Skip to main content

Extreme values for stationary sequences

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 11))

  • 80 Accesses

Abstract

Let (Xn) n = 1 be a strictly stationary real-valued sequence and let F(x) = P[X1 ≤ x]. Let Mi,j = max(Xi+1,..., Xj) and Mj = max(X1,...,Xj) = M0,j. Let (cn) n = 1 be a sequence of real numbers. The purpose of this article is to review the theory of the asymptotic behaviour of P[Mn ≤ cn] as n → ∞. We mainly consider aspects which are not treated in Leadbetter, Lindgren and Rootzén [4]. To avoid trivialities we assume that F(cn) < 1 for all n, F(cn) → 1, and P[X1 = sup{x: F(x) < 1}] = 0. All limits are “as n → ∞.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, R. (1985). This volume.

    Google Scholar 

  2. Leadbetter, M.R. (1974). On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 28, 289–303.

    Article  MATH  MathSciNet  Google Scholar 

  3. Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 65, 291–306.

    Article  MATH  MathSciNet  Google Scholar 

  4. Leadbetter, M.R., Lindgren, G., and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer Statistics Series. Berlin.

    Book  MATH  Google Scholar 

  5. Loynes, R.M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993–999.

    Article  MATH  MathSciNet  Google Scholar 

  6. Newell, G.F. (1964). Asymptotic extremes for m-dependent random variables,. Ann. Math. Statist. 35, 1322–1325.

    Article  MATH  MathSciNet  Google Scholar 

  7. O’Brien, G.L. (1974). The maximum term of uniformly mixing stationary processes. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 57–63.

    Article  MATH  MathSciNet  Google Scholar 

  8. O’Brien, G.L. (1984). Extreme values for stationary and Markov sequences. To appear.

    Google Scholar 

  9. Rootzén, H. (1985). Maxima and exceedances of stationary Markov chains. To appear.

    Google Scholar 

  10. Watson, G.S. (1954). Extreme values in samples from m-dependent stationary stochastic processes. Ann. Math., Statist. 25, 798–800.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Brien, G.L. (1986). Extreme values for stationary sequences. In: Eberlein, E., Taqqu, M.S. (eds) Dependence in Probability and Statistics. Progress in Probability and Statistics, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8162-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8162-8_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-8163-5

  • Online ISBN: 978-1-4615-8162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics