Skip to main content

Multivariate Appell polynomials and the central limit theorem

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 11))

Summary

A CLT for processes of the form L(Xt) is proved, where L(x) is a polynomial and Xt, t ∈ ℤ is a process with long range dependence. Conditions on Xt are formulated in terms of semi-invariants; they are specified for linear processes Xt. The notion of the Appell rank of L(x) plays a basic role in the CLT. Various topics related to Appell polynomials (e.g. expansions, diagram formalism for semi-invariants) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avram, F., Taqqu, M.S. Non—central limit theorems and generalized powers. Cornell University 1985.

    Google Scholar 

  2. Berman, S.M. High level sojourns for strongly dependent Gaussian Processes. Z.Wahrsch.verw.Gebiete 50 (1979), 223–236.

    Article  MATH  MathSciNet  Google Scholar 

  3. Boas, R.P., Buck, R.C. Polynomials expansions of analytic functions. Springer: New—York, 1964.

    Book  Google Scholar 

  4. Brillinger, D.R. Time series. Date analysis and theory. Holt, Riueart and Winston: New—York 1975.

    Google Scholar 

  5. Breuer, P., Major, P. Central limit theorem for non—linear functionals of Gaussian fields. J.of multivariate analysis 13 (1983), 425–441.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourbaki, N. Elements de mathématique. Livre IV. Fonctions d’une variable réele. Herman: Paris,4958

    Google Scholar 

  7. Dobrushin, R.L., Major, P. Non—central limit theorem for non—linear functionals of Gaussian fields. Z.Wahrsch. verw. Gebiete 50 (1979), 27–52.

    Article  MATH  MathSciNet  Google Scholar 

  8. Feinsilver, P.J. Special functions, probability semigroups, and Hamiltonian flows. Lecture Notes in Math., 696, Springer: New—York, 1978.

    Google Scholar 

  9. Giraitis, L. Central limit theorem for functionals of linear processes. (Russian). Litovsk.mat.sb. 25 (1985) No 1, 43–57.

    MathSciNet  Google Scholar 

  10. Giraitis, L., Surgailis, D. CLT and other limit theorems for functionals of Gaussian processes. Z.Wahrsch.verw. Gebiete (to appear).

    Google Scholar 

  11. Glimm, J., Jaffe, A. Quantum physics. A functional integral point of view. Springer: New—York—Berlin 1981.

    MATH  Google Scholar 

  12. Ibragimov, I.A., Linnik, J. V. Independent and stationary sequences of random variables. Walters-Noordhoff: Groningen 1971.

    MATH  Google Scholar 

  13. Kazmin, J.A. Appell polynomial series expantions. (Russian) Mat.Zametki 5 (1969), 509–520.

    MathSciNet  Google Scholar 

  14. Krein, S.G. (ed.). Functional analysis. (in Russian). Nauka: Moscow 1972.

    Google Scholar 

  15. Leonov, P.P., Shiryaev, A.N. Sur le calcul des semi-invariants. Teor.Verojatn. i Primenen. 4 (1959), 342–355.

    Google Scholar 

  16. Lukacs, E. Characteristic functions (2 v4 ed). Griffin: London, 1970

    Google Scholar 

  17. Malyshev, V.A. Cluster expansions in lattice models of statistical physics and quantum field theory.(Russian). Uspeki Mat.Nauk 35 (1980), No 2, 3–53.

    MathSciNet  Google Scholar 

  18. Ruiz de Chavez, J. Conpensation multiplicative et “Produits de Wick”. In: Seminaire de Probabilités XVIII Proceedings. Lecture Notes in Math., 1123, Springer: Berlin 1985, pp. 242–247.

    Google Scholar 

  19. Rota, G.C. Finite Operators Calculus. Academic Press: New York 1975.

    Google Scholar 

  20. Szegö, G. Orthogonal polynomials. American mathematical society Colloquium publ. vol.XXIII. Rew.ed New-York 1959.

    MATH  Google Scholar 

  21. Sheffer, I.M. Note an Appell polynomials. Bull.Amer.Math. Soc. 51 (1945), 739–744.

    Article  MATH  MathSciNet  Google Scholar 

  22. Shohat, J. The relation of the classical orthogonal polynomials to the polynomials of Appell. Amer.J.Math. 58 (1936), 453–464.

    Article  MathSciNet  Google Scholar 

  23. Simon, B. The P(4)2 Euclidean (Quantum) Field Theory. Princeton N.J.: Princeton University Press 1974.

    Google Scholar 

  24. Sun, T.C. On central and non-central limit theorems for non linear functions of a stationary Gaussian process. In: Dependence in Probability and Statistik.

    Google Scholar 

  25. Surgailis, D. Convergence of sums of non-linear functions of moving averages to self-similar processes. (Russian). Dokl.Akad.Nauk SSSR 257 (1981), No 1, 51–54.

    MathSciNet  Google Scholar 

  26. Surgailis, D. Domains of attraction of self-similar multiple integrals. (Russian) Litovsk.Mat.Sb. 22 (1982), No 2, 195–201.

    MathSciNet  Google Scholar 

  27. Surgailis, D. On Poisson multiple stochastic integrals and associated equillibrium Markov processes.–In: Lecture Notes Contr.Inform.Sci., 49, Springer: Berlin 1983, pp. 233–248.

    Google Scholar 

  28. Taqqu, M.S. Weak convergence to fractional Brownian motion and to Rosenblatt processes. Z.Wahrsch.verw.Gebibte 31 (1975), 287–302.

    Article  MATH  MathSciNet  Google Scholar 

  29. Tagqu, M.S. Convergence of iterated processes of arbitrary Hermite rank. Z.Wanrsch.verw.Gebiete 50 (1979), 53–83.

    Article  Google Scholar 

  30. Yosida, K. Functional Analysis. Springer: Berlin-Gtitingen 1965.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giraitis, L., Surgailis, D. (1986). Multivariate Appell polynomials and the central limit theorem. In: Eberlein, E., Taqqu, M.S. (eds) Dependence in Probability and Statistics. Progress in Probability and Statistics, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8162-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8162-8_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-8163-5

  • Online ISBN: 978-1-4615-8162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics