett, J. R., and Tower, D. B., 1971, Glutamyl and aspartyl amide moieties of cerebral proteins: Metabolic aspects in vitro, J. Neurochem. 18: 1027–1042.PubMedGoogle Scholar
  183. Wolfgram, F., and Kotorii, 1968a, The composition of myeling proteins of the central nervous system, J. Neurochem. 18: 1281–1290.Google Scholar
  184. Wolfgram, F., and Kotorii, 1968b, The composition of the myelin proteins of the peripheral nervous system, J. Neurochem. 18: 1291–1296.Google Scholar
  185. Yamamoto, C., and Matsui, S., 1976, Effect of stimulation of excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro, J. Neurochem. 26: 487–491.PubMedGoogle Scholar
  186. Yarowsky, P. J., and Carpenter, D. P., 1976, Aspartate: Distinct receptors on aplysia neurons, Science 192: 807–809.PubMedGoogle Scholar
  187. Young, A. B., Oster-Granite, M. L., Herndon, R. M., and Snyder, S. H., 1974, Glutamic acid: Selective depletion by viral-induced granule cell loss in hamster cerebellum, Brain Res. 73: 1–13.PubMedGoogle Scholar
  188. Zieglgansberger, W., and Puil, E. A., 1973, Actions of glutamate on spinal neurones, Exp. Brain Res. 17: 35–49.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Richard P. Shank
    • 1
  • Lewis T. GrahamJr.
    • 2
  1. 1.Department of PhysiologyTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of Biochemistry and Molecular BiologyLouisiana State University Medical CenterShreveportUSA

Personalised recommendations