Skip to main content

Extreme Values and Rare Events of Non-Stationary Random Sequences

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 11))

Abstract

The aim of this paper is to summarize some of the recent results of extreme values in non-stationary sequences. The classical extreme value theory considers mainly the limit distributions of the maxima or minima for iid. sequences. This theory was extended consecutively by a number of papers (e.g. Watson [24], Loynes [18], Leadbetter [15]) to apply for a wide class of stationary sequences. The state of theory is well described in Leadbetter, Lindgren and Rootzen [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.J. (1978) Weak convergence results for extrem-al processes generated by dependent random variables. Ann. Probab. 6, 660–667.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman, S.M. (1971) Asymptotic independence of the number of high and low level crossings of stationary Gauss ian sequences. Ann. Math. Statist. 42, 927–946.

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman, S.M. (1983) Sojourns of stationary processes in rare sets. Ann. Probab. 11, 847–866.

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, R.A. (1983) Limit laws for upper and lower extremes from stationary mixing sequences. J. Multivariate Anal. 13, 273–286.

    Article  MATH  MathSciNet  Google Scholar 

  5. Denzel, G.E. and O’Brien, G.L. (1975) Limit theorems for extreme values of chain-dependent processes. Ann. Probab. 3, 773–779.

    Article  MATH  MathSciNet  Google Scholar 

  6. Deo, C.M. (1972) Some limit theorems for maxima of absolute values of Gaussian sequences. Sankhya Ser. A 34, 289–292.

    MATH  MathSciNet  Google Scholar 

  7. Deo, C.M. (1972) Some limit theorems for maxima of non-stationary Gaussian sequences. Ann. Statist. 1, 981–984.

    Article  MathSciNet  Google Scholar 

  8. Galambos, J. (1972) On the distribution of the maximum of random variables. Ann. Math. Statist. 43, 516–521.

    Article  MATH  MathSciNet  Google Scholar 

  9. Galambos, J. (1978) The asymptotic theory of extreme order statistics. Wiley, New York.

    MATH  Google Scholar 

  10. Horowitz, J. (1980) Extreme values from a nonstationary stochastic process: An application to air quality analysis. Technometrics 22, 469–478.

    Article  MathSciNet  Google Scholar 

  11. Hüsler, J. (1983) Asymptotic approximation of crossing probabilities of random sequences. Z. Wahrsch. verw. Gebiete 63, 257–270.

    Article  MATH  Google Scholar 

  12. Hüsler, J. (1986) Extreme values of non-stationary sequences. To be published in J. Appl. Probab.

    Google Scholar 

  13. Juncosa, M.L. (1949) The asymptotic behaviour of the minimum in a sequence of random variables. Duke Math. J. 16, 609–618.

    MATH  MathSciNet  Google Scholar 

  14. Kallenberg, O. (1976) Random measures. Akademie-Verlag, Berlin, Academic Press, London-New York.

    Google Scholar 

  15. Leadbetter, M.R. (1974) On extreme values in stationary sequences. Z. Wahrsch. verw. Gebiete 28, 289–303.

    Article  MATH  MathSciNet  Google Scholar 

  16. Leadbetter, M.R. (1983) Extremes and local dependence in stationary sequences. Z. Wahrsch. verw. Gebiete 65, 291–306.

    Article  MATH  MathSciNet  Google Scholar 

  17. Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983) Extremes and related properties of random sequences and processes. Springer, New York, Heidelberg, Berlin.

    Google Scholar 

  18. Loynes, R.M. (1965) Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993–999.

    Article  MATH  MathSciNet  Google Scholar 

  19. Meijzler, D.G. (1956) On the problem of limit distribution for the maximal term of a variational series. L’vov Politechn. Inst. Naucn. Zp. (Fiz.-Mat.) 38, 90–109.

    Google Scholar 

  20. Resnick, S.I. and Neuts, M.F. (1970) Limit laws for maxima of a sequence of random variables defined on a Markov chain. Adv. Appl. Probab. 2, 323–343.

    Article  MATH  MathSciNet  Google Scholar 

  21. Schüpbach, M. (1986) Limit laws for minima and maxima of nonstationary random sequences. Ph.D.thesis, University of Bern.

    Google Scholar 

  22. Tiago de Oliveira, J. (1976) Asymptotic behaviour of maxima with periodic disturbances. Ann. Inst. Statist. Math. 28, 19–23.

    Article  MATH  MathSciNet  Google Scholar 

  23. Turkman, K.F. and Walker, A.M. (1983) Limit laws for the maxima of a class of quasi-stationary sequences. J. Appl. Probab. 20, 814–821.

    Article  MATH  MathSciNet  Google Scholar 

  24. Watson, G.S. (1954) Extreme values in samples from independent stationary stochastic processes. Ann. Math. Statist. 25, 798–900.

    Article  MATH  Google Scholar 

  25. Zähle, U. (1980) A Poisson limit theorem for rare events of a Gaussian sequence. Theory Probab. Appl. 25, 90–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hüsler, J. (1986). Extreme Values and Rare Events of Non-Stationary Random Sequences. In: Eberlein, E., Taqqu, M.S. (eds) Dependence in Probability and Statistics. Progress in Probability and Statistics, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8162-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8162-8_21

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-8163-5

  • Online ISBN: 978-1-4615-8162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics