Advertisement

Immunohistochemistry of Nervous System-Specific Antigens

  • Lawrence F. Eng
  • John W. Bigbee
Chapter

Abstract

In recent years, immunohistochemical detection and localization of specific antigens in tissue sections have had important clinical and experimental applications. Morphological information derived from these studies combined with biochemical data is proving to be an extremely valuable means for studying structural and functional components of tissue. Biochemical data describing brain antigens have prompted many immunohistochemical studies attempting to localize these factors. Whereas most studies have employed the immunofluorescence technique, the increasing requirement for high-resolution localization offered by electron microscopy (EM) necessitates the use of immunoperoxidase methods Immunocytochemical localization of brain antigens is lending a great deal to our understanding of brain morphology, organization, and function. Many but not all of the nervous system antigens being studied by immunohistochemical techniques have been cited in this chapter. The authors have attempted to concentrate on areas of most recent advances and of broad general interest.

Keywords

Purkinje Cell Glial Fibrillary Acidic Protein Tyrosine Hydroxylase Myelin Basic Protein Immunohistochemical Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarli, J. A., Aparicio, S. R., Lumsden, C. E., and Tonder, O., 1975, Binding of normal human IgG to myelin sheaths, glia, and neurons, Immunology 28: 171–185.PubMedGoogle Scholar
  2. Agrawal, H. C., Hartman, B. K., Fujimoto, K., Shearer, W. T., Kalmbach, S., and Margolis, F. L., 1977, Purification and immunohistochemical localization of rat brain myelin proteo-lipid protein, J. Neurochem. 28: 495–508.PubMedGoogle Scholar
  3. Allen, W. D., Smith, C. G., and Porter, P., 1976, Evidence for the secretory transport mechanism of intestinal immunoglobulin. The ultrastructuraldistribution of IgM, Immunology 30 (3): 449–457.PubMedGoogle Scholar
  4. Alpert, L. C., Brawer, J. R., Patel, Y. C., and Reichlin, S., 1976, Somatostatinergic neurons in anterior hypothalamus- Immunohistochemical localization, Endocrinology 98 (1): 255–258.PubMedGoogle Scholar
  5. Antanitus, D. S., Choi, B. H., and Lapham, L. W., 1975, Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein, Brain Res. 89: 363–367.PubMedGoogle Scholar
  6. Antanitus, D. S., Choi, B. H., and Lapham, L. W., 1976, The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence, Brain Res. 103: 613–616.PubMedGoogle Scholar
  7. Asghar, S. S., Joost, T. Van, and Cormane, R. H., 1973, Comparison of immunofluorescence and immunoperoxidase techniques for detection of tissue antigen, Arch. Dermatol. Forsch. 248 (2): 99–108.Google Scholar
  8. Avrameas, S., 1969a, Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies, Immunochemistry 6 (1): 43–52.PubMedGoogle Scholar
  9. Avrameas, S., 1969b, Indirect immunoenzyme techniques for the intracellular detection of antigens, Immunochemistry 6 (6): 825–831.PubMedGoogle Scholar
  10. Avrameas, S., 1972, Enzyme markers: Their linkage with proteins and use in immunohistochemistry, Histochem. J. 4 (4): 321–330.Google Scholar
  11. Avrameas, S., and Bouteille, M., 1968, Ultrastructural localization of antibody by antigen label with peroxidase, Exp. Cell Res. 53 (1): 166–176.PubMedGoogle Scholar
  12. Avrameas, S., and Guilbert, B., 1971, A method for quantitative determination of cellular immunoglobulins by enzyme-labeled antibodies, Eur. J. Immunol. 1 (5): 394–396.PubMedGoogle Scholar
  13. Avrameas, S., and Ternynck, T., 1971, Peroxidase-labelled antibody and Fab conjugates with enhanced intracellular penetration, Immunochemistry 8 (12): 1175–1179.PubMedGoogle Scholar
  14. Aycock, E. K., 1973, Fluorescent antibody application in the diagnosis of fungal diseases, J. Scand. Med. Assoc. 69 (3): 88.Google Scholar
  15. Baker, B. L., and Drummond, T., 1972, The cellular origins of corticotropin and melanotropin as revealed by immunochemical staining, Am. J. Anat. 134 (4): 395–409.PubMedGoogle Scholar
  16. Baker, B. L., Dermody, W. C., and Reel, J. R., 1974, Localization of leuteinizing hormone releasing hormone in mammalian hypothalamus, Am. J. Anat. 139: 129–134.PubMedGoogle Scholar
  17. Balazs, R., Hajos, F., Johnson, A. L., Reynierse, G. L. A., Tapia, R., and Wilkin, G. P., 1975, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. III. Isolation of large fragments of the cerebellar glomeruli, Brain Res. 86: 17–30.PubMedGoogle Scholar
  18. Barabino, A., Di Benedetto, G., Villa, M. A., and Indiveri, F., 1973, Comparison of immunofluorescence with the enzyme-labeled antibody technic in the demonstration of antithyroid antibodies, Boll. Soc. Ital. Biol. Sper. 49 (20): 1186–1189.PubMedGoogle Scholar
  19. Bariety, J., Druet, P., and Laliberte, F., 1975, Immunoperoxidase in glomerular pathology, Pathol. Biol. 23 (6): 485.Google Scholar
  20. Barry, J., Dubois, M. P., and Carette, B., 1974, Immunofluorescence study of the preopticoinfundibular LRF neurosecretory pathway in the normal, castrated or testosterone-treated male guinea pig, Endocrinology 95 (5): 1416–1423.PubMedGoogle Scholar
  21. Battenberg, E. L., and Bloom, F. E., 1975, A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid-induced fluorescence: I. Specificity, Psychopharmacol. Commun. 1 (1): 3–13.Google Scholar
  22. Bauer, H., 1976, Diagnostic applications of the fluorescent antibody method, Am. Fam. Physician 13 (2): 74–80.PubMedGoogle Scholar
  23. Beaupain, D., and Dieterlen-Li Eyre, F., 1972, Immunohistologic demonstration of insulin in the chick embryonic pancreas, C.R. Acad. Sci. [D] (Paris) 275 (3): 413–415.Google Scholar
  24. Beauvillain, J. C., Tramu, G., and Dubois, M. P., 1975, Characterization by different techniques of adrenocorticotropin and gonadotropin producing cells in Lerot pituitary (Eliomys quercinus), Cell Tissue Res. 158 (3): 301–317.PubMedGoogle Scholar
  25. Bellon, B., Sapin, C., and Druet, P., 1975, The sensitivity of direct and indirect methods in immunofluorescence and immunoperoxidase techniques: A comparative study (author’s transi.), Ann. Immunol. 126 (1): 15–22.Google Scholar
  26. Benda, P., Mori, T., and Sweet, W. H., 1970, Demonstration of an astrocyte-specific cerebro-protein by an immunofluorescence study of human brain tumors, J. Neurosurg. 33: 281–286.PubMedGoogle Scholar
  27. Benjamin, D. R., 1974, Rapid typing of herpes simplex virus strains using the indirect immunoperoxidase method, Appl. Microbiol. 28 (4): 568–571.Google Scholar
  28. Benjamin, D. R., and Ray, C. G., 1975, Use of immunoperoxidase on brain tissue for the rapid diagnosis of herpes encephalitis, Am. J. Clin. Pathol. 64 (4): 472–476.PubMedGoogle Scholar
  29. Bennett, G. S., 1974, Immunologic and electrophoretic identity between nervous system–specific proteins antigen alpha and 14–3–2, Brain Res. 68: 365 – 369.PubMedGoogle Scholar
  30. Bennett, G. S., and Edelman, G. M., 1968, Isolation of an acidic protein from rat brain, J. Biol. Chem. 243: 6234–6241.PubMedGoogle Scholar
  31. Bergquist, R., 1971, Manufacture of monospecific conjugates for fluorescent antibody work, Acta Pathol. Microbiol. Scand. B 79 (3): 444.Google Scholar
  32. Beutner, E. H., 1961, Immunofluorescent staining: The fluorescent antibody method, Bacterial Rev. 25: 49–76.Google Scholar
  33. Beutner, E. H., 1975, Uses for immunofluorescence tests of skin and sera. Utilization of immunofluorescence in the diagnosis of bullous diseases, lupus erythematosus, and certain other dermatoses, Arch. Dermatol. 111 (3): 371–381.Google Scholar
  34. Bigbee, J. W., Kosek, J. C., and Eng, L. F., 1977, Effects of primary antiserum dilution on staining of “antigen rich” tissues with the peroxidase antiperoxidase technique, J. Histochem. Cytochem. 25: 443–447.PubMedGoogle Scholar
  35. Bignami, A., and Dahl, D., 1973, Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes, Brain Res. 49: 393–402.PubMedGoogle Scholar
  36. Bignami, A., and Dahl, D., 1974a, Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the gliai fibrillary acidic protein, J. Comp. Neurol. 153: 27–38.PubMedGoogle Scholar
  37. Bignami, A., and Dahl, D., 1974b, Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat, Nature 252: 55–56.PubMedGoogle Scholar
  38. Bignami, A., and Dahl, D., 1974c, Glial fibrillary acidic protein in mutant mice with deficiency of myelination: Quaking and Jimpy, Acta Neuropathol. (Berlin) 28: 269–272.Google Scholar
  39. Bignami, A., and Dahl, D., 1974d, The development of Bergmann glia in mutant mice with cerebellar malformations: Reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein, J. Comp. Neurol. 155: 219–230.PubMedGoogle Scholar
  40. Bignami, A., and Dahl, D., 1975, Astroglial protein in the developing spinal cord of the chick embryo, Dev. Biol. 44: 204–209.Google Scholar
  41. Bignami, A., and Dahl, D., 1976, The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates, Neuropathol. Appl. Neurobiol. 2: 99–111.Google Scholar
  42. Bignami, A., and Eng, L. F., 1973, Biochemical studies of myelin in Wallerian degeneration of rat optic nerve, J. Neurochem. 20: 165–173.PubMedGoogle Scholar
  43. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43: 429–435.PubMedGoogle Scholar
  44. Bignami, A., Forno, L., and Dahl, D., 1974, The neuroglial response to injury following spinal cord transection in the goldfish, Exp. Neural. 44: 60–70.Google Scholar
  45. Bignon, J., Chahinian, P., Feldmann, G., and Sapin, C., 1975, Ultrastructural immunoperoxidase demonstration of autologous albumin in the alveolar capillary membrane and in the alveolar lining material in normal rats, J. Cell Biol. 64 (2): 503–509.PubMedGoogle Scholar
  46. Bissell, M. G., Rubinstein, L. J., Bignami, A., and Herman, M. M., 1974, Characteristics of the rat C-6 glioma maintained in organ culture systems. Production of glial fibrillary acidic protein in the absence of gliofibrillogenesis, Brain Res. 82: 77–89.PubMedGoogle Scholar
  47. Bloom, F. E., Hoffer, B. J., Battenberg, E. R., and Siggins, G. R., 1972, Adenosine 3’,5’monophosphate is localized in cerebellar neurons: Inununofluorescence evidence, Science 177: 436–438.PubMedGoogle Scholar
  48. Blundell, G. P., 1970, Fluorescent antibody technics, Frog. Clin. Pathol. 3: 211–225.Google Scholar
  49. Bock, E., and Dissing, J., 1975, Demonstration of enolase activity connected to the brain–specific protein 14–3–2, Scand. J. Immunol. (Suppl. 4) 2: 31 – 36.Google Scholar
  50. Bock, E., Jorgensen, O. S., Dittmann, L., and Eng, L. F., 1975, Determination of brain-specific antigens in short-term cultivated rat astroglial cells and in rat synaptosomes, J. Neurochem. 25: 867–870.PubMedGoogle Scholar
  51. Bocker, W., 1974, Use of a triple layer enzyme method as an alternative to immunofluorescence for the detection of tissue antigens, Beitr. Pathol. 153 (4): 410–414.Google Scholar
  52. Bogoch, S., 1972, Brain glycoprotein 10B: Further evidence of the “signpost” role of brain glycoproteins in cell recognition, its change in brain tumor, and the presence of a “distance factor,” in: Functional and Structural Proteins of the Nervous System (A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 39–52, Plenum Press, New York.Google Scholar
  53. Boorsma, D. M., and Kalsbeek, G. L., 1975, A comparative study of horseradish peroxidase conjugates prepared with a one-step and a two-step method, J. Histochem. Cytochem. 23 (3): 200–207.PubMedGoogle Scholar
  54. Boorsma, D. M., Nieboer, C., and Kalsbeek, G. L., 1975, Cutaneous immunohistochemistry. The direct immunoperoxidase and immunoglobulin-enzyme bridge methods compared with the immunofluorescence method in dermatology, J. Cutan. Pathol. 2 (6): 294–301.PubMedGoogle Scholar
  55. Borek, F., 1961, The immunofluorescent antibody method in medical and biological research, Bull. WHO 24: 249–256.PubMedGoogle Scholar
  56. Bosman, C., and Feldman, J. D., 1970, The proportion and structure of cells forming antibody, gamma G and gamma M immunoglobulins, and gamma G and gamma M antibodies, Cell. Immunol. 1 (1): 31–50.Google Scholar
  57. Brandtzaeg, P., 1973, Two types of IgA immunocytes in man, Nature New Biol. 243: 142.PubMedGoogle Scholar
  58. Brandtzaeg, P., 1975, Rhodamine conjugates: Specific and nonspecific binding properties in immunohistochemistry, Ann. N.Y. Acad. Sci. 254: 35–54.PubMedGoogle Scholar
  59. Bretton, R., Temynck, T., and Avrameas, S., 1972, Comparison of peroxidase and ferritin labelling of cell surface antigens, Exp. Cell Res. 71 (1): 145–155.PubMedGoogle Scholar
  60. Brown, P. J., Bourne, F. J., and Steel, M., 1974, Immunoperoxidase and immunofluorescence techniques in pig tissues, Histochemistry 40 (4): 343–348.PubMedGoogle Scholar
  61. Brown, P. J., Bourne, F. J., and Denny, H. R., 1975, Immunoglobulin-containing cells in pig mammary gland, J. Anat. 120 (2): 329–335.PubMedGoogle Scholar
  62. Brown, W. R., and Burns, F. A., 1973, Application of peroxidase-labeled antibody methods to identification of immunoglobulin-containing cells in gastrointestinal tissues, J. Immunol. Methods 2 (3): 303–307.PubMedGoogle Scholar
  63. Bryan, J., and Wilson, L., 1971, Are cytoplasmic microtubules heteropolymers ? Proc. Natl. Acad. Sci. U.S.A. 68: 1762.PubMedGoogle Scholar
  64. Bubenik, G. A., Brown, G. M., Uhlir, I., and Grota, L. J., 1974, Immunohistochemical localization of N-acetylindolealkylamine in pineal gland, retina and cerebellum, Brain Res. 81: 233–242.PubMedGoogle Scholar
  65. Bubenik, G. A., Brown, G. M., and Grota, L. J., 1975, Localization of immunoreactive androgen in testicular tissue, Endocrinology 96 (1): 63–69.PubMedGoogle Scholar
  66. Bubenik, G. A., Brown, G. M., and Grota, L. G., 1976a, Differential localization of Nacetylated indolealkylamines in CNS and the Harderian gland using immunohistology, Brain Res. 118: 417–427.PubMedGoogle Scholar
  67. Bubenik, G. A., Brown, G. M., and Grota, L. J., 1976b, Immunohistochemical localization of melatonin in the rat Harderian gland, J. Histochem. Cytochem. 24 (11): 1173–1177.PubMedGoogle Scholar
  68. Burns, J., 1975a, Background staining and sensitivity of the unlabelled antibody-enzyme (PAP) method. Comparison with the peroxidase-labelled antibody sandwich method using formalin-fixed paraffin embedded material, Histochemistry 43 (3): 291–294.PubMedGoogle Scholar
  69. Burns, J., 1975b, Immunoperoxidase localisation of hepatitis B antigen (HB) in formalinparaffin processed liver tissue, Histochemistry 44 (2): 133–135.PubMedGoogle Scholar
  70. Bums, J., Hambridge, M., and Taylor, C. R., 1974, Intracellular immunoglobulins. A comparative study on three standard tissue processing methods using horseradish peroxidase and fluorochrome conjugates, J. Clin. Pathol. 27 (7): 548–557.Google Scholar
  71. Burt, A. M., and Silver, A., 1973, Histochemistry of choline acetyltransferase: A critical analysis, Brain Res. 62: 509–516.PubMedGoogle Scholar
  72. Cain, D. F., Ball, E. D., and Dekaban, A. S., 1974, Proteins of human brain tissue obtained during surgical procedures, J. Neurochem. 23: 561–568.PubMedGoogle Scholar
  73. Cantella, R. A., Lopez, L. R., and Colichon, A. A., 1974, Improvement of specific fluorescence in the indirect fluorescent antibody method for detecting antinuclear antibodies using Evans blue dye as a counterstain, Ann. Sclavo 16 (5): 503–506.PubMedGoogle Scholar
  74. Chan, P. H., Huston, J. S., Dahl, D., and Bignami, A., 1975, Purification and initial characterization of astroglial protein from bovine brain, Fed. Proc. 34: 224.Google Scholar
  75. Chantier, S., 1975, Comparison of antihuman immunoglobulin and antihuman Fab conjugates for the detection of tissue autoantibodies by immunofluorescence, Ann. N.Y. Acad. Sci. 254: 66–68.Google Scholar
  76. Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V., 1970, The cellular localization of the two brain–specific proteins, S–100 and 14–3–2, Brain Res. 18: 25 – 34.PubMedGoogle Scholar
  77. Clayton, R. M., 1954, Localisation of embryonic antigens by antisera labelled with fluorescent dyes, Nature 174: 1059.PubMedGoogle Scholar
  78. Clyne, D. H., Norris, S. H., Modesto, R. R., Pesce, A. J., and Pollak, V. E., 1973, Antibody enzyme conjugates: The preparation of intermolecular conjugates of horseradish peroxidase and antibody and their use in immunohistology of renal cortex, J. Histochem. Cytochem. 21 (3): 233–240.PubMedGoogle Scholar
  79. Coons, A. H., 1956, Histochemistry with labeled antibody, Int. Rev. Cytol. 5: 1–23.Google Scholar
  80. Coons, A. H., 1958, Fluorescent Antibody Methods (J. F. Danielli, ed.), pp. 399–422, Academic Press, New York.Google Scholar
  81. Coons, A. H., Creech, H. J., and Jones, R. N., 1941, Immunological properties of an antibody containing a fluorescent group, Proc. Soc. Exp. Biol. 47: 200–202.Google Scholar
  82. Dahl, D., 1976a, Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates, Biochim. Biophys. Acta 420: 142–154.Google Scholar
  83. Dahl, D., 1976b, Isolation and initial characterization of glial fibrillary acidic protein from chicken, turtle, frog, and fish central nervous system, Biochim. Biophys. Acta 446: 41–50.Google Scholar
  84. Dahl, D., and Bignami, A., 1973, Glial fibrillary acidic protein from normal human brain. Purification and properties, Brain Res. 57: 343–360.PubMedGoogle Scholar
  85. Dahl, D., and Bignami, A., 1974, Heterogeneity of the glial fibrillary acidic protein in gliosed human brains, J. Neurol. Sci. 23: 551–563.PubMedGoogle Scholar
  86. Dahl, D., and Bignami, A., 1975, Glial fibrillary acidic protein from normal and gliosed human brain. Demonstration of multiple related polypeptides, Biochim. Biophys. Acta 386: 41–51.Google Scholar
  87. Dahl, D., and Bignami, A., 1976, Immunogenic properties of the glial fibrillary acidic protein, Brain Res. 116: 150–157.PubMedGoogle Scholar
  88. Dal Canto, M. C., Blum, N. R., and Johnson, A. B., 1975, Immunofluorescence horseradish peroxidase-combined staining technique for demonstrating both immunoglobulin class and antigen-binding specificity of cellular antibody, J. Histochem. Cytochem. 23: 452.Google Scholar
  89. Daniels, M. P., and Vogel, Z., 1975, Immunoperoxidase staining of alpha-bungarotoxin binding sites in muscle endplates shows distribution of acetylcholine receptors, Nature 254 (5498): 339–341.PubMedGoogle Scholar
  90. Davies, D. R., and Clark, A. E., 1975, Demonstration of immunoglobulin containing deposits in glomerular basement membrane in experimental chronic serum sickness using horseradish peroxidase-labelled antiserum, Br. J. Exp. Pathol. 56 (1): 28–33.PubMedGoogle Scholar
  91. Dayan, A. D., and Stokes, M. I., 1971, Immunofluorescent detection of measles-virus antigens in cerebrospinal-fluid cells in subacute sclerosing panencephalitis, Lancet 1 (705): 891–892.PubMedGoogle Scholar
  92. Dayan, A. D., and Stokes, M. I., 1973, Rapid diagnosis of encephalitis by immunofluorescent examination of cerebrospinal-fluid cells, Lancet 1 (796): 177–179.PubMedGoogle Scholar
  93. Deck, J. H., Eng, L. F., and Bigbee, J., 1976, A preliminary study of glioma morphology using the peroxidase-antiperoxidase immunohistological method for glial fibrillary acidic protein, J. Neuropathol. Exp. Neurol. 35: 362.Google Scholar
  94. Delpech, B., and Buffe, D., 1972, Etude immunochimique des extraits salins du cerveau humain, Ann. Inst. Pasteur 122: 331–340.Google Scholar
  95. Delpech, B., and Delpech, A., 1975, Caracterisation immunochimique d’un antigene neurospecifique non specifique d’espece. Etude quantitative et localisation histologique chez le rat, Immunochemistry 12: 691–697.PubMedGoogle Scholar
  96. Delpech, B., Fidard, M. N., Schlosser, M., and Hernot, C., 1973, Quelques proprietés d’une glycoproteine antigeniquement spécifique du système nerveux, C.R. Soc. Biol. 167: 1029–1032.Google Scholar
  97. Delpech, B., Chauzy, C., Delpech, A., and Maunoury, R., 1975, Protides of the Biological Fluids, 22nd Symposium (H. Peters, ed.), pp. 363–366, Pergamon Press, Oxford.Google Scholar
  98. De Vries, G. H., Norton, W. T., and Raine, C. S., 1971, Axons: Isolation from mammalian central nervous system, Science 175: 1370–1372.Google Scholar
  99. De Vries, G. H., Eng, L. F., Lewis, D. H., and Hadfield, M. G., 1976, The protein composition of bovine myelin-free axons, Biochim. Biophys. Acta 439: 133–145.Google Scholar
  100. Dobzhanski, S. I., and Tabakova, L. S., 1974, Immunofluorescent method in dermatology (Review of the literature), Vestn. Dermatol. Venerol. 8 (8): 13–18.Google Scholar
  101. Donato, R., and Michetti, F., 1974, S-100 protein in cerebral cortex synaptosomes, Experientia 30: 511–512.PubMedGoogle Scholar
  102. Donato, R., Michetti, F., and Miani, N., 1975, Soluble and membrane-bound S-100 protein in cerebral cortex synaptosomes. Properties of the S-100 receptor, Brain Res. 98: 561–573.PubMedGoogle Scholar
  103. Darling, J., Johnson, G. D., Webb, J. A., and Smith, M. E., 1971, Use of peroxidaseconjugated antiglobulin as an alternative to immunofluorescence for the detection of antinuclear factor in serum, J. Clin. Pathol. 24 (6): 501–505.Google Scholar
  104. Eipper, B. A., 1974, Properties of rat brain tubulin, J. Biol. Chem. 249: 1407–1416.PubMedGoogle Scholar
  105. Elias, J. M., and Miller, F., 1975, A comparison of the unlabelled enzyme method with immunofluorescence for the evaluation of human immunologic renal disease, Am. J. Clin. Pathol. 64 (4): 464–471.PubMedGoogle Scholar
  106. Ellis, H. K., and Watkins, W. B., 1975, Ontogeny of the pig hypothalamic neurosecretory system with particular reference to the distribution of neurophysin, Cell Tissue Res. 164 (4): 543–557.PubMedGoogle Scholar
  107. Eng, L. F., 1973, Chemical characterization of the glial fibrillary acidic protein (GFAP), Fed. Proc. 32: 485.Google Scholar
  108. Eng, L. F., and Kosek, J. C., 1974, Light and electron microscopic localization of the glial fibrillary acidic protein and S-100 protein by immunoenzymatic techniques, Trans. Am. Soc. Neurochem. 5: 160.Google Scholar
  109. Eng, L. F., Gerstl, B., and Vanderhaeghen, J. J., 1970, A study of proteins in old multiple sclerosis plaques, Trans. Am. Soc. Neurochem. 1: 42.Google Scholar
  110. Eng, L. F., Vanderhaeghen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28: 351–354.PubMedGoogle Scholar
  111. Eng, L. F., Pratt, D., and Wilson, L., 1974a, Biochemical and pharmacological comparison of microtubule protein from human and chick brain, Neurobiology 4: 301–308.PubMedGoogle Scholar
  112. Eng, L. F., Uyeda, C. T., Chao, L. P., and Wolfgram, F., 1974b, Antibody to bovine choline acetyltransferase and immunofluorescent localization of the enzyme in neurons, Nature 250: 243–245.PubMedGoogle Scholar
  113. Eng, L. F., Burkstaller, M., Bigbee, J., Kosek, J. C., and Kies, M. W., 1975, Immunohistologic comparison of the glial fibrillary acidic protein and myelin basic protein in the myelinating brain, 5th International Meeting of the International Society of Neuro-chemists, Barcelona, Spain, Abstract 41.Google Scholar
  114. Eng, L. F., Kosek, J. C., Forno, L., Deck, J., and Bigbee, J., 1976a, Immunohistochemistry of brain proteins in fixed, paraffin-embedded tissue, Trans. Am. Soc. Neurochem. 7: 211.Google Scholar
  115. Eng. L. F., DeVries, G. H., Lewis, D. L., and Bigbee, J., 1976b, Specific antibody to the major 47,000 MW protein fraction of bovine myelin-free axons, Fed. Proc. 35: 1766.Google Scholar
  116. Erlandsen, S. L., Parsons, J. A., and Taylor, T. D., 1974, Ultrastructural immunocytochemical localization of lysozyme in the paneth cells of man, J. Histochem. Cytochem. 22 (6): 401–413.PubMedGoogle Scholar
  117. Fagraeus, A., and Bergquist, N. R., 1975, The raison d’etre of standards in indirect immunofluorescence, Ann. N.Y. Acad. Sci. 254: 69–76.PubMedGoogle Scholar
  118. Falck, B., Hillarp, N. A., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10: 348–354.Google Scholar
  119. Faulk, W. P., and Hijmans, W., 1972, Recent developments in immunofluorescence, Prog. Allergy 16: 9–39.Google Scholar
  120. Fonnum, F., 1972, Application of microchemical analysis and subcellular fractionation techniques to the study of neurotransmitters in discrete areas of mammalian brain, Adv. Biochem. Psychopharmacol. 6: 75–88.Google Scholar
  121. Fukuyama, K., 1971, The immunopathology of lupus erythematosus: A comparison of immu- nohistochemical techniques. II. Peroxidase method, Adv. Biol. Skin 11: 295–304.Google Scholar
  122. Fuxe, K., Goldstein, M., Hökfelt, T., and Joh, T. H., 1970, Immunohistochemical localization of dopamine-ß-hydroxylase in the peripheral and central nervous system, Res. Commun. Chem. Pathol. Pharmacol. 1 (5): 627–636.PubMedGoogle Scholar
  123. Fuxe, K., Goldstein, M., Hökfelt, T., and Joh, T. H., 1971, Cellular localization of dopamineß-hydroxylase and phenylethanolamine-N-methyl transferase as revealed by immunohistochemistry, Prog. Brain Res. 34: 127–138.Google Scholar
  124. Ganong, W. F., 1975, Review of Medical Physiology, 7th ed., Lange, Los Altos, California, 587 pp.Google Scholar
  125. Garvin, A. J., Spicer, S. S., Parmley, R. T., and Munster, A. M., 1974, Immunohistochemical demonstration of IgG in Reed-Sternberg and other cells in Hodgkin’s disease, J. Exp. Med. 139 (5): 1077–1083.PubMedGoogle Scholar
  126. Gerber, M. A., Hadziyannis, S., Vissoulis, C., Schaffner, F., Paronetto, F., and Popper, H., 1974, Electron microscopy and immunoelectronmicroscopy of cytoplasmic hepatitis B antigen in hepatocytes, Am. J. Pathol. 75 (3): 489–502.PubMedGoogle Scholar
  127. Gilden, D. H., Wroblewska, Z., Eng, L. F., and Rorke, L. B., 1976, Identification of glial cells by immunofluorescence, J. Neurol. Sci. 29: 177–184.PubMedGoogle Scholar
  128. Goldman, M., 1971, Introductory review: Immunofluorescence in parasitology, Ann. N.Y. Acad. Sci. 177: 130–133.PubMedGoogle Scholar
  129. Goldstein, M., Fuxe, K., Hökfelt, T., and Joh, T. H., 1971, Immunohistochemical studies on phenylethanolamine-N-methyltransferase, dopa-decarboxylase and dopamine-ß hydroxylase, Experientia 27: 951–952.PubMedGoogle Scholar
  130. Goldstein, M., Fuxe, K., and Hökfelt, T., 1972, Characterization and tissue localization of catecholamine synthesizing enzymes, Pharmacol. Rev. 24 (2): 293–309.Google Scholar
  131. Gonatas, N. K., Stieber, A., Gonatas, J., Gambetti, P., Antoine, J. C., and Avrameas, S., 1974, Ultrastructural autoradiographic detection of intracellular immunoglobulins with iodinated Fab fragments of antibody. The combined use of ultrastructural autoradiography and peroxidase cytochemistry for the detection of two antigens (double labelling), J. Histochem. Cytochem. 22 (11): 999–1009.PubMedGoogle Scholar
  132. Gordienko, V. M., and Kosmach, P. I., 1973, Method of enzyme labeling in immunohistochemistry, Arkh. Patol. 35 (6): 69–74.Google Scholar
  133. Gould, S. F., and Bernstein, M. H., 1975, The localization of bovine sperm hyaluronidase, Differentiation 3 (1–3): 123–132.PubMedGoogle Scholar
  134. Green, J. H., Gray, S. B., Jr., and Harrell, W. K., 1976, Stability of fluorescent antibody conjugates stored under various conditions, J. Clin. Microbiol. 3 (1): 1–4.PubMedGoogle Scholar
  135. Haaijman, J. J., and Van Dalen, J. P., 1974, Quantification in immunofluorescence microscopy. A new standard for fluorescein and rhodamine emission measurement, J. Immunol. Methods 5 (4): 359–374.PubMedGoogle Scholar
  136. Haglid, K., Carlsson, C. A., and Stavrou, D., 1973, An immunological study of human brain tumors concerning the brain specific proteins S–100 and 14–3–2, Acta Neuropathol. (Berlin) 24: 187 – 196.Google Scholar
  137. Haglid, K., Hamberger, A., Hansson, H.-A., Hyden, H., Persson, L., and Rönnback, L., 1974, S-100 protein in synapses of the central nervous system, Nature 251: 532–534.PubMedGoogle Scholar
  138. Haglid, K. G., Hamberger, A., Hansson, H.-A., Hyden, H., Persson, L., and Rönnback, L., 1975, Immunohistochemical localization of S-100 protein in brain, Nature 258: 748–749.PubMedGoogle Scholar
  139. Hahon, N., Simpson, J., and Eckert, H. L., 1975, Assessment of virus infectivity by the immunofluorescent and immunoperoxidase techniques, J. Clin. Microbiol. 1 (3): 324–329.PubMedGoogle Scholar
  140. Hamanaka, N., Tanizawa, O., Hashimoto, T., Yoshinare, S., and Okudaira, Y., 1971, Electron microscopic study on the localization of human chorionic gonadotropin (HCG) in the chorionic tissue by enzyme-labeled antibody technique, J. Electron Microsc. (Tokyo) 20 (2): 128–130.Google Scholar
  141. Hansson, H.-A., Hyden, H., and Rönnback, L., 1975, Localization of S-100 protein in isolated nerve cells by immunoelectron microscopy, Brain Res. 93: 349–352.PubMedGoogle Scholar
  142. Hardy, P. H., Petrali, J. P., and Stemberger, L. A., 1970, Postembedding staining for electron microscopy by the unlabeled antibody enzyme method, J. Histochem. Cytochem. 18: 678.Google Scholar
  143. Hartman, B. K., 1973, Immunofluorescence of dopamine-B-hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system, J. Histochem. Cytochem. 21 (4): 312–332.PubMedGoogle Scholar
  144. Hartman, B. K., and Margolis, F. L., 1975, Immunofluorescence locali7ation of the olfactory marker protein, Brain Res. 96: 176–180.PubMedGoogle Scholar
  145. Hartman, B. K., and Udenfriend, S., 1970, Immunofluorescent localization of dopamine-Bhydroxylase in tissues, Mol. Pharmacol. 6: 85–94.Google Scholar
  146. Hartman, B. K., and Udenfriend, S., 1972, The application of immunological techniques to the study of enzymes regulating catecholamine synthesis and degradation, Pharmacol. Rev. 24 (2): 311–330.Google Scholar
  147. Hartman, B. K., Zide, D., and Udenfriend, S., 1972, The use of dopamine-B-hydroxylase as a marker for the central noradrenergic nervous system in rat brain, Proc. Natl. Acad. Sci. U.S.A. 69 (9): 2722–2726.PubMedGoogle Scholar
  148. Hartman, B. K., Moore, B. W., Shearers, W. T., Fujimoto, K., Kalmbach, S., and Agrawal, H. C., 1976, Biochemical differentiation of brain elements using nervous system specific proteins, Trans. Am. Soc. Neurochem. 7: 212.Google Scholar
  149. Hartman, B K, Cimino, M., Moore, B. W., and Agrawal, H. C., 1977, Immunohistochemical localization of brain specific proteins during development, Trans. Am. Soc. Neurochem. 8: 66.Google Scholar
  150. Hashimoto, I., Seki, S., Ogura, H., and Oda, T., 1973, Electron microscopic examination of group-specific antigens in Rous sarcoma cells (mouse ascites) and in Rous sarcoma virus, Gann 64 (1): 41–46.PubMedGoogle Scholar
  151. Hattori, T., Singh, V. K., McGeer, E. G., and McGeer, P. L., 1976, Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses, Brain Res. 102: 164–173.PubMedGoogle Scholar
  152. Herndon, R. M., Rauch, H. C., and Einstein, E. R., 1973, Immunoelectron microscopic locali7ation of the encephalitogenic basic protein in myelin, Immunol. Commun. 2 (2): 163–172.Google Scholar
  153. Herndon, R. M., Rena-Descalzi, L., Griffin, D. E., and Coyle, P. K., 1975, Age dependence of viral expression. Electron microscopic and immunoperoxidase studies of measles virus replication in mice, Lab. Invest. 33 (5): 544–553.Google Scholar
  154. Hellmann, J. E., Morse, S. A., and Collins, M. F., 1974, Comparison of techniques and immunoreagents used for indirect immunofluorescence and immunoperoxidase identification of enteroviruses, infect. Immun. 10 (1): 220–226.Google Scholar
  155. Hijams, W., and Schaeffer, M. (eds.), 1975, Fifth International Conference on Immunofluorescence and Related Staining Techniques, Ann. N.Y. Acad. Sci. 254.Google Scholar
  156. Hinton, D. M., Petrali, J. P., Meyer, H. G., and Stemberger, L. A., 1973, The unlabeled antibody enzyme method of immunohistochemistry. Molecular immunocytochemistry of antibodies on the erythrocyte surface, J. Histochem. Cytochem. 21 (11): 978–998.PubMedGoogle Scholar
  157. Hirano, A., Becker, N. H., and Zimmerman, H. M., 1969, Isolation of the periaxonal space of the central myelinated nerve fiber with regard to the diffusion of peroxidase, J. Histochem. Cytochem. 17: 512–516.PubMedGoogle Scholar
  158. Hirokawa, K., Esaki, Y., and Nariuchi, H., 1973, Role of germinal center in immune responseGoogle Scholar
  159. enzyme immunohistochemical study using horseradish peroxidase, Acta Pathol. Jap. 23(4):739–753.Google Scholar
  160. Hoffman, N. A., and Hartroft, P. M., 1971, Application of peroxidase-labeled antibodies to the localization of renin, J. Histochem. Cytochem. 19 (12): 811–813.PubMedGoogle Scholar
  161. Hökfelt, T., Biberfeld, P., and Goldstein, M., 1973a, Attempts to trace amine neurons with immunohistochemistry, J. Ultrastruct. Res. 44: 437.Google Scholar
  162. Hökfelt, T., Fuxe, K., and Goldstein, M., 1973b, Immunohistochemical studies on monoamine-containing cell systems, Brain Res. 62: 461–469.PubMedGoogle Scholar
  163. Hökfelt, T., Fuxe, K., Goldstein, M., and Joh, T. H., 1973c, Immunohistochemical localization of three catecholamine synthesizing enzymes: Aspects on methodology, Histochemie 33: 231–254.PubMedGoogle Scholar
  164. Hökfelt, T., Efendic, S., Johansson, O., Luft, R., and Arimura, A., 1974a, Immunohistochemical localization of somatostatin (growth hormone release-inhibiting factor) in the guinea pig brain, Brain Res. 80 (1): 165–169.PubMedGoogle Scholar
  165. Höldelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974b, Immunohistochemical evidence for the existence of adrenalin neurons in the rat brain, Brain Res. 66: 235–251.Google Scholar
  166. Hökfelt, T., Fuxe, K., and Goldstein, M., 1975a, Applications of immunohistochemistry to studies on monoamine cell systems with special reference to nervous tissue, Ann. N.Y. Acad. Sci. 254: 407–432.PubMedGoogle Scholar
  167. Hökfelt, T., Kellerth, J.-O., Nilsson, G., and Pernow, B., 1975b, Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons, Brain Res. 100: 235–252.PubMedGoogle Scholar
  168. Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G., and Arimura, A., 1976, Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat, Neuroscience 1: 131–136.PubMedGoogle Scholar
  169. Holubar, K., Wolff, K., Konrad, K., and Beutner, E. H., 1975, Ultrastructural localization of immunoglobulins in bullous pemphigoid skin. Employment of a new peroxidase—antiperoxidase multistep method, J. Invest. Dermatol. 64 (4): 220–227.PubMedGoogle Scholar
  170. Holubar, K., Stingle, G., and Albini, B., 1976, Letter: Practice and methodology of defined immunofluorescence technic. Concise instructions for the clinical laboratory or medical practice, respectively, Hautarzt 27 (2): 78–89.PubMedGoogle Scholar
  171. Honigsmann, H., Holobar, K., Wolff, K., and Beutner, E. H., 1975, Immunochemical localization of in vivo bound immunoglobulins in pemphigus vulgaris epidermis. Employment of a peroxidase—antiperoxidase multistep technique for light and electron microscopy, Arch. Dermatol. Res. 254 (2): 113–120.Google Scholar
  172. Hoshino, M., Maeno, K., and Iinuma, M., 1972, Ultrastructural localization of Newcastle disease virus surface antigen in infected HeLa cells as revealed by an enzyme-labelled antibody method, Experientia 28 (5): 611–613.PubMedGoogle Scholar
  173. Huang, S. N., 1975, Immunohistochemical demonstration of hepatitis B core and surface antigens in paraffin sections, Lab. Invest. 33 (1): 88–95.Google Scholar
  174. Huhn, D., Rodt, H., and Thierfelder, S., 1974a, Immunohistochemical investigations in T-lymphocytes of the mouse, Blut 28 (6): 415–429.PubMedGoogle Scholar
  175. Huhn, D., Rodt, H., and Thierfelder, S., 1974b, Immunohistochemical studies on mouse lymphocytes. Labeling with anti-T and anti-B-cell globulin, Blut 29 (5): 332–343.PubMedGoogle Scholar
  176. Huitric, E., 1973, An ultrastructural study of the localization of the carcinoembryonic antigen in adenocarcinomas of the human colon, Ann. Immunol. (Paris) 124 (4): 603–608.Google Scholar
  177. Humair, L. M., 1969, Immunohistologic studies of kidney diseases, J. Urol. Nephrol. (Paris) 75 (4): 282–284.Google Scholar
  178. Hunter, E. F., 1975, The fluorescent treponemal antibody-absorption (FTA-ABS) test for syphilis, CRC Crit. Rev. Clin. Lab. Sci. 5 (3): 315–330.Google Scholar
  179. Huston, J. S., and Bignami, A., 1976, Structural properties of GFA protein from bovine brain, Fed. Proc. 35: 1482.Google Scholar
  180. Hyden, H., and Lange, P. W., 1970, S-100 brain protein: Correlation with behavior, Proc. Natl. Acad. Sci. U.S.A. 67: 1959–1966.PubMedGoogle Scholar
  181. Hyden, H., and McEwen, B., 1966, A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. U.S.A. 55: 354–358.PubMedGoogle Scholar
  182. Hyden, H., and Rönnback, L., 1975, S-100 on isolated neurons and glial cells from rat, rabbit, and guinea pig during early postnatal development, Neurobiology 5: 291–302.PubMedGoogle Scholar
  183. Iakovleva, N. I., 1975, Quantitative method for the immunofluorescence reaction with the cerebrospinal fluid of patients with various forms of syphilis, Vestn. Dermatol. Venerol. 21 (2): 31–36.Google Scholar
  184. Ikonicoff, L. D., and Cedard, L., 1973, Localization of human chorionic gonadotropic and somatomammotropic hormones by the peroxidase immunohistoenzymologic method in villi and amniotic epithelium of human placentas (from 6 weeks to term), Am. J. Obstet. Gynecol, 116 (8): 1124–1132.PubMedGoogle Scholar
  185. Ishikawa, H., Smiley, J. D., and Ziff, M., 1975, Electron microscopic demonstration of immunoglobulin deposition in rheumatoid cartilage, Arthritis Rheum. 18 (6): 563–576.PubMedGoogle Scholar
  186. Israel, M., and Whittaker, V. P., 1965, Isolation of giant mossy fiber endings from the cerebella from different species, Experientia 21: 325–326.PubMedGoogle Scholar
  187. Jenis, E. H., Knieser, M. R., Rothouse, P. A., Jensen, G. E., and Scott, R. M., 1973, Subacute sclerosing panencephalitis. Immunoultrastructural localisation of measles-virus antigen, Arch. Pathol. 95 (2): 81–89.Google Scholar
  188. Joh, T. H., Shikimi, T., Pickel, V. M., and Rees, D. J., 1975, Brain tryptophan hydroxylase: Purification and production of antibodies to, and cellular and ultrastructural localization in, serotonergic neurons of rat midbrain, Proc. Natl. Acad. Sci. U.S.A. 72: 35–75.Google Scholar
  189. Johnson, A. B., and Blum, N. R., 1972, Peroxidase-labeled antigens in light and electron immunohistochemistry and the utilization in studies of experimental allergic encephalomyelitis, Abstr. Histochem. Soc. 7: 841.Google Scholar
  190. Johnson, A. B., Wisniewski, H. M., Raine, C. S., Eylar, E. H., and Terry, R. D., 1971, Specific binding of peroxidase-labeled myelin basic protein in allergic encephalomyelitis, Proc. Natl. Acad. Sci. U.S.A. 68 (11): 2694–2698.PubMedGoogle Scholar
  191. Johnson, L., and Sinex, F. M., 1974, On the relationship of brain filaments to microtubules, J. Neurochern. 22: 321–326.Google Scholar
  192. Joncas, J. H., Gilker, J. C., and Chagnon, A., 1974, Limitations of immunofluorescence tests in the diagnosis of infectious mononucleosis, Can. Med. Assoc. J. 110 (7): 793–794.PubMedGoogle Scholar
  193. Kalis, J. M., Burgess, A. C., and Balfour, H. H., Jr., 1975, Serological diagnosis of California (La Crosse) encephalitis by immunofluorescence, J. Clin. Microbiol. 1 (5): 448–450.PubMedGoogle Scholar
  194. Kan, K.-S. K., Chao, L.-P., and Eng, L. F., 1977, Immunohistochemical localization of choline acetyltransferase in CNS, Trans. Am. Soc. Neurochern. 8: 171.Google Scholar
  195. Kan, K.-S. K., Chao, L.-P., and Eng, L. F., 1978, Immunohistochemical localization of choline acetyltransferase in the rabbit cerebellum, Brain Res., 146: 221–229.PubMedGoogle Scholar
  196. Kawaoi, A., 1975, Application of immunofluorescence technique to the endocrine research (author’s transi.), Protein Nucleic Acid Enzyme (Tokyo) 20 (11): 1014–1020.Google Scholar
  197. Kawarai, Y., and Nakane, P. K., 1970, Localization of tissue antigens on the ultrathin sections with peroxidase-labeled antibody method, J. Histochem. Cytochem. 18 (3): 161–166.PubMedGoogle Scholar
  198. King, J. C., and Gerall, A. A., 1976, Localization of luteinizing hormone-releasing hormone, J. Histochem. Cytochem. 24 (7): 829–845.PubMedGoogle Scholar
  199. King, J. C., Parsons, J. A., Erlandsen, S. L., and Williams, T. H., 1974, Luteinizing hormone-releasing hormone (LH-RH) pathway of the rat hypothalamus revealed by the unlabeled antibody peroxidase—antiperoxidase method, Cell Tissue Res. 153 (2): 211–217.PubMedGoogle Scholar
  200. King, J. C., Gerall, A. A., Fishback, J. B., and Elkind, K. E., 1975, Growth hormone-release inhibiting hormone (GH-RIH) pathway of the rat hypothalamus revealed by the unlabeled antibody peroxidase—antiperoxidase method, Cell Tissue Res. 160 (4): 423–430.PubMedGoogle Scholar
  201. Klein, G., Gergely, L., and Goldstein, G., 1971, Two-color immunofluorescence studies on EBV-determined antigens, Clin. Exp. Immunol. 8: 593.Google Scholar
  202. Klockars, M., and Osserman, E. F., 1974, Localization of lysozyme in normal rat tissues by an immunoperoxidase method, J. Histochem. Cytochem. 22 (3): 139–146.PubMedGoogle Scholar
  203. Knight, V., Brasier, F., Greenberg, S. B., and Jones, D. B., 1975, Immunofluorescent diagnosis of acute viral infection, South. Med. J. 68 (6): 764–766.Google Scholar
  204. Kordon, C., Kerdelhu, E. B., Pattou, E., Jutisz, M., and Sawyer, C. H., 1974, Immunocytochemical localization of LH-RH in axons and nerve terminals of the rat median eminence, Proc. Soc. Exp. Biol. Med. 147 (1): 122–127.PubMedGoogle Scholar
  205. Kosek, J. C., Bennett, G. S., and Eng, L. F., 1974, Light and electron microscopic localization of antigen alpha by immunoenzymatic techniques, Trans. Am. Soc. Neurochem. 5: 167.Google Scholar
  206. Koshi, G., and Chacko, J., 1971, Rapid diagnosis of bacterial meningitis by the fluorescent-antibody (FA) technique, Indian J. Med. Res. 59 (7): 996–1001.Google Scholar
  207. Kraehenbuhl, J. P., and Jamieson, J. D., 1974, Localization of intracellular antigens by immunoelectron microscopy, Int. Rev. Exp. Pathol. 13 (0): 1–53.PubMedGoogle Scholar
  208. Kraehenbuhl, J. P., De Grandi, P. B., and Campiche, M. A., 1971, Ultrastructural localization of intracellular antigen using enzyme-labeled antibody fragments, J. Cell Biol. 50(2): 432445.Google Scholar
  209. Kraicer, J., Gosbee, J. L., and Bencosme, S. A., 1973, Pars intermedia and pars distalis: Two sites of ACTH production in the rat hypophysis, Neuroendocrinology 11 (3): 156–176.PubMedGoogle Scholar
  210. Kuhlmann, W. D., and Miller, H. R., 1971, A comparative study of the techniques for ultrastructural localization of antienzyme antibodies, J. Ultrastruct. Res. 35 (3): 370–385.PubMedGoogle Scholar
  211. Kuhlmann, W. D., Avrameas, S., and Temynck, T., 1974, A comparative study for ultrastructural localization of intracellular immunoglobulins using peroxidase conjugates, J. Immunol. Methods 5 (1): 33–48.PubMedGoogle Scholar
  212. Lai, C. H., Listgarten, M. A., and Rosan, B., 1975, Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase-labeled antibody: Localization of Streptococcus sanguis in intact dental plaque, Infect. Immun. 11 (1): 200–210.Google Scholar
  213. Lee, J. C., Frigon, R. P., and Timasheff, S. N., 1973, The chemical characterization of calf brain microtubule protein subunits, J. Biol. Chem. 248: 7253–7262.PubMedGoogle Scholar
  214. Lee, Y.-L., Eng, L. F., and Miles, L. E. M., 1976, Extraction and immunologic identity of “soluble” and “insoluble” GFA protein, Trans. Am. Soc. Neurochem. 7: 240.Google Scholar
  215. Lennon, V. R., Wittingham, J., Carnegie, P. R., McPherson, T. A., and Mackay, I. R., 1971, Detection of antibodies to the basic protein of human myelin by radioimmunoassay and immunofluorescence, J. Immunol. 107: 56–62.PubMedGoogle Scholar
  216. Levaditi, J. C., Atanasio, P., Gamet, A., and Guillon, J. C., 1971, Diagnosis of rabies. Problems arising from the immunofluorescence and immunoperoxidase methods, Arch. Inst. Pasteur Alger. 49: 75–83.Google Scholar
  217. Levaditi, J. C., Atanasio, P., Gamet, A., and Guillon, J. C., 1973, Diagnosis of rabies by the immunofluorescence and immunoperoxidase methods, Bull. Soc. Pathol. Exot. 66 (1): 1220.Google Scholar
  218. Liao, C. L., Herman, M. M., Bensch, K. G., and Eng, L. F., 1977, Glial fibrillary acidic protein content in rat C-6 glioma cells in vitro, Trans. Am. Soc. Neurochem. 8: 141.Google Scholar
  219. Liao, C. L., Eng, L. F., Herman, M. M., and Bensch, K. G., 1978, Localization and solubility of glial fibrillary acidic protein in rat C-6 glioma cells. An immunohistologic and immunoradiometric study, J. Neurochem., in press.Google Scholar
  220. Linthicum, D. S., and Sell, S., 1975, Topography of lymphocyte surface immunoglobulin using scanning immunoelectron microscopy, J. Ultrastruct. Res. 51 (1): 55–68.PubMedGoogle Scholar
  221. Liu, C., 1975, Rapid diagnosis of viral infections, South. Med. J. 68 (6): 679–680.Google Scholar
  222. Luders, G., and Adam, W., 1972, Current applications and results of immunofluorescence technic in dermatology, venereology, and andrology, Z. Haut. Geschlechtskr. 47 (10): 479–490.Google Scholar
  223. Luduena, R. F., and Woodward, D., 1973, Isolation and partial characterization of alpha and beta tubulin from outer doublets of sea urchin sperm and microtubules of chick embryo brain, Proc. Natl. Acad. Sci. U.S.A. 70: 3594–3598.PubMedGoogle Scholar
  224. Ludwin, S. K., Eng, L. F., Vandenberg, S. R., Kosek, J. C., and Herman, M. M., 1976a, Glial differentiation in an experimental mouse teratoma, J. Neuropathol. Exp. Neurol. 35: 102.Google Scholar
  225. Ludwin, S. K., Kosek, J. C., and Eng, L. F., 19766, The topographical distribution of S-100 and GFA proteins in the adult rat brain: An immunohistochemical study using horseradish peroxidase-labeled antibodies, J. Comp. Neurol. 165: 197–208.Google Scholar
  226. Mannik, M., and Downey, W., 1973, Studies on the conjugation of horseradish peroxidase to Fab fragments, J. Immunol. Methods 3 (3): 233–241.PubMedGoogle Scholar
  227. Marangos, P. J., Zomzely–Neurath, C., Luk, C. M., and York, C., 1975, Isolation and characterization of the nervous system–specific protein 14–3–2 from rat brain, J. Biol. Chem. 250: 1884 – 1891.PubMedGoogle Scholar
  228. Margolis, F. L., 1972, A brain protein unique to the olfactory bulb, Proc. Natl. Acad. Sci. U.S.A. 69 (5): 1221–1224.PubMedGoogle Scholar
  229. Marucci, A. A., and Dougherty, R. M., 1975, Use of the unlabeled antibody immunohistochemical technique for the detection of human antibody, J. Histochem. Cytochem. 23 (8): 618–623.PubMedGoogle Scholar
  230. Marucci, A. A., Di Stefano, H. S., and Dougherty, R. M., 1974, Preparation and use of soluble ferritin—antiferritin complexes as a specific marker for immunoelectron microscopy, J. Histochem. Cytochem. 22 (1): 35–39.PubMedGoogle Scholar
  231. Mason, D. Y., and Taylor, C. R., 1975, The distribution of muramidase (lysozyme) in human tissues, J. Clin. Pathol. 28 (2): 124–132.PubMedGoogle Scholar
  232. Mason, D. Y., Farrell, C., and Taylor, C. R., 1975, The detection of intracellular antigens in human leucocytes by immunoperoxidase staining, Br. J. Haematol. 31 (3): 361–370.PubMedGoogle Scholar
  233. Matus, A., and Mughal, S., 1975, Immunohistochemical localisation of S-100 protein in brain, Nature 258: 746–748.PubMedGoogle Scholar
  234. McCaman, R. E., and Hunt, J. M., 1965, Microdetermination of choline acetylase in nervous tissue, J. Neurochem. 12: 253–259.PubMedGoogle Scholar
  235. McCloskey, R. T., 1971, The value of immunofluorescence in the study of human renal disease, J. Exp. Med. 134(3):Suppl. 2425.Google Scholar
  236. McGeer, P. L., McGeer, E. G., Singh, V. K., and Chase, W. H., 1974, Choline acetyltransferase localization in the central nervous system by immunohistochemistry, Brain Res. 81: 373–379.PubMedGoogle Scholar
  237. McKinney, R. M., and Spillane, J. T., 1975, An approach to quantitation in rhodamine isothiocyanate labeling, Ann. N.Y. Acad. Sci. 254: 55–64.PubMedGoogle Scholar
  238. McKinney, R., Thacker, L., and Hebert, G. A., 1976, Conjugation methods in immunofluorescence, J. Dent. Res. 55: A38 - A44.PubMedGoogle Scholar
  239. McLaughlin, B. J., Wood, J. G., Saito, K., Barker, R., Vaughn, J. E., Roberts, E., and Wu, J.-Y., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.PubMedGoogle Scholar
  240. McLean, I. W., and Nakane, P. K., 1974, Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy, J. Histochem. Cytochem. 22 (12): 1077–1083.PubMedGoogle Scholar
  241. Michetti, F., Miani, N., De Renzis, G., Caniglia, A., and Correr, S., 1974, Nuclear localization of S-100 protein, J. Neurochem. 22: 239–244.PubMedGoogle Scholar
  242. Miller, H. R., 1972, Fixation and tissue preservation for antibody studies, Histochem. J. 4 (4): 305–320.PubMedGoogle Scholar
  243. Modesto, R. R., and Pesce, A. J., 1973, Use of toluene diisocyanate for the preparation of a peroxidase-labelled antibody conjugate. Quantitation of the amount of diisocyanate bound, Biochim. Biophys. Acta 295 (1): 283–295.Google Scholar
  244. Moore, B. W., 1965, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739–744.Google Scholar
  245. Moore, B. W., and Perez, V. J., 1968, Specific acidic proteins of the nervous system, in: Physiological and Biochemical Aspects of Nervous Integration ( F. D. Carlson, ed.), pp. 343–360, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  246. Morgan, C., Hsu, K. C., Rifkind, R. A., Knox, A. W., and Rose, H. M., 1961, The application of ferritin-conjugated antibody to electron microscopic studies of influenza virus in infected cells. II. The interior of the cell, J. Exp. Med. 114: 833.PubMedGoogle Scholar
  247. Mori, T., and Morimoto, K., 1973, Astroprotein, an astrocyte-specific cerebroprotein, in normal brain and glioma, Fourth International Meeting of the International Society for Neurochemistry, Tokyo, Abstract, p. 174.Google Scholar
  248. Mori, T., and Morimoto, K., 1975, Studies on the identity of astroprotein, Igaku-no-ayumi 92: 16–17.Google Scholar
  249. Mori, T., Morimoto, K., Ushio, Y., Hayakawa, T., and Mogami, H., 1975, Radioimmunoassay of astroprotein (an astrocyte-specific cerebroprotein) in cerebrospinal fluid from patients with glioma: A preliminary study, Neurol. Med. Chir. 15: 23–25.Google Scholar
  250. Moriarty, G. C., and Halmi, N. S., 1972, Electron microscopic study of the adrenocorticotropin-producing cell with the use of unlabeled antibody and the soluble peroxidaseantiperoxidase complex, J. Histochem. Cytochem. 20 (8): 590–603.PubMedGoogle Scholar
  251. Moriarty, G. C., Moriarty, C. M., and Sternberger, L. A., 1973, Ultrastructural immunocytochemistry with unlabeled antibodies and the peroxidase–antiperoxidase complex. A technique more sensitive than radioimmunoassay, J. Histochem. Cytochem. 21 (9): 825–833.PubMedGoogle Scholar
  252. Moroashi, I., Kinoshita, Y., and Kujima, K., 1971, Application of enzyme-labeled antibody technic to the renal tissue—Observation of the light microscopy level and comparison with findings in fluorescent antibody technic, Jap. J. Allergy 20 (5): 353–360.Google Scholar
  253. Nagatsu, I., and Kondo, Y., 1974, Immunoelectronmicroscopic localization of phenylethanolamine-N-methyltransferase in the bovine adrenal medulla, Histochemie 42 (4): 351–358.Google Scholar
  254. Nairn, R. C., and Morrack, J. R., 1969, Fluorescent Protein Tracing, Williams Wilkins, Baltimore.Google Scholar
  255. Nairn, R. C., Rolland, J. M., Ward, H. A., Matthews, N., and Chalmers, P. J., 1975, Immunofluorescence in cancer investigation and research, Ann. N.Y. Acad. Sci. 254: 523527.Google Scholar
  256. Nakane, P. K., 1968, Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: A study on pituitary glands of the rat, J. Histochem. Cytochem. 16 (9): 557–560.PubMedGoogle Scholar
  257. Nakane, P. K., 1970, Classifications of anterior pituitary cell types with immunoenzyme histochemistry, J. Histochem. Cytochem. 18 (1): 9–20.PubMedGoogle Scholar
  258. Nakane, P. K., 1971, Application of peroxidase-labelled antibodies to the intracellular localization of hormones, Acta Endocrinol. (Copenhagen), Suppl. 153: 190–204.Google Scholar
  259. Nakane, P. K., 1973, Electron Microscopy and Cytocheinistiy (E. Wisse, W. T. Daems, 1. Molenaar, and P. van Duijn, eds.), pp. 129–143, North-Holland, Amsterdam.Google Scholar
  260. Nakane, P. K., 1975, Localization of hormones with the peroxidase-labeled antibody method, Methods Enzymol. 37 Pt.B: 133–144.Google Scholar
  261. Nakane, P. K., and Kawaoi, A., 1974, Peroxidase-labeled antibody. A new method of conjugation, J. Histochem. Cytochem. 22 (12): 1084–1091.PubMedGoogle Scholar
  262. Nakane, P. K., and Pierce, G. B., Jr., 1966, Enzyme-labeled antibodies: Preparation and application for localization of antigens, J. Histochem. Cytochem. 14: 929.PubMedGoogle Scholar
  263. Nakane, P. K., and Pierce, G. B., Jr., 1967, Enzyme-labeled antibodies for the light and electron microscopic localisation of tissue antigens, J. Cell Biol. 33 (2): 307–318.PubMedGoogle Scholar
  264. Nayak, N. C., and Sachdeva, R., 1975, Localization of hepatitis B surface antigen in conventional paraffin sections of the liver. Comparison of immunofluorescence, immunoperoxidase, and orcein staining methods with regard to their specificity and reliability as antigen marker, Am. J. Pathol. 81 (3): 479–492.PubMedGoogle Scholar
  265. Osada, H., 1976, Further purification and immunohistological localization of human placental lactogen in syncytiotrophoblasts (author’s transl.), Folio Endocrinol. Jpn. 52 (1): 3653.Google Scholar
  266. Parsons, J. A., and Erlandsen, S. L., 1974, Ultrastructural immunocytochemical localization of prolactin in rat anterior pituitary by use of the unlabeled antibody enzyme method, J. Histochem. Cytochem. 22 (5): 340–351.PubMedGoogle Scholar
  267. Parsons, J. A., Erlandsen, S. L., and Debault, L. E., 1974, Identification of prolactin cells in a mammosomatotropic tumor by the unlabeled-antibody peroxidase—antiperoxidase method, Proc. Soc. Exp. Biol. Med. 145 (2): 524–527.PubMedGoogle Scholar
  268. Parsons, J. A., Erlandsen, S. L., Hegre, O. D., McEvoy, R. C., and Elde, R. P., 1976, Central and peripheral localization of somatostatin immunoenzyme immunocytochemical studies, J. Histochem. Cytochem. 24 (7): 872–882.PubMedGoogle Scholar
  269. Patramanis, I., Marketakis, J., Kaldamanis, E., Tzamouranis, N., and Pavlatos, M., 1973, The application of the immunoenzyme method in microbiology, J. Immunol. Methods 2 (3): 251–260.PubMedGoogle Scholar
  270. Pearse, A. F. E., 1968, Histochemistry, Little, Brown, Boston, Mass.Google Scholar
  271. Pelletier, G., Leclerc, R., Labrie, F., and Puviani, R., 1974a, Electron microscopic immunohistochemical localization of neurophysin in the rat hypothalamus and median eminence, Mol. Cell. Endocrinol. 1: 157–166.Google Scholar
  272. Pelletier, G., Labrie, F., Arimura, A., and Schally, A. V., 1974b, Electron microscopic immunohistochemical localization of growth hormone-release inhibitor hormone (somatostatin) in the rat median eminence, Am. J. Anat. 140: 445–450.PubMedGoogle Scholar
  273. Pelletier, G., Labrie, F., Puviani, R., Arimura, A., and Schally, A. V., 1974c, Immunohistochemical localization of luteinizing hormone-release hormone in the rat median eminence, Endocrinology 95: 314–317.PubMedGoogle Scholar
  274. Pelletier, G., Leclerc, R., Dube, D., Labrie, F., Puviani, R., Arimura, A., and Schally, A. V., 1975, Localization of growth hormone release-inhibiting hormone (somatostatin) in the rat brain, Am. J. Anat. 142 (3): 397–401.PubMedGoogle Scholar
  275. Pelletier, G., Leclerc, R., and Dube, D., 1976, Immunohistochemical localization of hypothalamic hormones, J. Histochem. Cytochem. 24 (7): 864–871.PubMedGoogle Scholar
  276. Perez, V. J., Olney, J. W., Cicero, T. J., Moore, B. W., and Bahn, B. A., 1970, Wallerian degeneration in rabbit optic nerve: Cellular localization in the central nervous system of the S–100 and 14–3–2 proteins, J. Neurochem. 17: 511 – 519.PubMedGoogle Scholar
  277. Pernis, B., Forni, L., and Amant, L., 1970, Immunoglobulin spots on the surface of rabbit lymphocytes, J. Exp. Med. 132: 1001.PubMedGoogle Scholar
  278. Peterson, J. W., Lospalloto, J. J., and Finkelstein, R. A., 1972, Localization of cholera toxin in vivo, J. Infect. Dis. 126 (6): 617–628.PubMedGoogle Scholar
  279. Petrali, J. P., Hinton, D. M., Moriarty, G. C., and Stemberger, L. A., 1974, The unlabeled antibody enzyme method of immunocytochemistry. Quantitative comparison of sensitivities with and without peroxidase—antiperoxidase complex, J. Histochem. Cytochem. 22 (8): 782–801.PubMedGoogle Scholar
  280. Petrusz, P., Dimeo, P., Ordronneau, P., Weaver, C., and Keefer, D. A., 1975, Improved immunoglobulin—enzyme bridge method for light microscopic demonstration of hormone-containing cells of the rat adenohypophysis, Hisp. Med. 46 (1): 9–26.Google Scholar
  281. Phifer, R. F., Midgley, A. R., and Spicer, S. S., 1973, Immunohistologic and histologic evidence that follicle-stimulating hormone and leuteinizing hormone are present in the same cell type in the human pars distalis, J. Clin. Endocrinol. Metab. 36 (1): 125–141.PubMedGoogle Scholar
  282. Pickel, V. M., Joh, T. H., and Reis, D. J., 1975a, Ultrastructural localization of tyrosine hydroxylase in noradrenergic neurons of brain, Proc. Natl. Acad. Sci. U.S.A. 72 (21): 659–663.PubMedGoogle Scholar
  283. Pickel, V. M., Joh, T. H., Field, P. M., Becker, C. G., and Reis, D. J., 1975b, Cellular localization of tyrosine hydroxylase by immunohistochemistry, J. Histochem. Cytochem. 23 (1): 1–12.PubMedGoogle Scholar
  284. Pickel, V. M., Joh, T. H., and Reis, D. J., 1976a, Monoamine-synthesizing enzymes in central dopaminergic noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron microscopy, J. Histochem. Cytochem. 24 (7): 792–806.PubMedGoogle Scholar
  285. Pickel, V. M., Reis, D. J., Marangos, P. J., and Zomzely-Neurath, C., 1976b, Immunocytochemical localization of nervous system specific protein (NSP-R) in rat brain, Brain Res. 105: 184–187.PubMedGoogle Scholar
  286. Pickel, V. M., Reis, D. J., and Leeman, S. E., 1977, Ultrastructural localization of substance P in neurons of rat spinal cord, Brain Res. 122: 534–540.PubMedGoogle Scholar
  287. Primus, F. J., Wang, R. H., Sharkey, R. M., and Goldenberg, D. M., 1975, Detection of carcinoembryonic antigen in tissue section by immunoperoxidase, Immunol. Methods 8 (3): 267–275.Google Scholar
  288. Rapport, M. M., Laer, H., Mahadik, S., and Graf, L., 1974, Immunohistological appearance of the S-100 protein in developing rat brain, Trans. Am. Soc. Neurochem. 5: 58.Google Scholar
  289. Rauch, H. C., and Raffel, S., 1964, Immunofluorescent localization of encephalitogenic proteinGoogle Scholar
  290. in myelin, J. Immunol. 92: 452–455.Google Scholar
  291. Reis, D. J., Pickel, V. M., Shikimí, T., and Joh, T. H., 1975, Rat brain tryptophan hydroxylase: Immunohitochemical localization by light and electron microscopy, Trans. Am. Soc. Neurochem. 6 (1): 155.Google Scholar
  292. Riggs, J. L., Loh, P. C., and Eveland, W. C., 1960, A simple fractionation method for preparation of fluorescein-labelled gamma globulin, Proc. Soc. Exp. Biol. 105: 655–658.PubMedGoogle Scholar
  293. Robinson, G., and Dawson, I., 1975, Immunochemical studies of the endocrine cells of the gastrointestinal tract. II. An immunoperoxidase technique for the localization of secretincontaining cells in human duodenum, J. Clin. Pathol. 28 (8): 631–635.PubMedGoogle Scholar
  294. Rojas-Espinosa, O., Dannenberg, J., Sternberger, L. A., and Tsuda, T., 1974, The role of cathepsin D in the pathogenesis of tuberculosis, Am. J. Pathol. 74 (1): 1–12.PubMedGoogle Scholar
  295. Rombert, P. C., 1974, Contribution of immunofluorescence to the diagnosis of helminthiasis, An. Inst. Hig. Med. Trop. (Lisb.) 2 (1–4): 201–310.Google Scholar
  296. Rothbarth, P. H., Olthof, J., and Mul, N. A. J., 1975, Experience with a new fluorochrome, in: “Fifth International Conference on Immunofluorescence and Related Staining Techniques,” Ann. N.Y. Acad. Sci. 254: 65.Google Scholar
  297. Ruitenberg, E. J., Ljungstr, O. M., Steerenberg, P. A., and Buys, J., 1975, Application of immunofluorescence and immunoenzyme methods in the serodiagnosis of trichinella spiralis infection, Ann. N.Y. Acad. Sci. 254: 296–303.PubMedGoogle Scholar
  298. Saito, K., Barber, R., Wu, J.-Y., Vaughn, J. E., and Roberts, E., 1974a, Immunohistochemical localization of glutamic acid decarboxylase in rat central nervous system at light microscopic level, Trans. Am. Soc. Neurochem. 5 (1): 113.Google Scholar
  299. Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., and Vaughn, J. E., 1974b, Immunohistochemical localization of glutamate decarboxylase in rat cerebellum, Proc. Natl. Acad. Sci. U.S.A. 71 (2): 269–273.PubMedGoogle Scholar
  300. Saunders, G. C., and Wilder, M. E., 1974, Disease screening with enzyme-labeled antibodies, J. Infect. Dis. 129 (3): 362–364.PubMedGoogle Scholar
  301. Schenk, E. A., and Churukian, C. J., 1974, Immunofluorescence counterstains, J. Histochem. Cytochem. 22 (10): 962–966.PubMedGoogle Scholar
  302. Shinski, G. E., and Rusina, L. I., 1975, Value of the immunofluorescence reaction in the diagnosis of syphilis by study of the cerebrospinal fluid, Lab. Delo 11: 694–695.Google Scholar
  303. Short, J. A., and Walker, P. D., 1975, The location of bacterial antigens on sections of Bacillus cereus by use of the soluble peroxidase—antiperoxidase complex and unlabelled antibody, J. Gen. Microbial. 89 (1): 93–101.Google Scholar
  304. Siggins, G. R., Battenberg, E. F., Hoffer, B. J., and Bloom, F. E., 1973, Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: An immunocytochemical study, Science 177: 585–588.Google Scholar
  305. Silverman, A. J., 1976, Ultrastructural studies on the localisation of neurohypophyseal hormones and their carrier proteins, J. Histochem. Cytochem. 24 (7): 816–827.PubMedGoogle Scholar
  306. Silverman, A. J., and Zimmerman, E. A., 1975, Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig, Cell Tissue Res. 159 (3): 291–301.PubMedGoogle Scholar
  307. Silverman, A. J., Koyolowski, G. P., and Zimmerman, E. A., 1975, Ultrastructural immunocytochemical localisation of neurophysin (NP) and vasopressin (VP) in the neural lobe and median eminence of guinea pig, Anat. Rec. 181: 479–480.Google Scholar
  308. Singer, S. J., 1975, Present capabilities and future prospects of high resolution immunoelectron microscopy, Immunochemistry 12 (6–7): 615–616.PubMedGoogle Scholar
  309. Smit, J. W., Meijer, C. J., Decary, F., and Feltkamp-Vroom, T. M., 1974, Paraformaldehyde fixation in immunofluorescence and immunoelectron microscopy. Preservation of tissue and cell surface membrane antigens, J. Immunol. Methods 6 (1–2): 93–98.PubMedGoogle Scholar
  310. Springer, E. L., Riggs, J. L., and Hackett, A. J., 1974, Viral identification by scanning electron microscopy of preparations stained with fluorescein-labelled antibody, J. Virol. 14 (6): 1623–1626.PubMedGoogle Scholar
  311. Stauffer, L. R., Hill, E. D., Holland, J. W., and Altemeier, W. A., 1975, Indirect fluorescent antibody procedure for the rapid detection and identification of bacteroides and fusobacterium in clinical specimens, J. Clin. Microbiol. 2 (4): 337–344.PubMedGoogle Scholar
  312. Stein, H., and Drescher, S., 1973, Demonstration of surface 1gM in blood lymphocytes using the immunoperoxidase method, Blut 26 (1): 35–42.PubMedGoogle Scholar
  313. Sternberger, L. A., 1969, Some new developments in immunocytochemistry, Mikroscopie 25: 346–361.Google Scholar
  314. Sternberger, L. A., 1974, Immunocytochemistry, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  315. Sternberger, L. A., and Petrali, J. P., 1975, Quantitative immunocytochemistry of pituitary receptors for leutenizing hormone-releasing hormone, Cell Tissue Res. 162 (2): 141–176.PubMedGoogle Scholar
  316. Sternberger, L. A., Hanker, J. S., Donati, E. J., Petrali, J. P., and Seligman, A. M., 1966, Method for enchancement of electron microscopic visualization of embedded antigen by bridging osmium to uranium antibody with thiocarbohydrazide, J. Histochem. Cytochem. 14 (10): 711–718.PubMedGoogle Scholar
  317. Sternberger, L. A., Hardy, P. H., Jr., Cuculis, J. J., and Meyer, H. G., 1970, The unlabelled antibody enzyme method of immunohitochemistry: Preparation and properties of soluble antigen—antibody complex (horseradish peroxidase—antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem. 18 (5): 315–333.PubMedGoogle Scholar
  318. Sternberger, N., Tabira, T., Kies, M. W., and Webster, H., 1977, Immunocytochemical staining of basic protein in CNS myelin, Trans. Am. Soc. Neurochem. 8 (2): 157 (Abstract 180).Google Scholar
  319. Storch, H., 1972, Immune enzyme technic, Z. Gesamte Inn. Med. 27 (14): 589–594.Google Scholar
  320. Straus, W., 1972, Improved staining for peroxidase with benzidine and improved double staining immunoperoxidase procedures, J. Histochem. Cytochem. 20 (4): 272–278.PubMedGoogle Scholar
  321. Striker, G. E., Donati, E. J., Petrali, J. P., and Sternberger, L. A., 1966, Post-embedding staining for electron microscopy with ferritin—antibody conjugates, Exp. Mol. Pathol. Suppl. 3: 52–58.Google Scholar
  322. Sviridov, S. M., Dorochkin, L. I., Ivano, V. N., Maletskaya, E. I., and Bakhtina, T. K., 1972, Immunohistochemical studies of S-100 protein during postnatal ontogenesis of the brain of two strains of rats, J. Neurochem. 19: 713–718.PubMedGoogle Scholar
  323. Swaab, D. F., Pool, C. W., and Nijveldt, F., 1975, Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system, J. Neural Transm. 36 (34): 195–215.PubMedGoogle Scholar
  324. Swanson, L. W., and Hartman, B. K., 1975, The central adrenergenic system; an immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker, J. Comp. Neurol. 163: 467.PubMedGoogle Scholar
  325. Tabuchi, K., and Kirsch, W. M., 1975, Immunocytochemical localisation of S-100 in neurons and glia of hamster cerebellum, Brain Res. 92: 175–180.PubMedGoogle Scholar
  326. Tabuchi, K., Lehman, J. M., and Kirsch, W. M., 1976, Immunocytochemical localization of simian virus 40 T antigen with peroxidase-labelled antibody fragments, J. Virol. 17 (2): 668–671.PubMedGoogle Scholar
  327. Taylor, C. E., 1975, Quantitative immunofluorescence studies: A contribution towards standardization, in: Current Studies on Standardization Problems in Clinical Pathology, Haematology, and Radiotherapy in Hodgkin’s Disease ( G. Astaldi, ed.), pp. 73–77, Excerpta Medica, Amsterdam.Google Scholar
  328. Taylor, C. E., and Heimer, G. V., 1974, Measuring immunofluorescence emission in terms of standard international physical units, J. Biol. Stand. 2 (1): 11–20.PubMedGoogle Scholar
  329. Taylor, C. R., 1974, The nature of Reed-Stemberg cells and other malignant reticulum cells, Lancet 2 (7884): 802–807.PubMedGoogle Scholar
  330. Taylor, C. R., and Burns, J., 1974, The demonstration of plasma cells and other immunoglobulin-containing cells in formalin-fixed, paraffin-embedded tissues using peroxidase-labelled antibody, J. Clin. Pathol. 27 (1): 14–20.PubMedGoogle Scholar
  331. Taylor, C. R., and Mason, D. Y., 1974, The immunohistological detection of intracellular immunoglobulin in formalin-paraffin sections from multiple myeloma and related conditions using the immunoperoxidase technique, Clin. Exp. Immunol. 18 (3): 417–429.Google Scholar
  332. Thomason, B. M., and Herbert, G. A., 1974, Evaluation of commercial conjugates for fluorescent antibody detection of salmonellae, Appl. Microbiol. 27 (5): 862–869.Google Scholar
  333. Tixier-Vidal, A., Tougard, C., Kerdelhue, B., and Jutisz, M., 1975, Light and electron microscopic studies on immunocytochemical localization of gonadotropic hormones in the rat pituitary gland with antisera against bovine FSH, LH, LH alpha, and LH beta, Ann. N.Y. Acad. Sci. 254: 433–461.PubMedGoogle Scholar
  334. Torack, R. M., Stranahan, P., and Hartman, B. K., 1973, The role of norepinephrine in the function of the area postrema. I. Immunofluorescent localization of dopamine-B-hydroxylase and electron microscopy, Brain Res. 61: 235–252.PubMedGoogle Scholar
  335. Ueki, H., Wolff, H. H., and Braun-Falco, 0., 1974, Cutaneous localization of human gamma-globulins in lupus erythematosus. An electron-microscopical study using the peroxidaselabeled antibody technique, Arch. Dermatol. Forsch. 248 (4): 297–314.Google Scholar
  336. Uyeda, C. T., Eng, L. F., and Bignami, A., 1972, Immunological study of the glial fibrillary acidic protein, Brain Res. 37: 81–89.PubMedGoogle Scholar
  337. Vandenberg, S. R., Ludwin, S. K., Herman, M. M., and Bignami, A., 1976, In vitro astrocytic differentiation from embryoid bodies of an experimental mouse testicular teratoma, Am. J. Pathol. 83: 197–212.PubMedGoogle Scholar
  338. Vandesande, F., Dierickx, K., and Demey, J., 1975, Identification of the vasopressin-neurophysin II and the oxytocin-neurophysin I producing neurons in the bovine hypothalamus, Cell Tissue Res. 156 (2): 189–200.PubMedGoogle Scholar
  339. Vinogradov, V. I. A., 1974, Method of controlled conjugation of fluorescein isothiocyanate with anti-influenza horse gamma globulin, Lab. Delo 7 (9): 403–405.Google Scholar
  340. Vladutio, G. D., Bigazzi, P E, and Rose, N. R., 1973, Localization of a primate-specific esterase using immunofluorescence and immunoperoxidase techniques, J. Histochem. Cytochem. 21 (6): 559–567.Google Scholar
  341. Wagner, B., and Wagner, M., 1972, Immunoelectron microscopic localization of cell wall antigens in streptococci. I. Comparative demonstration of M protein of Streptococcus pyogenes with ferritin-, peroxidase-, and ferrocin-labelled antibodies, Zentralbi. Bakterioi. [Orig. A] 222 (4): 468–483.Google Scholar
  342. Wajgt, A., 1971, Immunofluorescence: Its use in neurological diagnostics and neuropathological studies, Neurol. Neurochir. Pol. 5 (6): 881–887.Google Scholar
  343. Watkins, W. B., 1975a, Presence of neurophysin and vasopressin in the hypothalamic magnocellular nuclei of rats homozygous and heterozygous for diabetes insipidus (Brattleboro strain) as revealed by immunoperoxidase history, Cell Tissue Res. 157 (1): 101–113.PubMedGoogle Scholar
  344. Watkins, W. B., 1975, Immunocytochemical identification of neurophysin-secreting neurons in the hypothalamo-neurohypophyseal system of some non-mammalian vertebrates, Cell Tissue Res. 162(4):511–521.PubMedGoogle Scholar
  345. Watkins, W. B., 1975c, Time of fixation and the localization of Gomori-positive and neurophy- sin-containing structures in the rat hypothalamus, Cell Tissue Res. 162 (4): 523–530.PubMedGoogle Scholar
  346. Watson, S. J., and Barchas, J. D., 1977, Catecholamine histofluorescence using cryostat and glyoxylic acid on unperfused frozen brain: A detailed description of the technique, Histochem. J. 9 (2): 183–195.Google Scholar
  347. Whitaker, J. N., 1976, The effects of glutaraldehyde treatment and horseradish peroxidase conjugation on the immunoreactivity of bovine myelin encephalitogenic protein, J. Histochem. Cytochem. 24 (5): 652–655.PubMedGoogle Scholar
  348. Wicker, R., 1971, Comparison of immunofluorescent and immunoenzymatic techniques applied to the study of viral antigens, Ann. N.Y. Acad. Sci. 177: 490–500.PubMedGoogle Scholar
  349. Wilkinson, A. E., 1973, Fluorescent treponemal antibody tests on cerebrospinal fluid, Br. J. Vener. Dis. 49 (4): 346–349.PubMedGoogle Scholar
  350. Wilson, C. B., 1975, Immunofluorescence in differentiating the immunopathogenesis of renal disease, Ariz. Med. 32 (4): 283–289.Google Scholar
  351. Wilson, C. E., Donati, E. J., Petrali, J. P., Voicich, J. V., and Sternberger, L. A., 1966, Cytochemical timing of ultrastructural events: Formation of bacterial flagella studied by immunouranium technique, Exp. Mol. Pathol. Suppl. 3: 44–51.Google Scholar
  352. Wolff-Schreiner, E., and Wolff, K., 1973, Immunoglobulins at the dermal—epidermal junction in lupus erythematosus: Ultrastructural investigations, Arch. Dermatol. Forsch. 246 (3): 193–210.Google Scholar
  353. Wood, J. G., 1976, Recent results in the electron microscopic localization of enzymes associated with the GABA system, Trans. Am. Soc. Neurochem. 7 (1): 210 (Abstract 273).Google Scholar
  354. Wood, J. G., McLaughlin, B. J., Saito, K., Roberts, E., and Wu, J.-Y., 1974, Fine structural localization of glutamic acid decarboxylase in rodent cerebellum and spinal cord, Trans. Am. Soc. Neurochem. 5 (1): 114.Google Scholar
  355. Yen, S.-H., Dahl, D., Schachner, M., and Shelanski, M. L., 1976, Biochemistry of the filaments of brain, Proc. Natl. Acad. Sci. U.S.A. 73: 529–533.PubMedGoogle Scholar
  356. Yokota, S., and Nagata, T., 1974, Ultrastructural localization of catalase on ultracryotomic sections of mouse liver by ferritin-conjugated antibody technique, Histochemistry 40 (2): 165–174.PubMedGoogle Scholar
  357. Zeitoun, P., Duclert, N., Liautaud, F., Potet, F., and Zylberberg, L., 1972, Intracellular localization of pepsinogen in guinea pig pyloric mucosa by immunohistochemistry: Histochemical and electron microscopic correlated structures, Lab. Invest. 27 (2): 218–225.Google Scholar
  358. Zimmerman, E. A., and Antunes, J. L., 1976, Organization of the hypothalamic-pituitary system: Current concepts from immunohistochemical studies, J. Histochem. Cytochem. 24 (7): 807–815.PubMedGoogle Scholar
  359. Zimmerman, E. A., Hsu, K. C., Robinson, A. G., Carmel, P. W., Frantz, A. G., and Tannenbaum, M., 1973, Studies of neurophysin-secreting neurons with immunoperoxidase techniques employing antibody to bovine neurophysin. I. Light microscopic findings in monkey and bovine tissues, Endocrinology 92 (3): 931–940.PubMedGoogle Scholar
  360. Zomzely-Neurath, C., Marangos, P., and Keller, A., 1977, Nervous system-specific proteins and cerebral function, Trans. Am. Soc. Neurochem. 8: 65.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Lawrence F. Eng
    • 1
  • John W. Bigbee
    • 2
  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA
  2. 2.Veterans Administration HospitalPalo AltoUSA

Personalised recommendations