Skip to main content

Phenylketonuria: Biochemical Mechanisms

  • Chapter
Advances in Neurochemistry

Part of the book series: Advances in Neurochemistry ((CORG,volume 2))

Abstract

As implied by the title, this review of phenylketonuria (PKU) will be neither comprehensive nor encyclopedic. Rather, it will be limited to those aspects of the disease where sufficient biochemical knowledge is available to support meaningful discussion—admittedly, often speculative—about underlying mechanisms. Recent comprehensive reviews are available (Hsia, 1970; Knox, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abita, J.-P., Dorche, C., and Kaufman, S., 1974, Further studies on the nature of phenylalanine hydroxylation in brain, Pediatr. Res. 8:714–717.

    Article  PubMed  CAS  Google Scholar 

  • Adelman, L. S., Mann, J. D., Caley, D. W., and Bass, N. H., 1973, Neuronal lesions in the cerebellum following the administration of excess phenylalanine to neonatal rats, J. Neuropathol. Exp. Neurol. XXXII:380–393.

    Article  Google Scholar 

  • Adlard, B. P. F., deSouza, S. W., and Moon, S., 1973, The effect of age, growth retardation and asphyxia on ascorbic acid concentrations in developing brain, J. Neurochem. 21:872–881.

    Article  Google Scholar 

  • Aeberhard, E., and Menkes, J. H., 1968, Biosynthesis of long chain fatty acids by subcellular particles of mature brain, J. Biol. Chem. 243:3834–3840.

    PubMed  CAS  Google Scholar 

  • Agrawal, H. C., Bone, A. H., and Davison, A. N., 1970, Effect of phenylalanine on protein synthesis in the developing rat brain, Biochem. J. 117:325–331.

    PubMed  CAS  Google Scholar 

  • Allen, R. J., and Wilson, J. L., 1964, Urinary phenylpyruvic acid in phenylketonuria, J. Amer. Med. Assoc. 188:720–724.

    Article  CAS  Google Scholar 

  • Allen, R. J., Heffelfinger, J. C., Masotti, R. E., and Tsau, M. U., 1964, Phenylalanine hydroxylase activity in newborn infants, Pediatrics 33:512–525.

    PubMed  CAS  Google Scholar 

  • Alvord, E. C., Stevenson, L. D., Vogel, F. S., and Engle, R. L., 1950, Neuropathology findings in phenylpyruvic oligophrenia (phenylketonuria), J. Neuropathol. Exp. Neurol. 9:298–310.

    Article  PubMed  Google Scholar 

  • Andersen, A. E., and Guroff, G., 1972, Enduring behavioral changes in rats with experimental phenylketonuria, Proc. Natl. Acad. Sci. U.S.A. 69:863–867.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, A. E., Rowe, V., and Guroff, G., 1974, The enduring behavioral changes in rats with experimental phenylketonuria, Proc. Natl. Acad. Sci. U.S.A. 71:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, V. E., Siegel, F. S., Fisch, R. O., and Wirt, R. D., 1969, Responses of Phenylketonurie children on a continuous performance test, J. Abnorm. Psychol. 74: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, T. M., McKeran, R. O., Watts, R. W. E., McPherson, K., and Lax, R., 1973, Relationship between the granulocyte phenylalanine content and the degree of disability in phenylketonuria, Q. J. Med. New Ser. XLII:805–817.

    Google Scholar 

  • Antonas, K. N., and Coulson, W. F., 1975, Brain uptake and protein incorporation of amino acids studied in rats subjected to prolonged hyperphenylalaninemia, J. Neurochem. 25:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Appel, S. H., 1966, Inhibition of brain protein synthesis: an approach to the biochemical basis of neurological dysfunction in the amino-acidurias, Trans. N.Y. Acad. Sci. 29:63–70.

    Article  PubMed  CAS  Google Scholar 

  • Arinze, I. J., and Patel, M. S., 1973, Inhibition by phenylpyruvate of gluconeogenesis in the isolated perfused rat liver, Biochemistry 12:4473–4479.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, M. D., 1963, Biochemistry, in: Phenylketonuria (F. L. Lyman, ed.), pp. 62–95, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Armstrong, M. D., and Binkley, E. L., Jr., 1956, Studies on Phenylketonuria. V. Observations on a newborn infant with phenylketonuria, Proc. Soc, Exp. Biol. Med. 93:418–420.

    CAS  Google Scholar 

  • Armstrong, M. D., and Low, N. L., 1957, Phenylketonuria, VIII. Relation between age, serum phenylalanine level, and phenylpyruvic acid exretion, Proc. Soc. Exp. Biol. Med. 94:142–146.

    PubMed  CAS  Google Scholar 

  • Armstrong, M. D., and Robinson, K. S., 1954, On the excretion of indole derivatives in phenylketonuria, Arch. Biochem. 52:287–288.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, M. D., and Tyler, F. H., 1955, Studies on phenylketonuria. I. Restricted phenylalanine intake in phenylketonuria, J. Clin. Invest. 34:565–580.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, M. D., Shaw, K. N. F., and Robinson, K. S., 1955, Studies on phenylketonuria. II. The excretion of o-hydroxyphenylacetic acid in phenylketonuria, J. Biol. Chem. 213:797–804.

    PubMed  CAS  Google Scholar 

  • Auerbach, V. H., and Waisman, H., 1959, Tryptophan peroxidase-oxidase, histidase, and transaminase activity in the liver of the developing rat, J. Biol. Chem. 234:304–306.

    PubMed  CAS  Google Scholar 

  • Auerbach, V. H., Waisman, H. A., and Wyckoff, L. B., 1958, Phenylketonuria in the rat associated with decreased temporal discrimination learning. Nature (London) 182:871–872.

    Article  CAS  Google Scholar 

  • Auerbach, V. H., Di George, A. M., and Carpenter, G. G., 1967, Phenylalaninemia, a study of diversity of disorders which produce elevation of blood levels of phenylalanine, in: Amino Acid Metabolism and Genetic Variation (W. L. Nyhan, ed.), pp. 11–68, McGraw-Hill, New York.

    Google Scholar 

  • Avery, M. E., 1967, Transient tyrosinemia of the newborn: dietary and chemical aspects, Pediatrics 39:378–384.

    PubMed  CAS  Google Scholar 

  • Ayling, J. E., Helfand, G. D., and Pirson, W. D., 1975, Phenylalanine hydroxylase from human kidney, Enzyme 20:6–19.

    PubMed  CAS  Google Scholar 

  • BĂŁnos, G., Daniel, P. M., Moorhouse, S. R., and Pratt, O. E., 1973, The influx of amino acids into the brain of the rat in vivo: the essential compared with some nonessential amino acids, Proc. R. Soc. Lond. Ser. B. 183:59–70.

    Article  Google Scholar 

  • BĂŁnos, G., Daniel, P. M., Moorhouse, S. R., and Pratt, O. E., 1975, The requirements of the brain for some amino acids, J. Physiol. 246:539–548.

    PubMed  Google Scholar 

  • Barbosa, E., Herreros, B., and Ojeda, J. L., 1971, Amino acid accumulation by brain slices: interactions among tryptophan, phenylalanine and histidine, Experientia 27:1281–1282.

    Article  PubMed  CAS  Google Scholar 

  • Barranger, J. A., Geiger, P. J., Huzino, A., and Bessman, S. P., 1972, Isozymes of phenylalanine hydroxylase, Science 175:903–905.

    Article  PubMed  CAS  Google Scholar 

  • BartholomĂ©, K., 1974, A new molecular defect in phenylketonuria, Lancet 2:1580.

    Article  PubMed  Google Scholar 

  • Bass, N. H., Netsky, M. G., and Young, E., 1970, Effect of neonatal malnutrition on developing cerebrum. II. Microchemical and histological study of myelin formation in the rat, Arch. Neurol. 23:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Battistin, L., Grynbaum, A., and Lajtha, A., 1971, The uptake of various amino acids by the mouse brain in vivo, Brain Res. 29:85–99.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, C.F., 1976, Some recent advances in studies of GABA metabolism and compartmentation, in: GABA in Nervous System Function (E. Roberts, T. N. Chase, and D. B. Tower, eds.), pp. 61–87, Raven Press, New York.

    Google Scholar 

  • Berl, S., and Clarke, D. D., 1969, Compartmentation of amino acid metabolism, in: Handbook of Neurochemistry, Vol. II (A. Lajtha, ed.), pp. 447–472, Plenum Press, New York.

    Google Scholar 

  • Berman, J. L., Cunningham, G. C., Day, R. W., Ford, R., and Hsia, D. Y.-Y., 1969, Causes for high phenylalanine with normal tyrosine in newborn screening programs, Amer. J. Dis. Child. 117:54–65.

    PubMed  CAS  Google Scholar 

  • Berry, H., Sutherland, B. S., and Guest, G. M., 1957, Phenylalanine tolerance tests on relatives of Phenylketonuric children, Amer. J. Hum. Genet. 9:310–316.

    PubMed  CAS  Google Scholar 

  • Berry, H. K., Butcher, R. E., Kazmaier, K. J., and Poncet, I. B., 1975, Biochemical effects of induced phenylketonuria in rats, Biol. Neonate 26:88–101.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S. P., 1964, Some biochemical lessons to be learned from phenylketonuria, J. Pediatr. 64:828–838.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S. P., 1966, Legislation and advances in medical knowledge-acceleration or inhibition?, J. Pediatr. 69:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S. P., 1972, Genetic failure of fetal amino acids “justification”: a common basis for many forms of metabolic, nutritional, and “nonspecific” mental retardation, J. Pediatr. 81:834–842.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S. P., and Tada, K., 1960, Indicanuria in phenylketonuria, Metabolism 9:377–385.

    PubMed  CAS  Google Scholar 

  • Betheil, J. J., Feigelson, M., and Feigelson, P., 1965, The differential effects of glucocorticoid on tissue and plasma amino acid levels, Biochim. Biophys. Acta 104:92–97.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, S. K., Robson, J. S., and Stewarti, C. P., 1955, Determination of glutathione in blood and tissues, Biochem. J. 60:696–702.

    PubMed  CAS  Google Scholar 

  • Bickel, H., Gerrard, J., and Hickmans, E. M., 1954, The influence of phenylalanine intake on the chemistry and behavior of a Phenylketonuric child, Acta Paediatr. 43:64–77.

    Article  PubMed  CAS  Google Scholar 

  • Bickel, H., Boscott, R. J., and Gerrard, J., 1955, Observations on the biochemical error in phenylketonuria and its dietary control, in: Biochemistry of the Developing Nervous System (H. Waelsch, ed.), p. 417, Academic Press, New York.

    Google Scholar 

  • Birch, H. G., and Tizard, J., 1967, The dietary treatment of phenylketonuria: not proven?, Dev. Med. Child Neurol. 9:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Blaskovics, M. E., and Shaw, K. N. F., 1971, Hyperphenylalaninemia: methods for differential diagnosis, in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 98–102, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Blau, K., 1970, Aromatic acid excretion in phenylketonuria. Analysis of the unconjugated aromatic acids derived from phenylalanine, Clin. Chim. Acta 27:5–18.

    Article  PubMed  CAS  Google Scholar 

  • Blau, K., Summer, G. K., Newsome, H. C., and Edwards, C. H., 1973, Phenylalanine loading and aromatic acid excretion in normal subjects and heterozygotes for PKU, Clin. Chim. Acta 45:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, D. K., and Bloch, K., 1960, The formation of Δ9-unsaturated fatty acids, J. Biol. Chem. 235:337–345.

    PubMed  CAS  Google Scholar 

  • Boggs, D. E., Rosenberg, R., and Waisman, H. A., 1963, Effects of phenylalanine, phenylacetic acid, tyrosine and valine on brain and liver serotonin in rats, Proc. Soc. Exp. Biol. Med. 114:356–358.

    PubMed  CAS  Google Scholar 

  • Borek, E., Brecher, A., Jervis, G. A., and Waelsch, H., 1950, Oligophrenia phenylpyruvica. II. Constancy of the metabolic error, Proc. Soc. Exp. Biol. Med. 75:86–89.

    PubMed  CAS  Google Scholar 

  • Boscott, R. J., and Bickel, H., 1953, Detection of some new abnormal metabolites in the urine of phenylketonuria, Scand. J. Clin. Lab. Invest. 5:380–382.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, J. A., and McArthur, C. L., III, 1972, Possible biochemical model for phenylketonuria, Nature (London) 235:230.

    Article  CAS  Google Scholar 

  • Bowman, B. H., and King, F. J., 1961, Effects of glutamine and asparagine supplements in the dietary regimen of three Phenylketonuric patients, Nature (London) 190:417–418.

    Article  CAS  Google Scholar 

  • Boyd, J. W., 1966, The extraction and purification of the two isozymes of L-aspartate: 2-oxoglutarate aminotransferase, Biochim. Biophys. Acta 113:302–311.

    Article  PubMed  CAS  Google Scholar 

  • Brand, L. M., and Harper, A. E., 1974, Effect of glucagon on phenylalanine metabolism and phenylalanine-degrading enzymes in the rat, Biochem. J. 142:231–245.

    PubMed  CAS  Google Scholar 

  • Bremer, H. J., 1971, Transitory hyperphenylalaninemia, in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 93–97, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Bremer, H. J., and Neumann, W., 1966a, Phenylalanin-Toleranz bei FrĂĽhgeborenen, reifen Neugeborenen, Säuglingen und Erwachsenen, Klin. Wochenschr. 44:1076–1081.

    Article  CAS  Google Scholar 

  • Bremer, H. J., and Neumann, W., 1966b, Tolerance of phenylalanine after intravenous administration in phenylketonurics, heterozygous carriers, and normal adults, Nature (London) 209:1148–1149.

    Article  CAS  Google Scholar 

  • Brenneman, A. R., and Kaufman, S., 1965, Characteristics of the phenylalanine-hydroxylating system in newborn rats, J. Biol. Chem. 240:3617–3622.

    PubMed  CAS  Google Scholar 

  • Butler, I. J., Krumholz, A., Holtzman, N. A., Koslow, S. H., Kaufman, S., and Milstien, S., 1975, Dihydropteridine reductase deficiency variant of phenylketonuria: a disorder of neurotransmitters, Arch. Neurol. 32:350.

    Google Scholar 

  • Cahalane, S. F., 1968, Phenylketonuria: mass screening of newborns in Ireland, Arch. Dis. Child. 43:141–144.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G. G., Auerbach, V. H., and DiGeroge, A. M., 1968, Phenylalaninemia, Pediatr. Clin. North Amer. 15:313–323.

    CAS  Google Scholar 

  • Castells, S., Grunt, J. A., and Brandt, I. K., 1969, Changes in plasma growth hormone after a phenylalanine tolerance test in normal and Phenylketonuric children, J. Pediatr. 75:820–825.

    Article  PubMed  CAS  Google Scholar 

  • Castells, S., Zischka, R., and Addo, N., 1971, Alteration in composition of deoxyribonucleic acid, ribonucleic acid, proteins, and amino acids in brain of rats fed high and low phenylalanine diets, Pediatr. Res. 5:329–334.

    Article  CAS  Google Scholar 

  • Chalmers, R. A., and Watts, R. W. E., 1974, Quantitative studies on the urinary excretion of unconjugated aromatic acids in phenylketonuria, Clin. Chim. Acta 55:281–294.

    Article  PubMed  CAS  Google Scholar 

  • Chaplin, E. R., and Diamond, I., 1974, The importance of leucine oxidation in brain, Trans. Amer. Soc. Neurochem. 5:167.

    Google Scholar 

  • Chase, H. P., and O’Brien, D., 1970, Effects of excess phenylalanine and of other amino acids on brain development in the infant rat, Pediatr. Res. 4:96–102.

    Article  PubMed  CAS  Google Scholar 

  • Chirigos, M. A., Greengard, P., and Udenfriend, S., 1960, Uptake of tyrosine by rat brain in vivo, J. Biol. Chem. 235:2075–2079.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., 1953, Metabolism of amino acids and proteins, Annu. Rev. Biochem. 22:233–260.

    Article  PubMed  CAS  Google Scholar 

  • Christenson, J. G., Dairman, W., and Udenfriend, S., 1970, Preparation and properties of a homogenous aromatic L-amino acid decarboxylase from hog kidney, Arch. Biochem. Biophys. 141:356–367.

    Article  PubMed  CAS  Google Scholar 

  • Civen, M., Trimmer, B. M., and Brown, C. B., 1967, The induction of hepatic tyrosine α-ketoglutarate and phenylalanine pyruvate transaminase by glucagon, Life Sci. 6:1331–1338.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, J. A., Balazs, R., Johnson, A. L., and Eayrs, J. T., 1970, Effect of thyroid hormone on the biochemical maturation of rat brain: conversion of glucose-carbon into amino acids, J. Neurochem. 17:1275–1285.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, D. L., 1960, Phenylalanine hydroxylase activity in dilute and nondilute strains of mice, Arch. Biochem. Biophys. 91:300–306.

    Article  PubMed  CAS  Google Scholar 

  • Cowie, V. A., 1971, Neurological and psychiatric aspects of phenylketonuria, in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 29–39, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Craine, J. E., Hall, E. S., and Kaufman, S., 1972, The isolation and characterization of dihydropteridine reductase from sheep liver, J. Biol. Chem. 247:6082–6091.

    PubMed  CAS  Google Scholar 

  • Crome, L., 1971, The morbid anatomy of phenylketonuria, in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 126–131, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Crome, L., and Pare, C. M. B., 1960, Phenylketonuria: a review and a report of the pathological findings in four cases, J. Ment. Sci. 106:862–883.

    Google Scholar 

  • Crome, L., Tymms, U., and Woolf, L. I., 1962, A chemical investigation of the defects of myelination in phenylketonuria, J. Neurol. Neurosurg. Psychiatry 25:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Culley, W. J., Saunders, R. N., Mertz, E. J., and Jolly, D. H., 1962, Effect of phenylalanine and its metabolites on the brain serotonin level of the rat, Proc. Soc. Exp. Biol. Med 111:444–446.

    PubMed  CAS  Google Scholar 

  • Curtius, H.-C., Baerlocher, K., and Vollmin, J. A., 1972a, Pathogenesis of phenylketonuria: inhibition of dopa and catecholamine synthesis in patients with phenylketonuria, Clin. Chim. Acta 42:235–239.

    Article  PubMed  CAS  Google Scholar 

  • Curtius, H.-C., Vollmin, J. A., and Baerlocher, K., 1972b, The use of deuterated phenylalanine for the elucidation of the phenylalanine-tyrosine metabolism, Clin. Chim. Acta 37:277–285.

    Article  PubMed  CAS  Google Scholar 

  • Dakin, H. D., 1911a, The catabolism of phenylalanine, tyrosine and their derivatives, J. Biol. Chem. 9:139–150.

    Google Scholar 

  • Dakin, H. D., 1911b, The chemical nature of aleaptonuria, J. Biol. Chem. 9:151–160.

    CAS  Google Scholar 

  • Dancis, J., and Balis, M. E., 1955, A possible mechanism for disturbance in tyrosine metabolism in phenylpyruvic oligophrenia, Pediatrics 15:63–66.

    PubMed  CAS  Google Scholar 

  • Danks, D. M., Cotton, R. G. H., and Schlesinger, P., 1975, Tetrahydrobiopterin treatment of variant form of phenylketonuria, Lancet 2:1043.

    Article  PubMed  CAS  Google Scholar 

  • David, J. C., Dairman, W., and Udenfriend, S., 1974, On the importance of decarboxylation in the metabolism of phenylalanine, tyrosine, and tryptophan, Arch. Biochem. Biophys. 160:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Davison, A. N., and Sandler, M. S., 1958, Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites, Nature (London) 181:186–187.

    Article  CAS  Google Scholar 

  • Deguchi, T., and Barchas, J., 1972, The effect of p-chlorophenylalanine and tryptophan hydroxylase in rat pineal, Nature (London) New Biol. 235:92–93.

    CAS  Google Scholar 

  • Dobbing, J., 1975, Prenatal nutrition and neurological development, in: Brain Mechanisms in Mental Retardation (N. A. Buchwald and M. A. B. Brazier, eds.), pp. 401–420, Academic Press, New York.

    Google Scholar 

  • Dodge, P. R., Mancall, E. L., Crawford, J. D., Knapp, J., and Paine, R. S., 1959, Hypoglycemia complicating treatment of phenylketonuria with a phenylalanine-deficient diet, N. Engl. J. Med. 260:1104–1111.

    Article  PubMed  CAS  Google Scholar 

  • Edson, N. L., 1935, Ketogenesis-antiketogenesis. I. The influence of ammonium chloride on ketone-body formation in liver, Biochem. J. 29:2082–2094.

    PubMed  CAS  Google Scholar 

  • Edwards, D. J., and Blau, K., 1972, Aromatic acids derived from phenylalanine in the tissues of rats with experimentally induced phenylketonuria-like characteristics, Biochem. J. 130:495–503.

    PubMed  CAS  Google Scholar 

  • Efron, M. L., Kang, E. S., Visakorpi, J., and Fellers, F. X., 1969, Effect of elevated plasma phenylalanine levels on other amino acids in phenylketonuria and normal subjects, J. Pediatr. 74:399–405.

    Article  PubMed  CAS  Google Scholar 

  • Embden, G., and Baldes, K., 1913, Ăśber den Abbau des Phenylalanins im tierischen Organismus, Biochem. Z. 55:301–322.

    Google Scholar 

  • Embden, G., Salomon, H., and Schmidt, F., 1906, Ăśber Acentonbildung in der Leber, Beitr. Chem. Physiol. Pathol. 8:129–155.

    Google Scholar 

  • Evered, D. F., 1956, The excretion of amino acids by the human, Biochem. J. 62:416–427.

    PubMed  CAS  Google Scholar 

  • Felig, P., 1975, Amino acid metabolism in man, Ann. Rev. Biochem. 44:933–955.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P., Wahren, J., and Ahlborg, G., 1973, Uptake of individual amino acids by the human brain, Proc. Soc. Exp. Biol. Med. 142:230–231.

    PubMed  CAS  Google Scholar 

  • Fellman, J. H., Vanbellinghen, P. J., Jones, R. T., and Koler, R. D., 1969, Soluble and mitochondrial forms of tyrosine aminotransferase. Relationship to tyrosinemia, Biochemistry 8:615–622.

    Article  PubMed  CAS  Google Scholar 

  • Fellman, J. H., Fujita, T. S., and Roth, E. S., 1972, Substrate specificity of p-hydroxyphenyl-pyruvate hydroxylase, Biochim. Biophys. Acta 268:601–604.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D., and Wurtman, R. J., 1971a, Brain serotonin content: physiological dependence on plasma tryptophan levels, Science 173:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D., and Wurtman, R. J., 1971b, Brain serotonin content: increase following ingestion of carbohydrate diet, Science 174:1023.

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., 1966, Genetic Complementation, W. A. Benjamin, New York.

    Google Scholar 

  • Finkelstein, J. D., Mudd, H. S., Irreverre, F., and Laster, L., 1964, Homocystinuria due to cystathionine synthase, Science 146:785–787.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Kaufman, S., 1972a, The inhibition of phenylalanine and tyrosine hydroxylases by high oxygen levels, J. Neurochem. 19:1359–1365.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Kaufman, S., 1972b, Stimulation of rat liver phenylalanine hydroxylase by phospholipids, J. Biol. Chem. 247:2250–2252.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Kaufinan, S., 1973a, Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase, J. Biol. Chem. 248:4300–4304.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Kaufinan, S., 1973b, The stimulation of rat liver phenylalanine hydroxylase by lysolecithin and α-chymotrypsin, J. Biol. Chem. 248:4345–4353.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., Kirkwood, R., and Kaufinan, S., 1972, Rat liver phenylalanine hydroxylase, an iron enzyme, J. Biol. Chem. 247:5161–5167.

    PubMed  CAS  Google Scholar 

  • Floyd, J. F., Fajans, S. S., Conn, J. W., Knopf, R. F., and Rull, J., 1966, Stimulation of insulin secretion by amino acid, J. Clin. Invest. 45:1487–1502.

    Article  PubMed  CAS  Google Scholar 

  • Fölling, A., 1934a, Utzkillese aus Fenylpyroduesyre i Urinieren som Stoffskifesanomali Forvindelse med Imvecilitet, Nord. Med. Tidskr. 8:1054.

    Google Scholar 

  • Fölling, A., 1934b, Ăśber Ausscheidung von PhenylbrenztraubensaĂĽre in den Harn als Stoffwechselanomalie in Verbindung mit Imbezzillität, Z. Physiol. Chem. 227:169.

    Article  Google Scholar 

  • Fölling, A., Closs, K., and Gammes, T., 1938, Vorlaufige SchlĂĽsselfolgerungen aus Belastungversucher mit Phenylalanin an Menschen und Tieren, Z. Physiol. Chem. 256:1.

    Article  Google Scholar 

  • Foote, J. L., Allen, R. J., and Agranoff, B.W., 1965, Fatty acids in esters and cerebrosides of human brain in phenylketonuria, J. Lipid Res. 6:518–524.

    PubMed  CAS  Google Scholar 

  • Friedman, P. A., and Kaufinan, S., 1971, A study of the development of phenylalanine hydroxylase in fetuses of several mammalian species, Arch. Biochem. Biophys. 146:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, P. A., and Kaufinan, S., 1973, Some characteristics of partially purified human liver phenylalanine hydroxylase, Biochim. Biophys. Acta 293:56–61.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, P. A., Kappelman, A. H., and Kaufinan, S., 1972a, Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain, J. Biol. Chem. 247:4165–4173.

    PubMed  CAS  Google Scholar 

  • Friedman, P. A., Kaufinan, S., and Kang, E. S., 1972b, Nature of the molecular defect in PKU and hyperphenylalaninemia, Nature (London) 240:157–159.

    Article  CAS  Google Scholar 

  • Friedman, P. A., Lloyd, T., and Kaufinan, S., 1972c, Production of antibodies to rat liver phenylalanine hydroxylase: cross-reactivity with other pterin-dependent hydroxylases, Mol. Pharmacol. 8:501–510.

    PubMed  CAS  Google Scholar 

  • Friedman, P. A., Fisher, D. B., Kang, E. S., and Kaufinan, S., 1973, Detection of hepatic 4-phenylalanine hydroxylase in classical phenylketonuria, Proc. Natl. Acad. Sci. U.S.A. 70:552–556.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., and Baker, J. C., 1974, Increased conversion of a phenylalanine load to tyrosine in tetraiodoglucagon-treated rats, Biochem. Biophys. Res. Commun. 58:945–950.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Snoddy, H. D., and Bromer, W. W., 1972, Increase of hepatic L-phenylalanine:pyruvate aminotransferase by glucagon in rats, Mol. Pharmacol. 8:345–352.

    PubMed  CAS  Google Scholar 

  • Gaull, G. E., and Sturman, J. A., 1971, Vitamin B6 dependency on homocystinuria, Br. Med. J. 3:532–533.

    Article  PubMed  CAS  Google Scholar 

  • Gerstl, R. L., Malamud, N., Eng, L. F., and Hayman, R. B., 1967, Lipid alterations in human brains in phenylketonuria, Neurology 17:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, N. K., and Woolf, L. I., 1959, Tests for phenylketonuria—results of a one year programme for its detection in infancy and among mental defectives, Br. Med. J. 2:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez, C., Valdivieso, F., and Mayor, F., 1974, Glycolysis in the brain and liver of rats with experimentally induced phenylketonuria, Biochem. Med. 11:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Giroud, A., Leblond, C. P., Ratsimanga, R., and Gero, E., 1938a, Le taux normal en acide ascorbique, Bull. Soc. Chim. Biol. 20:1079–1087.

    CAS  Google Scholar 

  • Giroud, A., Rabinowicz, M., and Hartmann, E., 1938b, Le taux realise chex l’homme, Bull. Soc. Chim. Biol. 20:1097–1101.

    CAS  Google Scholar 

  • Glazer, R. L, and Weber, G., 1971, The effects of phenylpyruvate and hyperphenylalaninemia on incorporation of [6–3H] glucose into macromolecules of slices of rat cerebral cortex, J. Neurochem. 18:2371–2382.

    Article  PubMed  CAS  Google Scholar 

  • Goodfriend, T. L., and Kaufman, S., 1961, Phenylalanine metabolism and folic acid antagonists, J. Clin. Invest. 40:1743–1750.

    Article  PubMed  CAS  Google Scholar 

  • Gould, R. M., and Dawson, R. M. C., 1976, Incorporation of newly formed lecithin into peripheral nerve myelin, J. Cell. Biol. 68:480–496.

    Article  PubMed  CAS  Google Scholar 

  • Graham-Smith, D. G., and Parfitt, A. G., 1970, Tryptophan transport across the synaptosomal membranes, J. Neurochem. 17:1339–1353.

    Article  Google Scholar 

  • Gressner, A. M., 1974, Amino acid levels in liver and plasma of the rat during inhibition of transamination, Biochem. Med. 10:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, U., Knapp, A., Schlenzka, K. and Reddemann, H., 1975, Phenylalaninhydroxylase-aktivität in der Leber als Parameter zur Unterscheidung der verschiedenen Formen der Hyperphenylalaninamien, Clin. Chim. Acta 58:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Gross, L, and Warshaw, J. R., 1975, The influence of dietary deprivation on the enzymes of fatty acid synthesis in rat brain, J. Neurochem. 25, 191–192.

    Article  PubMed  CAS  Google Scholar 

  • Guroff, G., and Udenfriend, S., 1962, Studies on aromatic amino acid uptake by rat brain in vivo. Uptake of phenylalanine and of tryptophan; inhibition and stereoselectivity in the uptake of tyrosine by brain and muscle, J. Biol. Chem. 237:803–806.

    PubMed  CAS  Google Scholar 

  • Guroff, G., King, W., and Udenfriend, S., 1961, The uptake of tyrosine by rat brain in vitro, J. Biol. Chem. 236:1773–1777.

    PubMed  CAS  Google Scholar 

  • Guthrie, R., 1961, Blood screening for phenylketonuria, J. Amer. Med. Assoc. 178:863.

    Article  Google Scholar 

  • GĂĽttier, F., and Wamberg, E., 1972, Persistent hyperphenylalaninemia, Acta. Paediatr. Scand. 61:321–328.

    Article  Google Scholar 

  • Hackney, I. M., Hanley, W. B., Davidson, W., and Linsao, L., 1968, Phenylketonuria: mental development, behavior, and termination of low phenylalanine diet, J. Pediatr. 72:646–655.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, A., 1959, Action of phenylanine metabolites on glutamic acid decarboxylase and Îł-aminobutyric acid α-ketoglutaric acid transaminase in brain, Acta Chem. Scand. 13:1366–1374.

    Article  CAS  Google Scholar 

  • Harris, H., 1970, Heterozygotes, in: The Principles of Human Biochemical Genetics (A. Neuberger and E. L. Tatum, eds.), p. 173, North-Holland, Amsterdam.

    Google Scholar 

  • Hartman, J. F., and Becker, R. A., 1973, Ultrastructural evidence against in vivo disaggregation of brain polyribosomes after administration of L-dopa or phenylalanine, J. Neural Transm. 34:73–77.

    Article  Google Scholar 

  • Henson, C. P., and Cleland, W. W., 1964, Kinetic studies of glutamic oxaloacetic transaminase isozymes, Biochemistry 3:338–345.

    Article  PubMed  CAS  Google Scholar 

  • Himwich, H. E., and Fazekas, J. F., 1940, Cerebral metabolism in mongolian idiocy and phenylpyruvic oligophrenia, Arch. Neurol. Psychiatry 4:1213–1218.

    Article  Google Scholar 

  • Hjalmarsson, O., Jagenburg, R., and Rodjer, S., 1971, Mild and severe PKU. Comparative studies in two infants, Acta Paediatr. Scand. 60:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, N. E., and Gooding, K. M., 1969, Gas chromatography of some urinary acid metabolites related to phenylketonuria, Anal. Biochem. 31:471–479.

    Article  PubMed  CAS  Google Scholar 

  • Hole, K., 1972a, Reduced 5-hydroxyindole synthesis reduces postnatal brain growth in rats, Eur. J. Pharmacol. 18:361–362.

    Article  PubMed  CAS  Google Scholar 

  • Hole, K., 1972b, Arousal defect in L-phenylalanine fed rats, Dev. Psychobiol. 5:149–156.

    Article  PubMed  CAS  Google Scholar 

  • Hole, K., 1972c, Behavior and brain growth in rats treated with p-chlorophenylalanine in the first weeks of life, Dev. Psychobiol. 5:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, N. A., Mellits, E. D., and Kallman, B. A., 1974a, Neonatal screening for phenylketonuria. II. Age dependence of initial phenylalanine in infants with PKU, Pediatrics 53:353–357.

    PubMed  CAS  Google Scholar 

  • Holtzman, N. A., Meek, A. G., Mellits, E. D., and Kallman, C. H., 1974b, Neonatal screening for phenylketonuria. III. Altered sex ratio; extent and possible causes, J. Pediatr. 25:175–181.

    Google Scholar 

  • Hopper, S., and Segal, H. L., 1962, Kinetic studies of rat liver glutamic-alanine transaminase, J. Biol. Chem. 237:3189–3195.

    PubMed  CAS  Google Scholar 

  • Homer, F. A., Streamer, C. W., Alejaudrino, L. L., Reed, L. H., and Ibbott, F., 1962, The termination of dietary treatment of phenylketonuria, N. Eng. J. Med. 266:79–81.

    Article  Google Scholar 

  • Hsia, D. Y. Y., 1970, Phenylketonuria and its variants, Prog. Med. Genet. 7:29–68.

    PubMed  CAS  Google Scholar 

  • Hsia, D. Y. Y., and Dobson, J., 1970, Altered sex ratio among Phenylketonuric infants ascertained by screening the newborn, Lancet 1:905–908.

    Article  PubMed  CAS  Google Scholar 

  • Hsia, D. Y. Y., and Driscoll, K. W., 1956, Detection of the heterozygous carriers of phenylketonuria, Lancet 2:1337–1338.

    Article  Google Scholar 

  • Hsia, D. Y. Y., Driscoll, K., Troll, W., and Knox, W. E., 1956, Detection by phenylalanine tolerance tests of heterozygous carriers of phenylketonuria, Nature (London) 178:1239–1240.

    Article  CAS  Google Scholar 

  • Hsia, D. Y. Y., Knox, W. E., Quinn, K. V., and Paine, R. S., 1958, A one-year, controlled study of the effect of low-phenylalanine diet on phenylketonuria, Pediatrics 21:178–202.

    PubMed  CAS  Google Scholar 

  • Huang, C. Y., and Kaufman, S., 1973, Studies on the mechanism of action of phenylalanine hydroxylase and its protein stimulator, J. Biol. Chem., 248:4242–4251.

    PubMed  CAS  Google Scholar 

  • Huang, C., Max, E. E., and Kaufman, S., 1973, Purification and characterization of phenylalanine hydroxylase stimulating protein from rat liver, J. Biol. Chem. 248:4235–4241.

    PubMed  CAS  Google Scholar 

  • Huang, I., and Hsia, D. Y. Y., 1963, Studies on inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites, Proc. Soc, Exp. Biol. Med. 112:81–84.

    CAS  Google Scholar 

  • Hudson, F. P., 1967, Termination of dietary treatment of phenylketonuria, Arch. Dis. Child. 42:198–200.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, M., Levitt, M., and Udenfriend, S., 1967, Phenylalanine as a substrate and inhibitor of tyrosine hydroxylase, Arch. Biochem. Biophys. 120:420–427.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby, G. A., and La Du, B. N., 1964, Studies on the specificity of tyrosine-α-ketoglutarate transaminase, J. Biol. Chem. 239:419–424.

    PubMed  CAS  Google Scholar 

  • Jakubovic, A., 1971, Phenylalanine hydroxylating system in the human fetus at different developmental ages, Biochim. Biophys. Acta 237:469–475.

    Article  PubMed  CAS  Google Scholar 

  • JĂ©quier, E., 1968, Tryptophan hydroxylation in phenylketonuria, Adv. Pharmacol. 6B:169–170.

    Article  Google Scholar 

  • JĂ©quier, E., Lovenberg, W., and Sjoerdsma, A., 1967, Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin, Mol. Pharmacol. 3:274–278.

    PubMed  Google Scholar 

  • Jervis, G. A., 1939, The genetics of phenylpyruvic oligophrenia, J. Ment. Sci. 85:719–762.

    Google Scholar 

  • Jervis, G. A., 1947, Studies on phenylpyravic oligophrenia. The position of the metabolic error, J. Biol. Chem. 169:651–656.

    PubMed  CAS  Google Scholar 

  • Jervis, G. A., 1953, Phenylpyravic oligophrenia deficiency of phenylalanine-oxidizing system, Proc. Soc. Exp. Biol. Med. 82:514–515.

    PubMed  CAS  Google Scholar 

  • Jervis, G. A., 1954, Phenylpyravic oligophrenia (phenylketonuria), Res. Publ. Assoc. Res. Nerv. Ment. Dis. 33:259–282.

    PubMed  CAS  Google Scholar 

  • Jervis, G. A., 1960, Detection of heterozygotes for phenylketonuria, Clin. Chim. Acta 5:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Jervis, G. A., 1963, Pathogenesis of the mental defects, in: Phenylketonuria (F. L. Lyman, Ed.), pp. 101–113, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Johnson, R. C., and Shah, S. N., 1973, Effect of hyperphenylalaninemia on fatty acid composition of lipids of rat brain myelin, J. Neurochem. 21:1225–1240.

    Article  PubMed  CAS  Google Scholar 

  • Justice, P., O’Flynn, M. E., and Hsia, D. Y. Y., 1967, Phenylalanine hydroxylase activity in hyperphenylalaninemia, Lancet 1:928–929.

    Article  PubMed  CAS  Google Scholar 

  • Kang, E. S., Kaufman, S., and Gerald, P. S., 1970a, Clinical and biochemical observations of patients with atypical phenylketonuria, Pediatrics 45:83–92.

    PubMed  CAS  Google Scholar 

  • Kang, E. S., Sollee, N., and Gerald, P. S., 1970b, Results of treatment and termination of the diet in phenylketonuria (PKU), Pediatrics 46:881–890.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1957, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 226:511–524.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1958a, A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine, J. Biol Chem. 230:931–939.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1958b, Phenylalanine hydroxylation cofactor in phenylketonuria, Science 128:1506.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S., 1958c, Biochemistry in diagnosis, in: Conference on Diagnosis in Mental Retardation, pp. 125–144, The Training School at Vineland, New Jersey.

    Google Scholar 

  • Kaufman, S., 1959, Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 234:2677–2682.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1962, Aromatic hydroxylation in: Oxygenases (O. Hayaishi, ed.), pp. 129–179, Academic Press, New York.

    Google Scholar 

  • Kaufman, S., 1963, The structure of phenylalanine hydroxylation cofactor, Proc. Natl. Acad. Sci. U.S.A. 50:1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S., 1964, Further studies on the structure of the primary oxidation product formed from tetrahydropteridines during phenylalanine hydroxylation, J. Biol. Chem. 239:332–338.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1967a, Metabolism of the phenylalanine hydroxylation cofactor, J. Biol. Chem. 242:3934–3943.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1967b, Pteridine cofactors, Annu. Rev. Biochem. 36:171–184.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S., 1967c, Unanswered questions in the primary metabolic block in phenylketonuria, in: Phenylketonuria and Allied Metabolic Diseases (J. A. Anderson and K. F. Swaiman, eds.), pp. 205–213, U. S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Kaufman, S., 1969, Phenylalanine hydroxylase of human liver: assay and some properties, Arch. Biochem. Biophys. 134:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S., 1970, A protein that stimulates rat liver phenylalanine hydroxylase, J. Biol. Chem. 245:4751–4759.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., 1971, The phenylalanine hydroxylating system from mammalian liver, Adv. Enzymol. 35:245–319.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., and Fisher, D. B., 1970, Purification and some physical properties of phenylalanine hydroxylase from rat liver, J. Biol. Chem. 245:4745–4750.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., and Levenberg, B., 1959, Further studies on the phenylalanine hydroxylation cofactor, J. Biol. Chem. 234:2683–2688.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., and Max, E. E., 1971, Studies on the phenylalanine hydroxylating system in human liver and their relationship to pathogenesis of PKU and hyerphenylalaninemia, in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 13–19, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Kaufinan, S., and Fisher, D. B., 1974, Pterin-requiring aromatic amino acid hydroxylases, in: Molecular Mechanisms of Oxygen Activation (O. Hayaishi, ed.), pp. 285–369, Academic Press, New York.

    Google Scholar 

  • Kaufinan, S., Bridgers, W. F., Eisenberg, F., and Friedman, S., 1962, The source of oxygen in the phenylalanine hydroxylase and the dopamine-β-hydroxylase catalyzed reactions, Biochem. Biophys. Res. Commun. 9:497–502.

    Article  Google Scholar 

  • Kaufman, S., Holtzman, N. A., Milstien, S., Butler, I. J., and Krumholz, A., 1975a, Phenylketonuria due to a deficiency of dihydropteridine reductase, N. Engl. J. Med. 293:785–790.

    Article  PubMed  CAS  Google Scholar 

  • Kaufinan, S., Max, E. E., and Kang, E. S., 1975b, Phenylalanine hydroxylase activity in liver biopsies from hyperphenylalaninemia heterozygotes: deviation from proportionality with gene dosage, Pediatr. Res. 9:632–634.

    Article  Google Scholar 

  • Kelley, W. N., Levy, R. I., Rosenbloom, F. M., Henderson, J. F., and Seegmiller, J. E., 1968, Adenine phosphoribosyl transferase deficiency: a previously undescribed genetic defect in man, J. Clin. Invest. 47:2281–2289.

    Article  PubMed  CAS  Google Scholar 

  • Kennaway, N. G., and Buist, N. R. M., 1971, Metabolic studies in a patient with hepatic cytosol tyrosine aminotransferase deficiency, Pediatr. Res. 5:287–297.

    Article  Google Scholar 

  • Kenney, F. T., and Kretchmer, N., 1959, Hepatic metabolism of phenylalanine during development, J. Clin. Invest. 38:2189–2196.

    Article  PubMed  CAS  Google Scholar 

  • Kettler, R., Bartholini, G., Pletscher, A., 1974, In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin, Nature (London) 249:476–477.

    Article  CAS  Google Scholar 

  • Knopf, R. F., Conn, J. W., Fajans, S. S., Floyd, J. C., Guntsche, E. M., and Rull, J. A., 1965, Plasma growth hormone response to intravenous administration of amino acids, J. Clin. Endocrinol. Metab. 25:1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Knox, W. E., 1972, Phenylketonuria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 266–295, McGraw-Hill, New York.

    Google Scholar 

  • Knox, W. E., and Hsia, D. Y. Y., 1957, Pathogenic problems in phenylketonuria, Amer. J. Med. 22:687–702.

    Article  PubMed  CAS  Google Scholar 

  • Knox, W. E., and Messinger, E., 1958, The detection of the metabolic effect of the recessive gene for phenyketonuria, Amer. J. Hum. Genet. 10:53–60.

    PubMed  CAS  Google Scholar 

  • Koch, R., Blaskovics, M., Wenz, E., Fishier, K., and Schaeffler, G., 1974, Phenylalaninemia and phenylketonuria, in: Heritable Disorders of Amino Acid Metabolism (W. L. Nyhan, ed.), pp. 109–140, John Wiley & Sons, New York.

    Google Scholar 

  • Koe, B. K., and Weissman, A., 1966, p-Chlorophenylalanine: a specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154:499–516.

    PubMed  CAS  Google Scholar 

  • Kopelovich, L., Sweetman, L., and Nisselbaum, J. S., 1971, Kinetics of the inhibition of aspartate aminotransferase isozymes by DL-glyceraldehyde 3-phosphate, Eur. J. Biochem. 20:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Korey, S. R., 1957, A possible mechanism in phenylketonuria, in: Ross Pediatric Conference (S. J. Onesti, ed.), pp. 34 – 36, Ross Laboratories, Columbus, Ohio.

    Google Scholar 

  • Kornberg, H. L., 1966, Anaplerotic sequences and their role in metabolism, Essays Biochem. 2:1–31.

    CAS  Google Scholar 

  • Krebs, H. A., and deGasquet, P., 1964, Inhibition of gluconeogenesis by alpha-oxoacids, Biochem. J. 90:149–154.

    PubMed  CAS  Google Scholar 

  • LaDu, B., 1967, Genetic variation in metabolic disorders, in: Amino Acid Metabolism and Genetic Variation (W. L. Nyhan, ed.), pp. 121–130, McGraw-Hill, New York.

    Google Scholar 

  • La Du, B., and Zannoni, V. G., 1967, Inhibition of phenylalanine hydroxylase in liver, in: Phenylketonuria and Allied Diseases (J. A. Anderson and K. F. Swaiman, eds.), pp. 193–202, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Land, J. M., and Clark, J. B., 1973, Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain, Biochem. J. 134:545–555.

    PubMed  CAS  Google Scholar 

  • Land, J. M., and Clark, J. B., 1974, Inhibition of pyruvate and β-hydroxybutyrate oxidation in rat brain mitochondria by phenylpyruvate and α-ketoisocaproate, FEBS Lett. 44:348–351.

    Article  PubMed  CAS  Google Scholar 

  • Laster, L., Spaeth, G. L., Mudd, H. S., and Finkelstein, S. D., 1965, Homocystinuria due to cystathionine synthase deficiency, Ann. Intern. Med. 63:1117–1142.

    Google Scholar 

  • Levine, S. Z., Gordon, H. H., and Marples, E., 1941a, A defect in the metabolism of tyrosine in premature infants. II. Spontaneous occurrence and eradication by vitamin C, J. Clin. Invest. 20:209–219.

    Article  PubMed  CAS  Google Scholar 

  • Levine, S. Z., Marples, E., and Gordon, H. H., 1941b, A defect in the metabolism of tyrosine and phenylalanine in premature infants. I. Identification and assay of intermediary products, J. Clin. Invest. 20:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Light, I. J., Berry, H. K., and Sutherland, J. M., 1966, Aminoacidemia of prematurity, Amer. J. Dis. Child. 112:229–236.

    PubMed  CAS  Google Scholar 

  • Lin, E. C. C., and Knox, W. E., 1957, Adaptation of the rat liver tyrosine α-ketoglutarate transaminase, Biochim. Biophys. Acta 26:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Lin, E. C. C., and Knox, W. E., 1958, Specificity of the adaptive response of tyrosine-α-ketoglutarate transaminase in the rat, J. Biol. Chem. 233:1186–1189.

    PubMed  CAS  Google Scholar 

  • Lin, E. C. C., Pitt, B. M., Civen, M., and Knox, W. E., 1958, The assay of aromatic amino acid transaminations and keto acid oxidation by the enol borate-tautomerase method, J. Biol. Chem. 233:668–673.

    PubMed  CAS  Google Scholar 

  • Linneweh, F., and Ehrlich, M., 1962, Zur Pathogenese des Schwachsinns bei Phenylketonurie, Klin. Wochenschr. 40:225–226.

    Article  PubMed  CAS  Google Scholar 

  • Linneweh, F., and Socher, H., 1965, Ăśber den Einfluss diatetischer Prophylaxie auf die Myelogenese bei der Leucinose, Klin. Wochenschr. 43:926–930.

    Article  PubMed  CAS  Google Scholar 

  • Linneweh, F., Ehrlich, M., Graul, E. H., and Hundeshagen, H., 1963, Ăśber den Aminosäuren-Transport bei phenylketonurischer Oligophrenie, Klin. Wochensch. 41:253–255.

    Article  CAS  Google Scholar 

  • Lipton, M. A., Gordon, R., Guroff, G., and Udenfriend, S., 1967, p-Chlorophenylalanine-induced chemical manifestations of phenylketonuria in rats, Science 156:248–250.

    Article  PubMed  CAS  Google Scholar 

  • Lo, G. S., Lee, S., Cruz, N. L., and Longenecker, J. B., 1970, Temporary induction of phenylketonuria-like characteristics in infant rats: effect on brain protein synthesis, Nutr. Rep. Int. 2:59–72.

    CAS  Google Scholar 

  • Loo, Y. H., 1967, Characterization of a new phenylalanine metabolite in phenylketonuria, J. Neurochem. 14:813–821.

    Article  CAS  Google Scholar 

  • Loo, Y. H., and Mack, K., 1972, Effect of hyperphenylalaninemia on vitamin B6 metabolism in developing rat brain, J. Neurochem. 19:2377–2383.

    Article  PubMed  CAS  Google Scholar 

  • Loo, Y. H., and Ritman, P., 1967, Phenylketonuria and vitamin B6 function, Nature (London) 213:914–916.

    Article  CAS  Google Scholar 

  • Lovenberg, W., JĂ©quier, E., and Sjoerdsma, A., 1968, Tryptophan hydroxylation in mammalian systems, Adv. Pharmacol. 6A:21–35.

    Article  Google Scholar 

  • Lowden, J. A., and La Ramee, M. A., 1969, Hyperphenylalaninemia: the effect on cerebral amino acid levels during development, Can. J. Biochem. 47:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Mabry, C. C., Denniston, J. C., Nelson, T. L., and Son, C. D., 1963, Maternal phenylketonuria. A cause of mental retardation in children without the metabolic defect, N. Engl. J. Med. 269:1404–1408.

    Article  PubMed  CAS  Google Scholar 

  • MacInnes, J. W., and Schlesinger, K., 1971, Effects of excess phenylalanine on in vitro and in vivo RNA and protein synthesis and polyribosome levels in brains of mice, Brain Res. 29:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Makulu, D. R., Smith, E. F., Bertino, J. R., 1973, Lack of dihydrofolate reductase activity in brain tissue of mammalian species: possible implications, J. Neurochem. 21:241–245.

    Article  PubMed  CAS  Google Scholar 

  • Malamud, N., 1966, Neuropathology of phenylketonuria, J. Neuropathol. Exp. Neurol. 25:254–268.

    Article  PubMed  CAS  Google Scholar 

  • Mao, C. C., Guidotti, A., and Costa, E., 1974, Interactions between Îł-aminobutyric acid and guanosine cyclic 3′,5′-monophosphate in rat cerebellum, Mol. Pharmacol. 10:736–745.

    CAS  Google Scholar 

  • McGee, M. M., Greengard, O., and Knox, W. E., 1972, The quantitative determination of phenylalanine hydroxylase in rat tissues. Its developmental formation in liver, Biochem. J. 127:669–674.

    PubMed  CAS  Google Scholar 

  • McGeer, E. G., and McGeer, P. L., 1973, Amino acid hydroxylase inhibitors, Metab. Inhibitors 4:45–105.

    CAS  Google Scholar 

  • McGeer, E. G., and Tischler, B., 1959, Vitamin B6 and mental deficiency. The effects of large doses of B6 (pyridoxine) in phenylketonuria, Can. J. Biochem. Physiol. 37:485–491.

    Article  PubMed  CAS  Google Scholar 

  • McIlwain, H., 1966, Biochemistry and the Central Nervous System, 3rd Ed., J & A Churchill, London.

    Google Scholar 

  • McKean, C. M., 1972, The effects of high phenylalanine concentration on serotonin and catecholamine metabolism in human brain, Brain Res. 47:469–476.

    Article  PubMed  CAS  Google Scholar 

  • McKean, C. M., and Peterson, N. A., 1970, Glutamine in the Phenylketonuric central nervous system, N. Engl. J. Med. 283:1364–1367.

    Article  PubMed  CAS  Google Scholar 

  • McKean, C. M., Schanberg, S. M., and Giarman, N. J., 1962, A mechanism of the indole defect in experimental phenylketonuria, Science 137:604–605.

    Article  PubMed  CAS  Google Scholar 

  • McKean, C. M., Boggs, D. E., and Peterson, N. A., 1968, The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain, J. Neurochem. 15:235–241.

    Article  PubMed  CAS  Google Scholar 

  • McLean, A., Marwich, M. J., and Clayton, B. E., 1973, Enzymes involved in phenylalanine metabolism in the human foetus and child, J. Clin. Pathol. 26:678–683.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A., 1965, Biochemistry of the Amino Acids, 2nd Ed., Vol. II, p. 907, Academic Press, New York.

    Google Scholar 

  • Meister, A., Udenfiiend, S., and Bessman, S. P., 1956, Diminished phenylketonuria in phenylpyruvic oligophrenia after administration of L-glutamine, L-glutamate or L-aspara-gine, J. Clin. Invest. 35:619–626.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, J. H., 1966, Cerebral lipids in phenylketonuria, Pediatrics 37:967–978.

    PubMed  CAS  Google Scholar 

  • Menkes, J. H., 1968, Cerebral proteolipids in phenylketonuria, Neurology 18:1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, J. H., and Avery, M. E., 1963, The metabolism of phenylalanine and tyrosine in the premature infant, Bull. Johns Hopkins Hosp. 113:301–319.

    PubMed  CAS  Google Scholar 

  • Menkes, J. H., and Solcher, H., 1967, Maple syrup urine disease: effects of diet therapy on cerebral lipids, Arch. Neurol. 16:486–491.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. K., and Berndt, W. O., 1974, Characterization of neutral amino acid accumulation by human term placental slices, Amer. J. Physiol. 227:1236–1242.

    PubMed  CAS  Google Scholar 

  • Miller, J. E., and Litwack, G., 1971, Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase, J. Biol. Chem. 246:3234–3240.

    PubMed  CAS  Google Scholar 

  • Miller, A. L., Hawkins, R. A., and Veech, R. L., 1973, Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo, Science 179:904–906.

    Article  PubMed  CAS  Google Scholar 

  • Milstien, S., and Kaufman, S., 1975a, Studies on the phenylalanine hydroxylase system in liver slices, J. Biol. Chem. 250:4777–4781.

    PubMed  CAS  Google Scholar 

  • Milstien, S., and Kaufman, S., 1975b, Studies on the phenylalanine hydroxylase system in vivo. An in vivo assay based on the liberation of deuterium or tritium into the body water from ring-labeled L-phenylalanine, J. Biol. Chem. 250:4782–4785.

    PubMed  CAS  Google Scholar 

  • Mitoma, C., 1956, Studies on partially purified phenylalanine hydroxylase, Arch. Biochem. Biophys. 60:476–484.

    Article  PubMed  CAS  Google Scholar 

  • Mitoma, C., Auld, R. M., and Udenfriend, S., 1957, On the nature of enzymatic defect in phenylpyruvic oligophrenia, Proc. Soc. Exp. Biol. Med. 94:634–635.

    PubMed  CAS  Google Scholar 

  • Miyamoto, M., and Fitzpatrick, T. B., 1957, Competitive inhibition of mammalian tyrosinase by phenylalanine and its relationship to hair pigmentation in phenylketonuria, Nature (London) 179:199–200.

    Article  CAS  Google Scholar 

  • Morales, D. R., and Greenberg, D. M., 1964, Purification and properties of dihydrofolate reductase of sheep liver, Biochim. Biophys. Acta 85:360–376.

    PubMed  CAS  Google Scholar 

  • Moss, A. R., and Schoenheimer, R., 1940, The conversion of phenylalanine to tyrosine in normal rats, J. Biol. Chem. 135:415–429.

    CAS  Google Scholar 

  • Munro, H. N., 1970, Free amino acid pools and their role in regulation, in: Mammalian Protein Metabolism (H. N. Munro, ed.), p. 299, Academic Press, New York.

    Google Scholar 

  • Nadler, H. L., and Hsia, D. Y. Y., 1961, Epinephrine metabolism in phenylketonuria, Proc. Soc, Exp. Biol. Med. 107:721–722.

    CAS  Google Scholar 

  • Neame, K. D., 1961, Phenylalanine as inhibitor of transport of amino-acids in brain, Nature (London) 192:173–174.

    Article  CAS  Google Scholar 

  • Nelson, W. E., 1959, Textbook of Pediatrics, 7th Ed., pp. 50–61, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Neubauer, O., 1909, Ăśber den Abbau der Aminosäuren im gesunden and kranken Organismus, Dtsch Arch. Klin. Med. 95:211–256.

    CAS  Google Scholar 

  • Neubauer, O., and Falta, W., 1904, Ăśber das Schicksal einiger aromatisher SaĂĽren bei der Alkapturie, Z. Physiol. Chem. 42:81–109.

    Article  CAS  Google Scholar 

  • Nielsen, K. H., 1969, Rat liver phenylalanine hydroxylase. A method for the measurement of activity with particular reference to the distinctive features of the enzyme and the pteridine cofactor, Eur. J. Biochem. 7:360–369.

    Article  PubMed  CAS  Google Scholar 

  • Nisselbaum, J. S., and Bodansky, O., 1964, Immunochemical and kinetic properties of anionic and cationic glutamic-oxaloacetic transaminase separated from human heart and human liver, J. Biol. Chem. 239:4232–4236.

    PubMed  CAS  Google Scholar 

  • Nordyke, E. L., and Roach, M. K., 1974, Effect of hyperphenylalaninemia on amino acid metabolism and compartmentation in neonatal rat brain, Brain Res. 67:479–488.

    Article  PubMed  CAS  Google Scholar 

  • Oates, J. A., Nirenberg, P. Z., Jepson, J. B., Sjoerdsma, A., and Udenfriend, S., 1963, Conversion of phenylalanine to phenylethylamine in patients with phenylketonuria, Proc. Soc, Exp. Biol. Med. 112:1078–1081.

    CAS  Google Scholar 

  • Obata, K., and Takeda, K., 1969, Release of Îł-aminobutyric acid into the fourth ventricle induced by stimulation of the cats cerebellum, J. Neurochem. 16:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, D., and Ibbot, F. A., 1966, Effect of prolonged phenylalanine loading on the free amino acid and lipid content of the infant monkey brain, Dev. Med. Child. Neurol. 8:724–728.

    Article  PubMed  Google Scholar 

  • Odessey, R., and Goldberg, A. L., 1972, Oxidation of leucine by rat skeletal muscle, Amer. J. Physiol. 223:1376–1383.

    PubMed  CAS  Google Scholar 

  • Okuno, E., Minatogawa, Y., Noguchi, T., and Kido, R., 1975, Purification and characterization of rat liver mitochondrial phenylalanine pyruvate aminotransferase, Life Sci. 17:211–218.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Amer. J. Physiol. 221:1629–1639.

    PubMed  CAS  Google Scholar 

  • Oldendorf, W. H., 1973a, Stereospecificity of blood-brain barrier permeability to amino acids, Amer. J. Physiol. 224:967–969.

    PubMed  CAS  Google Scholar 

  • Oldendorf, W. H., 1973b, Saturation of blood-brain barrier transport of amino acids in phenylketonuria, Arch. Neurol. 28:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W. H., Sisson, W. B., and Silverstein, A., 1971, Brain uptake of selenomethionine Se 75. H. Reduced brain uptake of selenomethionine Se 75 in phenylketonuria. Arch. Neurol. 24:524–528.

    Article  PubMed  CAS  Google Scholar 

  • Paine, R. A., 1957, The variability in manifestations of untreated patients with phenylketonuria (phenylpyruvic aciduria), Pediatrics 20:290–301.

    PubMed  CAS  Google Scholar 

  • Pare, C. M., Sandler, M., and Stacey, R. S., 1957, 5-Hydroxytryptamine deficiency in phenylketonuria, Lancet 1:551–553.

    Article  Google Scholar 

  • Pare, C. M. B., Sandler, M., and Stacey, R. S., 1958, Decreased 5-hydroxytryptophan decarboxylase activity in phenylketonuria, Lancet 2:1099–1101.

    Article  PubMed  CAS  Google Scholar 

  • Partington, M. W., 1962, Variations in intelligence in phenylketonuria, Can. Med. Assoc. J. 86:736–743.

    PubMed  CAS  Google Scholar 

  • Partington, M. W., and Vickery, S. K., 1974, Phenylketonemia in phenylketonuria, Neuropae-diatrie 5:125–137.

    Article  CAS  Google Scholar 

  • Patel, M. S., 1972, The effect of phenylpyruvate on pyruvate metabolism in rat brain, Biochem. J. 128:677–684.

    PubMed  CAS  Google Scholar 

  • Patel, M. S., and Arinze, I. J., 1975, Phenylketonuria: metabolic alterations induced by phenylalanine and phenylpyruvate, Amer. J. Clin. Nutr. 28:183–188.

    PubMed  CAS  Google Scholar 

  • Patel, A. J., and Balazs, R., 1970, Manifestation of metabolic compartmentation during the maturation of rat brain, J. Neurochem. 17:955–971.

    Article  PubMed  CAS  Google Scholar 

  • Patel, M. S., Grover, W. D., and Auerbach, V. H., 1973, Pyruvate metabolism by homogenates of human brain: effects of phenylpyruvate and implications for the etiology of the mental retardation in phenylketonuria, J. Neurochem. 20:289–296.

    Article  PubMed  CAS  Google Scholar 

  • Penrose, L., and Quastel, J. H., 1937, Metabolic studies in phenylketonuria, Biochem. J. 31:266–274.

    PubMed  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., Tischler, B., and Hestrin, M., 1964, Defective 5-hydroxylation of tryptophan in phenylketonuria, Proc. Soc, Exp. Biol. Med. 115:118–123.

    CAS  Google Scholar 

  • Perry, T. L., Hansen, S., Tischler, B., and Bunting, R., 1967a, Determination of heterozygosity for phenylketonuria on the amino acid analyzer, Clin. Chim. Acta 18:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Tischler, B., Hansen, S., and MacDougall, L., 1967b, A simple test for heterozygosity for phenylketonuria, Clin. Chim. Acta 15:47–50.

    Article  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., Tischler, B., Bunting, R., and Diamond, S., 1970, Glutamine depletion in phenylketonuria, N. Engl. J. Med. 282:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Sander, H. D., Hansen, S., Lesk, D., Klaster, M., and Gravlin, L., 1972, Free amino acids and related compounds in five regions of biopsied cat brain, J. Neurochem. 19:2651–2656.

    Article  PubMed  CAS  Google Scholar 

  • Pirrung, J., Gottesman, L., and Crandall, D. I., 1957, The metabolism of p-methoxyphenyl-alanine and p-methoxyphenylpyruvate, J. Biol. Chem. 229:199–210.

    PubMed  CAS  Google Scholar 

  • Poser, C. M., and Van Bogaert, L., 1959, Neuropathologic observations in phenylketonuria, Brain 82:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Prensky, A. L., and Moser, H. W., 1966, Brain lipids, proteolipids and free amino acids in maple syrup urine disease, J. Neurochem. 13:863–874.

    Article  PubMed  CAS  Google Scholar 

  • Prensky, A. L., Carr, S., and Moser, H. W., 1968, Development of myelin in inherited disorders of amino acid metabolism. A biochemical investigation, Arch. Neurol. 19:552–558.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, M., Olson, M. E., and Greenberg, D. M., 1954, Independent antagonism of amino acid incorporation into protein, J. Biol. Chem. 210:837–849.

    Google Scholar 

  • Raiha, N. C. R., 1973, Phenylalanine hydroxylase in human liver during development, Pediatr. Res. 7:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Rampini, S., 1973, Die kongenitalen Störungen des Phenylalaninstoffwechsels, Schweiz. Med. Wochenschr. 103:537–546.

    PubMed  CAS  Google Scholar 

  • Rampini, S., Anders, P. W., Curtius, H. C., and Marthaler, T., 1969, Detection of heterozygotes for phenylketonuria by column chromatography and discriminatory analysis, Pediatr. Res. 3:287–297.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, H., and Yost, M. T., 1963, Phenylalanine metabolism in dilute-lethal mice, Genetics 48:1487–1495.

    PubMed  CAS  Google Scholar 

  • Rees, K. R., 1955, cited in Bickel, H., Boscott, R. J., and Gerrard, J., Observations on the biochemical error in phenylketonuria and its dietary control, in: Biochemistry of the Developing Nervous System (H. Waelsch, ed.), p. 417, Academic Press, New York.

    Google Scholar 

  • Rembold, H., 1964, Untersuchungen ĂĽber den Stoffwechsel des Biopterins and ĂĽber die polarographische Charakterisierung von Pteridinen, in: Pteridine Chemistry (W. Pfleiderer and E. C. Taylor, eds.), pp. 465–483, Pergamon Press, Oxford.

    Google Scholar 

  • Rembold, H., and Buff, K., 1972, Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer, Eur. J. Biochem. 28:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Renson, J., Weissbach, H., and Udenfriend, S., 1962, Hydroxylation of tryptophan by phenylalanine hydroxylase, J. Biol. Chem. 237:2261–2264.

    PubMed  CAS  Google Scholar 

  • Rey, F., Pellie, C., Sivy, M., Blandin-Savoja, F., Rey, J., and Frezal, J., 1974, Influence of age on ortho-hydroxyphenylacetic acid excretion in phenylketonuria and its genetic variants, Pediatr. Res. 8:540–545.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, S., and Morelos, B. S., 1965, Regulation of cerebral metabolism of amino acids. IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo, J. Neurochem. 12:373–387.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, S., and Morelos, B. S., 1976, Role of ribonuclease action in phenylalanine-induced disaggregation of rat cerebral polyribosomes, J. Neurochem. 26:387–400.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt, D., and Scriver, C.R., 1968, Heterogeneity in genetic control of phenylalanine metabolism in man, Nature (London) 218:677–678.

    Article  CAS  Google Scholar 

  • Ryan, W. L., and Carver, M. J., 1966, Free amino acids of human foetal and adult liver, Nature (London) 212:292–293.

    Article  CAS  Google Scholar 

  • Saugstad, L. F., 1972, Birth weights in children with phenylketonuria and in their siblings, Lancet 1:809–813.

    Article  PubMed  CAS  Google Scholar 

  • Sauberlich, H. E., 1961, Studies on the toxicity and antagonism of amino acids for weanling rats, J. Nutr. 75:61–72.

    PubMed  CAS  Google Scholar 

  • Schreier, K., and Flaig, H., 1956, Urinary excretion of indole-pyruvic acid in normal conditions and in Fölling’s disease, Klin. Wochenschr. 34:1213.

    Article  PubMed  CAS  Google Scholar 

  • Scrimgeour, K. G., and Cheema, S., 1971, Quinonoid dihydropterin reductase, Ann. N.Y. Acad. Sci. 186:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. N., Peterson, N. A., and McKean, C. M., 1969, Inhibition of sterol synthesis in vitro by metabolites of phenylalanine, Biochim. Biophys. Acta 187:236–242.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. N., Peterson, N. A., and McKean, C.M., 1970, Cerebral lipid metabolism in experimental hyperphenylalaninemia: incorporation of 14C-labeled glucose into total lipids, J. Neurochem. 17:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. N., Peterson, N. A., and McKean, C. M., 1972a, Impaired myelin formation in experimental hyperphenylalaninemia, J. Neurochem. 19:479–485.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. N., Peterson, N. A., and McKean, C. M., 1972b, Lipid composition of human cerebral white matter and myelin in phenylketonuria, J. Neurochem. 19:2369–2376.

    Article  PubMed  CAS  Google Scholar 

  • Sherwin, C. P., and Kennard, K. S., 1919, Toxicity of phenylacetic acid, J. Biol. Chem. 40:259–264.

    CAS  Google Scholar 

  • Shiman, R., Akino, M., and Kaufman, S., 1971, Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 246:1330–1340.

    PubMed  CAS  Google Scholar 

  • Siegel, F. L., Aoki, K., and Colwell, R. E., 1971, Polyribosome disaggregation and cell-free protein synthesis in preparations from cerebral cortex of hyperphenylalaninemic rats, J. Neurochem. 18:537–547.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. E., 1974, Labeling of lipids by radioactive amino acids in the central nervous system, J. Neurochem. 23:435–438.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I., and Wolff, O. H., 1974, Natural history of phenylketonuria and influence of early treatment, Lancet 2:540–544.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I., Clayton, B. E., and Wolff, O., 1975a, A variant of phenylketonuria, Lancet 1:328–329.

    Article  PubMed  CAS  Google Scholar 

  • Smith, I., Clayton, B. E., and Wolff, O. H., 1975b, A new variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction, Lancet 1:1108–1111.

    Article  PubMed  CAS  Google Scholar 

  • Snyderman, S. E., Norton, P., and Holt, L. E., Jr., 1955, Effect of tyrosine administration in phenylketonuria, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 14:450–451.

    Google Scholar 

  • Sokoloff, L., 1960, Metabolism of the central nervous system in vivo, in: Handbook of Physiology-Neurophysiology (J. Field, H. W. Magoun, and V. E. Hall, eds.), pp. 1843–1864, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Spydervold, O. S., Zaheer-Baquer, N., McLean, P., and Greenbaum, A. L., 1974, The effect of quinolinic acid on the content and distribution of hepatic metabolites, Arch. Biochem. Biophys. 164:590–601.

    Article  PubMed  CAS  Google Scholar 

  • Stave, U., and Armstrong, M. D., 1973, Tissue free amino acid concentrations in perinatal rabbits, Biol. Neonate 22:374–387.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. H., and Moore, S., 1954, The free amino of human blood and plasma, J. Biol. Chem. 211:915–926.

    PubMed  CAS  Google Scholar 

  • Stein, W. H., Beam, A. G., and Moore, S., 1954, The amino acid content of the blood and urine in Wilson’s disease, J. Clin. Invest. 33:410–419.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, J. B. P., and McBean, M. S., 1967, Diagnosis of phenylketonuria (phenylalanine hydroxylase deficiency, temporary and permanent), Br. Med. J. 3:579–581.

    Article  PubMed  CAS  Google Scholar 

  • Storm, C. B., and Kaufman, S., 1968, The effect of variation of cofactor and substrate structure on the action of phenylalanine hydroxylase, Biochem. Biophys. Res. Commun. 32:788–793.

    Article  PubMed  CAS  Google Scholar 

  • Swaiman, K. F., Hosfield, W. B., and Lemieux, B., 1968, Elevated plasma phenylalanine concentration and lysine incorporation into ribosomal protein of developing brain, J. Neurochem 15:687–690.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, K., and Armstrong, M. D., 1963, The enzymatic formation of o-hydroxyphenyl-acetic acid, J. Biol. Chem. 238:4091–4097.

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., Kappe, T., and Armstrong, M. D., 1964, Further studies on phenylpyruvate oxidase. Occurrence of side chain rearrangement and comparison with p-hydroxyphenyl-pyruvate oxidase, J. Biol. Chem. 239:3389–3395.

    PubMed  CAS  Google Scholar 

  • Tashian, R. E., 1961, Inhibition of brain glutamic acid decarboxylase by phenylalanine, valine, and leucine derivatives: a suggestion concerning the etiology of the neurological defect in phenylketonuria and branched-chain ketonuria, Metabolism 10:393–402.

    PubMed  CAS  Google Scholar 

  • Tischler, B., and McGeer, E. G., 1958, Vitamin B6 in mental deficiency: xanthurenic acid excretion in phenylketonurics, Can. Med. Assoc. J. 78:954–955.

    PubMed  CAS  Google Scholar 

  • Tong, J. H., and Kaufman, S., 1975, Tryptophan hydroxylase: purification and some properties of the enzyme from rabbit hindbrain, J. Biol. Chem. 250:4152–4158.

    PubMed  CAS  Google Scholar 

  • Tourian, A., Goddard, J., and Puck, T. T., 1969, Phenylalanine hydroxylase activity in mammalian cells, J. Cell. Physiol. 73:159–170.

    Article  PubMed  CAS  Google Scholar 

  • Treiman, D. M., and Tourian, A., 1973, Phenylalanine hydroxylase in dilute lethal mice, Biochim. Biophys. Acta 313:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., 1966, Tyrosine hydroxylase, Pharmacol. Rev. 18:43–51.

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., 1967, The primary enzymatic defect in phenylketonuria and how it may influence the central nervous system, in: Phenylketonuria and Allied Metabolic Diseases (J. A. Anderson, and K. F. Swaiman, eds.), pp. 1–8, U.S. Dept of Health, Education and Welfare, Washington, D.C.

    Google Scholar 

  • Udenfriend, S., and Bessman, S. P., 1953, The hydroxylation of phenylalanine and antipyrine in phenylpyruvic oligophrenia, J. Biol. Chem. 203:961–966.

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., and Cooper, J. R., 1952, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 194:503–511.

    PubMed  CAS  Google Scholar 

  • Umezawa, K., Sakamoto, Y., and Ichihara, K., 1959, The metabolism of p-methylphenylala-nine and p-methoxyphenylalanine, J. Biochem. 46:941–944.

    CAS  Google Scholar 

  • Vandeman, P. R., 1963, Termination of dietary treatment for phenylketonuria, Amer. J. Dis. Child. 100:492–495.

    Google Scholar 

  • Van den Berg, C. J., 1970, Compartmentation of glutamate metabolism in the developing brain: experiments with labelled glucose, acetate, phenylalanine, tyrosine and proline, J. Neurochem. 17:973–983.

    Article  PubMed  Google Scholar 

  • Van den Berg, C. J., 1971, Utilization of substrates for energy production by the growing brain, Psychiatr. Neurol. Neurochir. 74:427–431.

    Google Scholar 

  • Vollmin, J. A., Bosshard, H. R., Muller, M., Rampini, S., and Curtius, H. C., 1971, Determination of urinary aromatic acids by gas chromatography, Z. Klin. Chem. Klin. Biochem. 9:402–404.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., Lyles, T. O., Roncari, D. A. K., and Vagelos, P. R., 1973, Fatty acid synthetase of developing brain and liver. Content, synthesis and degradation during development, J. Biol. Chem. 248:2502–2513.

    PubMed  CAS  Google Scholar 

  • Wadman, S. K., Van der Heiden, C., and Van Sprang, F. J., 1971a, Abnormal tyrosine and phenylalanine metabolism in patients with tyrosyluria and phenylketonuria; gas-liquid chromatographic analysis of urinary metabolites, Clin. Chim. Acta 34:277–287.

    Article  CAS  Google Scholar 

  • Wadman, S. K., Van Sprang, F. J., Van der Heiden, C., and Ketting, D., 1971b, Quantitation of urinary phenylalanine metabolites in phenylketonuria (PKU), in: Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism (H. Bickel, F. B. Hudson, and L. I. Woolf, eds.), pp. 65–72, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Wallace, H. W., Moldave, K., and Mesiter, A., 1957, Studies on conversion of phenylalanine to tyrosine in phenylpyruvic oligophrenia, Proc. Soc. Exp. Biol. Med. 94:632–633.

    PubMed  CAS  Google Scholar 

  • Wapnir, R. A., Hawkins, R. L., and Stevenson, J. H., 1971, Ontogenesis of phenylalanine and tryptophan hydroxylation in rat brain and liver, Biol. Neonate 118:85.

    Google Scholar 

  • Watt, D. D., and Martin, P. R., 1969, Phenylalanine antimetabolite effect on development. I. Behavioral effects of d, L-4-chlorophenylalanine in the young rat, Life Sci. 8:1211–1222.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., Glazer, R. I., and Ross, R. A., 1970, Regulation of human and rat brain metabolism: inhibitory action of phenylalanine and phenylpyruvate on glycolysis, protein, lipid, DNA and RNA metabolism, in: Advances in Enzyme Regulation (G. Weber, ed.), pp. 13–36, Pergamon Press, New York.

    Google Scholar 

  • Weil-Malherbe, H., 1955, Blood adrenaline and intelligence, in: Biochemistry of the Developing Nervous System (H. Waelsch, ed.) pp. 458–465, Academic Press, New York.

    Google Scholar 

  • Williamson, J. R., and Corkey, B. E., 1969, Assay of intermediates of the citric acid cycle and related compounds by fluorometric methods, in: Methods in Enzymology (J. M. Lowenstein, ed.), p. 445, Academic Press, New York.

    Google Scholar 

  • Wood, J. L., and Cooley, S. L., 1954, Substitution of α-keto acids for five amino acids essential for growth of the rat, Proc. Soc. Exp. Biol. Med. 85:409–411.

    PubMed  CAS  Google Scholar 

  • Woods, M. N., and McCormick, D. B., 1964, Effects of dietary phenylalanine on activity of phenylalanine hydroxylase from rat liver, Proc. Soc. Exp. Biol. Med. 116:427–430.

    PubMed  CAS  Google Scholar 

  • Woolley, D. W., and Van der Hoeven, T., 1965, Serotonin deficiency in infancy as a cause of a mental defect in experimental phenylketonuria, Int. J. Neuropsychiatry 1:529–544.

    PubMed  CAS  Google Scholar 

  • Woolf, L. I., 1951, Excretion of conjugated phenylacetic acid in phenylketonuria, Biochem. J. 49:ix-x.

    PubMed  CAS  Google Scholar 

  • Woolf, L. I., and Vulliamy, D. G., 1951, Phenylketonuria with a study of the effect upon it of glutamic acid, Arch. Dis. Childhood 26:487–494.

    Article  CAS  Google Scholar 

  • Woolf, L. I., Griffiths, R., and Moncrieff, A., 1955, Treatment of phenylketonuria with a diet low in phenylalanine, Br. J. Med. 1:57–64.

    Article  CAS  Google Scholar 

  • Woolf, L. I., Cranston, W. I., and Goodwin, B. L., 1967, Genetics of phenylketonuria, Nature (London) 213:882–885.

    Article  CAS  Google Scholar 

  • Woolf, L. I., Goodwin, B. L., Cranston, W. I., Wade, D. N., Woolf, F., Hudson, F. B., and McBean, M. S., 1968, A third allele at the phenylalanine-hydroxylase locus in mild phenylketonuria, Lancet 1:114–117.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, L. I., Jakubovic, A., Woolf, F., and Bory, P., 1970, Metabolism of phenylalanine in mice homozygous for the gene “dilute lethal,” Biochem. J. 119:895–903.

    PubMed  CAS  Google Scholar 

  • Yuwiler, A., and Louttit, R. T., 1961, Effects of phenylalanine diet on brain serotonin in the rat, Science 134:831–832.

    Article  PubMed  CAS  Google Scholar 

  • Zachmann, M., Cleveland, W. W., Sandberg, D. H., and Nyhan, W. L., 1966, Concentrations of amino acids in plasma and muscle, Amer. J. Dis. Child. 112:283–289.

    PubMed  CAS  Google Scholar 

  • Zamecnik, P. C., and Keller, E. B., 1954, Relationship between phosphate energy donors and incorporation of labeled amino acids into proteins, J. Biol. Chem. 209:337–353.

    PubMed  CAS  Google Scholar 

  • Zannoni, V. G., and Moraru, E., 1969, Mechanism of phenylalanine hydroxylation and “phenylketonuria” in dilute-lethal mice, FEBS Symp. 19:347–354.

    Google Scholar 

  • Zannoni, V. G., Weber, W. W., van Valen, P., Rubin, A., Berstein, R., and La Du, B. N., 1966, Phenylalanine metabolism and “phenylketonuria” in dilute-lethal mice, Genetics 54:1391–1399.

    PubMed  CAS  Google Scholar 

  • Zelnicek, E., and Slama, J., 1971, Phenylpyruvate and o-hydroxyphenylacetate in Phenylketonuric urine, Clin. Chim. Acta. 35:496–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Kaufman, S. (1977). Phenylketonuria: Biochemical Mechanisms. In: Agranoff, B.W., Aprison, M.H. (eds) Advances in Neurochemistry. Advances in Neurochemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8237-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8237-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8239-7

  • Online ISBN: 978-1-4615-8237-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics