Skip to main content
Book cover

Vasopressin pp 211–256Cite as

Electrophysiology of the Central Vasopressin System

  • Chapter

Abstract

The goal of the electrophysiologist working on the central vasopressin (VP) system is to provide a complete description of all electrical events intervening between arrival of synaptic transmitters or other agents on the membrane receptors of the VP-secreting neurosecretory cells and of activation of the exocytotic process leading to VP release from the neurohypophysial terminals. On a wider scale, the electrophysiologist may endeavor to describe the generation and integration of nerve impulses within the various afferent pathways impinging upon VP cells. Armed with such information, the electrophysiologist can then hope to provide a complete explanation of how stimuli that influence VP release are integrated and processed to bring about a particular level and pattern of hormonal output. As will become apparent, the past decade has seen considerable advance toward the attainment of this objective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., and Ogata, N., 1982, Ionic mechanism for the osmotically-induced depolarization in neurones of the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.) 327: 157–171

    CAS  Google Scholar 

  • Abe, H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.) 337: 665–685.

    CAS  Google Scholar 

  • Akaishi, T., and Ellendorff, F., 1983, Electrical properties of paraventricular neurosecretory neurones with and without recurrent inhibition, Brain Res. 262: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Akaishi, T., Negoro, H., and Kobayasi, S., 1980, Responses of paraventricular and supraoptic units to angiotensin II, Sar(l)-Ile(8)-angiotensin II and hypertonic NaCl administered into the cerebral ventricle, Brain Res. 188: 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Andrew, R. D., and Dudek, F. E., 1984a, Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells, J. Neurophysiol. 51: 552–566.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., and Dudek, F. E., 1984b, Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus, J. Physiol. (Lond.) 353: 171–185.

    CAS  Google Scholar 

  • Andrew, R. D., Mac Vicar, B. A., Dudek, F. E., and Hatton, G. I., 1981, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science 211: 1187–1189.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. E., and Sladek, C. D., 1982, Spontaneous phasic firing in supraoptic neurons recorded from hypothalamo-neurohypophysial expiants in vitro, Neuroendocrinology 34: 405–409.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat hypotha-lamic paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immunocyto-chemical analysis, Neuroscience 5: 1931–1958.

    Article  PubMed  CAS  Google Scholar 

  • Arnauld, E., and DuPont, J., 1982, Vasopressin release and firing of supraoptic neurosecretory neurones during drinking in the dehydrated monkey, Pflugers Arch. 394: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Arnauld, E., Dufy, B., and Vincent, J. D., 1975, Hypothalamic supraoptic neurones: Rates and patterns of action potential firing during water deprivation in the unanesthetized monkey, Brain Res. 100: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Arnauld, E., Cirino, M., Layton, B. S., and Renaud, L. P., 1983, Contrasting actions of amino acids, acetylcholine, norradrenaline and leucine enkephalin on the excitability of supraoptic vasopressin secreting neurons, Neuroendocrinology 36: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Baertschi, A. J., and Dreifuss, J. J., 1979, The antidromic compound action potential of the hypothalamo-neurohypophysial tract, a tool for assessing posterior pituitary activity in vivo, Brain Res. 171: 437–451.

    Article  PubMed  CAS  Google Scholar 

  • Banks, D., and Harris, M. G, 1984, Lesions of the locus coeruleus abolish baroreceptor-induced depression of supraoptic neurons in the rat, J. Physiol. (Lond.) 355: 383–398.

    CAS  Google Scholar 

  • Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39: 255–259.

    Google Scholar 

  • Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells, Brain Res. 33: 353–366.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126: 483–517.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, C. T., 1973, Activity of somosensitive neurones: Plasma osmotic pressure thresholds, Physiol. Behav. 11: 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell, R. J., and Leng, G., 1982, Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis, Nature (Lond.) 298: 161–162.

    Article  CAS  Google Scholar 

  • Bicknell, R. J., Brown, D., Chapman, C., Hancock, P. D., and Leng, G., 1984, Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis, J. Physiol. (Lond.) 348: 601–613.

    CAS  Google Scholar 

  • Bioulac, B., Gaffori, O., Harris, M. C., and Vincent, J. D., 1978, Effects of acetylcholine, sodium glutamate and GABA on the discharge of supraoptic neurons in the rat, Brain Res. 154: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Moore, R. Y., Nobin, A., and Stenevi, U., 1973, The organization of tubero-hypophy-seal and reticulo-infundibular catecholamine neuron system in the rat brain, Brain Res. 51: 171–191.

    Article  PubMed  CAS  Google Scholar 

  • Blume, H., Pittman, Q. J., and Renaud, L. P., 1978, Electrophysiological indications of a “vasopres-sinergic” innervation of the median eminence, Brain Res. 155: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Bourque, C. W., and Renaud, L. P., 1984, Activity patterns and osmosensitivity of rat supraoptic neurones in perfused hypothalamic expiants, J. Physiol. (Lond.) 349: 631–642.

    CAS  Google Scholar 

  • Bourque, C. W., and Renaud, L. P., 1985a, Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.) 363: 429–440.

    CAS  Google Scholar 

  • Bourque, C. W., and Renaud, L. P., 1985b, Calcium-dependent action potentials in rat supraoptic neurosecretory neurons recorded in vitro, J. Physiol. (Lond.) 363: 419–428.

    CAS  Google Scholar 

  • Brimble, M. J., and Dyball, R. E. J., 1977, Characterization of the responses of oxytocin-and vaso-pressin-secreting neurones in the supraoptic nucleus to osmotic stimulation, J. Phvsiol. (Lond.) 271: 253–271.

    CAS  Google Scholar 

  • Brimble, M. J., Dyball, R. E. J., and Forsling, M. L., 1978, Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei, J. Phvsiol. (Lond.) 278: 69–78.

    CAS  Google Scholar 

  • Buijs, R. M., and Swaab, D. F., 1979, Immuno-electron microscopical demonstration of vasopressin and oxytocin in the limbic system of the rat, Cell. Tissue Res. 204: 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., and Van Heerikhuize, J. J., 1982, Vasopressin and oxytocin release in the brain: A syn-aptic event, Brain Res. 252: 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., De Vries, G. J., Van Leeuwen, F. W., and Swaab, D. F., 1983, Vasopressin and oxytocin: Distribution and putative functions in the brain, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 115–122, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Castel, M., Gainer, H., and Dellmann, H. D., 1984, Neuronal secretory systems, Int. Rev. Cytol. 88: 303–459.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C., Hatton, G. I., Ho, Y. W., Mason, W. T., and Robinson, I. C. A. F., 1983, Release of oxytocin (OXT) and vasopressin (AVP) from slices of guinea-pig hypothalamus containing supraoptic (s.o.n.) or paraventricular (p.v.n.) nuclei, J. Physiol. (Lond.) 343:40P.

    Google Scholar 

  • Ciriello, J., and Caverson, M. M. 1984, Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat, Brain Res. 292: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G., and MacMillan, S. J., 1984, Electrophysiological evidence for a projection from the subfornical organ to the supraoptic nucleus, J. Anat. 139: 735.

    Google Scholar 

  • Clarke, G., and Merrick, L. P., 1985, Electrophysiological studies of the magnocellular neurons, in: Current Topics in Neuroendocrinology, Vol. 4: Neurobiology of ADH, (D. Ganten and D. Pfaff, eds.), pp. 17–60, Springer-Verlag, New York.

    Google Scholar 

  • Clarke, G. and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett. 39: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G., Wood, P., Merrick, L., and Lincoln, D. W., 1979, Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurons, Nature (Lond.) 282: 746–748.

    Article  CAS  Google Scholar 

  • Cross, B. A., and Green, J. D., 1959, Activity of single neurones in the hypothalamus: Effect of osmotic and other stimuli, J. Physiol. (Lond.) 148: 554–569.

    CAS  Google Scholar 

  • Day, T. A., and Renaud, L. P., 1984, Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons, Brain Res. 303: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Day, T. A., Ferguson, A. V., and Renaud, L. P., 1984, Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells, J. Physiol. (Lond.) 355: 237–249.

    CAS  Google Scholar 

  • De Lorenzo, R. J., 1982, Calmodulin in neurotransmitter release and synaptic function, Fed. Proc. 41: 2265–2272.

    Google Scholar 

  • De Wied, D., Bohus, B., Van Ree, J. M., Urban, I., and Van Wimersma Greidanus, T. J. B., 1977, Neurohypophyseal hormones and behaviour, in: Neurohypophysis: International Conference on the Neurohypophysis, Key Biscayne, Florida (A. M. Moses and L. Share, eds.), pp. 201–210, Karger, Basel.

    Google Scholar 

  • Doris, P. A., 1984, Vasopressin and central integrative processes, Neuroendocrinology 38: 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, W. W., 1974a, Mechanism of release of neurohypophysial hormones: Stimulus-secretion coupling, in: Handbook of Physiology, Section VII: Endocrinology, Vol. IV: The Pituitary Gland and Its Neuroendocrine Control, Part 1 (R. O. Greep and E. B Astwood, eds.), pp. 191–224, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Douglas, W. W., 1974b, Exocytosis and the exocytosis-vesiculation sequence: with special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophores, in: Secretory Mechanism of Exocrine Glands (N. A. Thorn and O. H Petersen, eds.), pp. 116–129, Munks-gaard, Copenhagen.

    Google Scholar 

  • Douglas, W. W., and Poisner, A. M., 1964, Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysis, J. Physiol. (Lond.) 172: 1–18.

    CAS  Google Scholar 

  • Dreifuss, J. J. and Kelly, J. S., 1972, Recurrent inhibition of antidromically identified rat supraoptic neurones, J. Physiol. (Lond.) 220: 87–103.

    CAS  Google Scholar 

  • Dreifuss, J. J., Harris, M. C., and Tribollet, E., 1976a, Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats, J. Physiol. (Lond.) 257: 237–254.

    Google Scholar 

  • Dreifuss, J. J., Tribollet, E., Baertschi, A. J., and Lincoln, D. W., 1976b, Mammalian endocrine neurones: Control of phasic activity by antidromic action potentials, Neurosci. Lett. 3: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, F. E., Hatton, G. T., and Mac Vicar, B. A., 1980, Intracellular recording from the paraventricular nucleus in slices of rat hypothalamus, J. Physiol. (Lond.) 301: 101–114.

    CAS  Google Scholar 

  • Dunn, F. L., Brennan, T. J., Nelson, A. E., and Robertson, G. L., 1973, The role of blood osmolality and volume in regulating vasopressin secretion in the rat, J. Clin. Invest. 52: 3212–3219.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, A., and Dyball, R. E. J., 1979, Phasic firing enhances vasopressin release from the rat neurohypophysis, J. Physiol. (Lond.) 290: 433–440.

    CAS  Google Scholar 

  • Dyball, R. E. J., 1971, Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units, J. Physiol. (Lond.) 214: 245–256.

    CAS  Google Scholar 

  • Dyball, R. E. J., 1975, Potentiation of neurohypophysial hormone release by urethane (rat), J. Physiol. (Lond.) 245: 119P.

    Google Scholar 

  • Dyball, R. E. J., and Koizumi, K., 1969, Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophysial hormone release, J. Physiol. (Lond.) 201: 211–222.

    Google Scholar 

  • Dyball, R. E. J., and McPhail, C. I., 1974, Unit activity in the supraoptic and paraventricular nuclei: The effects of anesthetics, Brain Res. 67: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Dyball, R. E. J., and Poutney, P. S., 1973, Discharge patterns of supraoptic and paraventricular neurones in rats given a 2% NaCl solution instead of drinking water, J. Endocrinol. 56: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Dyball, R. E. J., and Prilusky, J., 1981, Responses of supraoptic neurones in the intact and deaffer-ented rat hypothalamus to injections of hypertonic NaCl, J. Physiol. (Lond.) 311: 443–452.

    CAS  Google Scholar 

  • Ferguson, A. V., Pittman, Q. J. and Riphagen, C. L., 1984, Effect of cooling on supraoptic neurohypophysial neuronal activity and on urine flow in the rat, J. Physiol. (Lond.) 352: 103–112.

    CAS  Google Scholar 

  • Gahwiler, B. H., and Dreifuss, J. J., 1979, Phasically firing neurones in long-term authors of the rat hypothalamic supraoptic area: Pacemaker and follower cells, Brain Res. 177: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Gilbey, M. P., Coote, J. H., Fleetwood-Walker, S., and Peterson, D. F., 1982, The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones, Brain Res. 251: 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, G., and Lowry, P. J., 1979, Corticotrophin-releasing factor may be modulated vasopressin, Nature (Lond.) 278: 463–464.

    Article  CAS  Google Scholar 

  • Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1981, Intracellular calcium and the control of neuronal pacemaker activity, Fed. Proc. 40: 2233–2239.

    PubMed  CAS  Google Scholar 

  • Groos, G. A., and Hendriks, J., 1979, Regularly firing neurons in the rat suprachiasmatic nucleus, Experientia 35: 1597–1598.

    Article  PubMed  CAS  Google Scholar 

  • Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiasmatic neurones, J. Comp. Physiol. 135: 349–356.

    Article  Google Scholar 

  • Haller, E. W., and Wakerley, J. B., 1980, Electrophysiological studies of paraventricular and supraop-tic neurones recorded in vitro from slices of rat hypothalamus, J. Physiol. (Lond.) 302: 347–362.

    CAS  Google Scholar 

  • Harris, G. W., 1948, The excitation of an antidiuretic substance by the kidney after electrical stimulation of the neurohypophysis in the unanesthetized rabbit, J. Physiol. (Lond.) 107: 430–435.

    CAS  Google Scholar 

  • Harris, M. C., 1979, Effects of chemoreceptor and baroceptor stimulation on the discharge of hypo-thalamic supraoptic neurones in rats, J. Endocrinol. 82: 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. C., Dreifuss, J. J., and Legros, J. J., 1975, Excitation of phasically firing supraoptic neurones during vasopressin release, Nature (Lond.) 258: 80–82.

    Article  CAS  Google Scholar 

  • Harris, M. C., Banks, D., and Zerihun, L., 1982, Inputs from hypothalamic paraventricular nucleus to dorsal medullary nuclei in the rat, in: Neuroendocrinology of Vasopressin Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J Dreifuss, eds.), pp. 153–166, Academic, London.

    Google Scholar 

  • Harris, M. C., Ferguson, A. V., and Banks, D., 1984, The afferent pathway for carotid body chemoreceptor input to the hypothalamic supraoptic nucleus in the rat, Pflugers Arch. 400: 80–87.

    Article  PubMed  CAS  Google Scholar 

  • Haterius, H. O., 1940, Evidence of pituitary involvement in the experimental control of water diuresis, Am. J. Physiol. 128: 506–513.

    CAS  Google Scholar 

  • Hatton, G. I., 1982, Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission, J. Physiol. (Lond.) 327: 273–284.

    CAS  Google Scholar 

  • Hatton, G. I., Armstrong, W. E., and Gregory, W. A., 1978, Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus, Brain Res. Bull. 3: 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I., Ho, Y. W., and Mason, W. T., 1983, Synaptic activation of phasic bursting in rat supraoptic nucelus neurones recorded in hypothalamic slices, J. Physiol. (Lond.) 345: 297–318.

    CAS  Google Scholar 

  • Hayward, J. N., and Jennings, D. P., 1973a, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanesthetized monkeys. I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone, J. Physiol. 232: 515–543.

    PubMed  CAS  Google Scholar 

  • Hayward, J. N., and Jennings, D. P., 1973b, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone, J. Physiol. (Lond.) 232: 545–572.

    CAS  Google Scholar 

  • Hayward, J. N., and Jennings, D. P., 1973c, Osmosensitivity of hypothalamic magnocellular neuroendocrine cells to intracarotid hypertonic D-glucose in the waking monkey, Brain Res. 57: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, J. N., and Vincent, J. D., 1970, Osmosensitive single neurones in the hypothalamus of unanesthetized monkeys, J. Physiol. (Lond.) 210: 947–972.

    CAS  Google Scholar 

  • Hayward, J. N., Reaves, T. A., Greenwood, R. S., and Meeker, R. B., 1983, Neuroendocrine cells in vitro: Electrophysiology, triple-labeling with dye marking, immunocytochemical and ultrastructural analysis, and hormone release, Methods Enzymol. 103: 132–147.

    Article  PubMed  CAS  Google Scholar 

  • Holzbauer, M., Muscholl, E., Racke, K., and Sharman, D. F., 1983, Evidence that dopamine is a neurotransmitter in the neurointermediate lobe of the hypophysis, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 357–364, Elsevier, Amsterdam.

    Google Scholar 

  • Hoorneman, E. M. D., and Buijs, R. M., 1982, Vasopressin fibre pathways in the rat brain following suprachiasmatic nucleus lesioning, Brain Res. 243: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, Y., and Matsushita, M., 1979, Identification and distribution of the spinal and hypophyseal projection neurones in the paraventricular nucleus of the rat: A light and electron microscopic study with the horseradish peroxidase method, Exp. Brain Res. 35: 313–331.

    Article  Google Scholar 

  • Inouye, S. T., and Kawamura, H., 1979, Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. U.S.A. 76: 5962–5966.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., Iversen, S. D., and Bloom, F. E., 1980, Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis, Nature (Lond.) 284: 350–351.

    Article  CAS  Google Scholar 

  • Jennings, D. P., Haskins, J. T., and Rodgers, J. M., 1978, Comparison of firing patterns and sensory responsiveness between supraoptic and other hypothalamic neurons in the unanesthetized sheep, Brain Res. 149: 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, H., and Yagi, K., 1978, Supraoptic neurosecretory neurons: Evidence for the existence of converging inputs both from carotid baroreceptors and osmoreceptors, Brain Res. 145: 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Kaiman, H., and Yamashita, H., 1983, Electrophysiological study of paraventricular nucleus neurons projecting to the dorsomedial medulla and their response to baroreceptor stimulation in rats, Brain Res. 279: 31–40.

    Article  Google Scholar 

  • Kannan, H., Osaka, T., and Yamashita, H., 1984, Paraventricular ADH-secreting neurons: Synaptic inputs from the caudal ventrolateral medulla in rats, Neurosci. Lett. (Suppl.) 17:S94.

    Google Scholar 

  • Knepel, W., and Meyer, D. K., 1983, The effect of naloxone on vasopressin release from rat neuro-hypophysis incubated in vitro, J. Physiol. (Lond.) 341: 507–515.

    CAS  Google Scholar 

  • Koizumi, K., and Yamashita, H., 1972, Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recording, J. Physiol. (Lond.) 221: 683–705.

    CAS  Google Scholar 

  • Koizumi, K., and Yamashita, H., 1978, Influence of atrial stretch receptors on hypothalamic neurosecretory neurons, J. Physiol. (Lond.) 285: 341–358.

    CAS  Google Scholar 

  • Kow, L.-M., and Pfaff, D. W., 1984, Suprachiasmatic neurons in tissue slices from ovariectomized rats: Electrophysiological and neuropharmacological characterization and the effects of estrogen treatment, Brain Res. 297: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, P., Cooke, I. M., and Vincent, J. D., 1982, Regenerative responses of long duration recorded intracellularly from dispersed cell cultures of fetal mouse hypothalamus, J. Neurophysiol. 48: 1121–1141.

    PubMed  CAS  Google Scholar 

  • Leng, G., 1980, Rat supraoptic neurones: The effects of locally applied hypertonic saline, J. Physiol. (Lond.) 304: 405–414.

    CAS  Google Scholar 

  • Leng, G., 1981a, The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones, Exp. Brain Res. 41: 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1981b, Phasically firing neurones in the lateral hypothalamus of anesthetized rats, Brain Res. 230: 390–393.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1982. Lateral hypothalamic neurons: Osmosensitivity and the influence of activating mag-nocellular neurosecretory neurones, J. Physiol. (Lond.) 326: 35–48.

    CAS  Google Scholar 

  • Leng, G., and Dyball, R. E. J., 1983, Intercommunication in the rat supraoptic nucleus, Q. J. Exp. Physiol. 68: 493–504.

    PubMed  CAS  Google Scholar 

  • Leng, G., and Dyball, R. E. J., 1984a, Recurrent inhibition: A recurring misinterpretation, Q. J. Exp. Physiol. 69: 393–395.

    PubMed  CAS  Google Scholar 

  • Leng, G., and Dyball, R. E. J., 1984b, Altered baroreceptor inputs to the supraoptic nucleus of the Brattleboro rat, Exp. Brain Res. 54: 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., and Wiersma, J., 1981, Effects of neural stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin, J. Endocrinol. 90: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., Mason, W. T., and Dyer, R. G., 1982, The supraoptic nucleus as an osmoreceptor, Neu-roendocrinology 34: 75–82.

    CAS  Google Scholar 

  • Lincoln, D. W., 1974, Dynamics of oxytocin secretion, in: Neurosecretion, The Final Neuroendocrine Pathway (F. G. W. Knowles and L. Vollrath, eds.), pp. 129–133, Springer-Verlag, Berlin.

    Google Scholar 

  • Lincoln, D. W., and Wakerley, J. B., 1974, Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin, J. Physiol. (Lond.) 242: 533–544.

    CAS  Google Scholar 

  • Malmo, R. B., and Mundl, W. J., 1975, Osmosensitive neurons in the rat’s preoptic area: Medial-lateral comparison, J. Comp. Physiol. Psychol. 88: 161–175.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., Geis, R., Holl, R., Schafer, M., and Voight, K. H., 1983, Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: Immunoreactive methionine-enkephalin-, leucine-enkephalin-and cholecystokinin-like substances, Neuroscience 8: 213–227.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., and Voigt, K. H., 1981, Enkephalin co-exists with oxytocin and vasopressin in nerve terminals of rat neurohypophysis, Nature (Lond.) 289: 502–504.

    Article  CAS  Google Scholar 

  • Mason, W. T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature (Lond.) 287: 154–156.

    Article  CAS  Google Scholar 

  • Mason, W. T., 1983, Electrical properties of neurones recorded from the rat supraoptic nucleus in vitro, Proc. R. Soc. Lond. Biol. 217: 141–161.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., and Leng, G., 1984, Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: Evidence for sodium and calcium spike components at different membrane sites, Exp. Brain Res. 56: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., Ho, Y. W., and Hatton, G. I., 1984, Axon collaterals of supraoptic neurones: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus, Neuroscience 11: 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, R., and Dreifuss, J. J., 1981, Chloride-dependent action of gaba on the infundibular-neu-rohypophysial compound action potential, Neurosci. Lett. 22: 309–312.

    Article  CAS  Google Scholar 

  • Menninger, R. P., 1979, Responses of supraoptic neurosecretory cells to changes in left atrial distension, Am. J. Physiol. 136:R261-R267.

    Google Scholar 

  • Menninger, R. P., and Frazier, D. T., 1972, Effects of blood volume and atrial stretch on hypothalamic single unit activity, Am. J. Physiol. 223: 288–293.

    PubMed  CAS  Google Scholar 

  • Miselis, R., 1981, The efferent projections of the subfornical organ of the rat: A circumventricular organ within a neural network subserving water balance, Brain Res. 230: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., 1982, The suprachiasmatic nucleus and the organization of a circadian system, Trends Neurosci. 5: 404–407.

    Article  Google Scholar 

  • Moos, F., Freund-Mercier, M. J., Guerne, Y., Guerne, J. M., Stoeckel, M. E., and Richard, P., 1984, Release of oxytocin and vasopressin by magnocellular nuclei in vitro: Specific facilitatory effect of oxytocin on its own release, J. Endocrinol. 102: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., 1983, Organization of neural inputs to the supraoptic and paraventricular nuclei: Anatomical aspects, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 3–18, Elsevier, Amsterdam.

    Google Scholar 

  • Morris, J. F., and Nordmann, J. J., 1980, Membrane recapture after hormone release from nerve endings in the neural lobe of the rat pituitary gland, Neuroscience 5: 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Nishino, H., and Koizumi, K., 1977, Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters, Brain Res. 120: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., 1983, Stimulus-secretion coupling, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 281–304, Elsevier, Amsterdam.

    Google Scholar 

  • Nordmann, J. J., and Dreifuss, J. J., 1972, Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials, Brain Res. 45: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Dreifuss, J. J., and Legros, J. J., 1971, A correlation of release of polypeptide hormones and of immunoreactive neurophysin from isolated rat neurohypophyses, Experientia 27: 1344–1345.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Desmazes, J. P., and Georgescault, D., 1982, The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage sensitive dye, and the release of neurohypophysial hormones, Neuroscience 7: 731–737.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, W. H., Mugnaini, E., Tappaz, M. L., Weise, V. K., Dahl, A. D., Schmechel, D. E., and Kopin, I. J., 1982, Central GABAergic innervation of the neurointermediate pituitary lobe: Biochemical and immunocytochemical study of the rat, Proc. Natl. Acad. Sci. U.S.A. 79: 675–679.

    Article  PubMed  CAS  Google Scholar 

  • Paisley, A. C., and Summerlee, A. J. S., 1984, Activity of putative oxytocin neurones during reflex milk ejection in conscious rabbits, J. Physiol. (Lond.) 347: 465–478.

    CAS  Google Scholar 

  • Passo, S. S., Thornborough, J. R., and Ferris, C. R., 1981, A functional analysis of dopaminergic innervation of the neurohypophysis, Am. J. Physiol. 241:E186-E190.

    Google Scholar 

  • Pittman, Q. J., 1983, Increase in antidromic latency of neurohypophyseal neurons during sustained activation, Neurosci. Lett. 37: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, Q. J., and Lawrence, D., 1982, Descending hypothalamic pathways: Electrophysiological investigations of their possible functions, in: Neuroendocrinology of Vasopressin, Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J Dreifuss, eds.), pp. 167–176, Academic, London.

    Google Scholar 

  • Pittman, Q. J., Hatton, J. D., and Bloom, F. E., 1981a, Spontaneous activity of perfused hypothalamic slices: Dependence on calcium content of perfusate, Exp. Brain Res. 42: 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, Q. J., Blume, H. W., and Renaud, L. P., 1981b, Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and mid-brain periaqueductal grey: An electrophysiological study in the rat, Brain Res. 215: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, Q. J., Lawrence, D., and Lederis, K., 1983, Presynaptic interactions in the neurohypophysis: Endogenous modulators of release, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 319–332, Elsevier, Amsterdam.

    Google Scholar 

  • Poulain, D. A., 1983, Electrophysiology of the afferent input to oxytocin-and vasopressin-secreting neurones. Facts and problems, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 39–52, Elsevier, Amsterdam.

    Google Scholar 

  • Poulain, D. A., and Wakerley, J. B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience 7: 773–808.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., Wakerley, J. B., and Dyball, R. E. J., 1977, Electrophysiological differentiation of oxytocin-and vasopressin-secreting neurones, Proc. R. Soc. Lond. Biol. 196: 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., Ellendorff, F., and Vincent, J. D., 1980, Septal connections with identified vasopressin and oxytocin neurones in the supraoptic nucleus of the rat. An electrophysiological investigation, Neuroscience 5: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., Lebrun, C. J., and Vincent, J. D., 1981, Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat, Exp. Brain Res. 42: 260–268.

    Article  PubMed  CAS  Google Scholar 

  • Reaves, T. A., Hou-Yu, A., Zimmerman, E. A., and Hayward, J. N., 1983, Supraoptic neurons in the rat hypothalamo-neurohypophysial expiant: Double-labeling with lucifer yellow injection and immunocytochemical identification of vasopressin-and neurophysin-containing neuroendocrine cells, Neurosci. Lett. 37: 137–142.

    Article  PubMed  Google Scholar 

  • Robertson, G. L., and Athar, S., 1976, The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man, J. Clin. Endocrinol. Metab. 42: 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, I. C. A. F., 1983, Neurohypophysial peptides in cerebrospinal fluid, in: The Neurohypoph-ysis: Structure, Function and Control Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 129–146, Elsevier, Amsterdam.

    Google Scholar 

  • Rossier, J., 1982, Opioid peptides have found their roots, Nature (Lond.) 298: 221–222.

    Article  CAS  Google Scholar 

  • Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guilleman, R., and Bloom, R., 1979, Hypothalamic enkephalin neurones may regulate the neurohypophysis, Nature (Lond.) 277: 653–655.

    Article  CAS  Google Scholar 

  • Sakai, K. K., Marks, B. H., George, J. M., and Koestner, A., 1974, The isolated organ-cultured supraoptic nucleus as a neuropharmacological test system, J. Pharmacol. Exp. Ther. 190: 482–491.

    PubMed  CAS  Google Scholar 

  • Sawaki, Y., 1979, Suprachiasmatic nucleus neurones: Excitation and inhibition mediated by the direct retino-hypothalamic projection in female rats, Exp. Brain Res. 37: 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1982, The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Res. Rev. 4: 275–325.

    Article  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1983, The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 19–30, Elsevier, Amsterdam.

    Google Scholar 

  • Schofield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (Lond.) 275: 535–546

    Google Scholar 

  • Scholer, J., and Sladek, J. R., 1982, An altered noradrenergic innervation of the Brattleboro rat supraoptic nucleus, Ann. NY. Acad. Sci. 394: 718–728.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128: 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Sgro, S., Ferguson, A. V., and Renaud, L. P., 1984, Subfornical organ-supraoptic nucleus connections: An electrophysiological study in the rat, Brain Res. 303: 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Oomura, Y., Kita, H., and Hattori, K., 1982, Orcadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice, Brain Res. 247: 154–158.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Oomura, Y., Liou, S. Y., and Ueki, S., 1984, Electrophysiological studies of the development of suprachiasmatic neuronal activity in hypothalamic slice preparations, Dev. Brain Res. 13: 29–35.

    Article  Google Scholar 

  • Shade, R. E., and Share, L., 1975, Volume control of plasma antidiuretic hormone concentration following acute blood volume expansion in the anesthetized dog, Endocrinology 97: 1048–1057.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F. D., and Dyball, R. E. J., 1984, The relationship between calcium uptake and hormone release in the isolated neurohypophysis, Neuroendocrinology 38: 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F. D., Dyball, R. E. J., and Nordmann, J. J., 1983, Mechanisms of inactivation of neurohypophysial hormone release, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 305–318, Elsevier, Amsterdam.

    Google Scholar 

  • Shaw, F. D., Bicknell, R. J., and Dyball, R. E. J., 1984, Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts: Relevant stimulation parameters, Neuroendocrinology 39: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A. J., Hou-Yu, A., and Zimmerman, E. A., 1983, Ultrastructural studies of vasopressin neurons of the paraventricular nucleus of the hypothalamus using a monoclonal antibody to vasopressin: Analysis of synaptic input, Neuroscience 9: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., 1983, Morphology of vasopressin and oxytocin neurones and their central and vascular projections, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 101–114, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Sofroniew, M. W., and Schrell, U., 1981, Evidence for a direct projection from vasopressin and oxytocin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: Immuno-cytological visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons, Neurosci. Lett. 22: 211–217.

    Article  Google Scholar 

  • Sofroniew, M. V., and Weindl, A., 1978, Projections from the parvocellular vasopressin-and neuro-physin-containing neurons of the suprachiasmatic nucleus, Am. J. Anat. 153: 391–430.

    Article  PubMed  CAS  Google Scholar 

  • Summerlee, A. J. S., 1981, Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanesthetized rats, J. Physiol. (Lond.) 321: 1–9.

    CAS  Google Scholar 

  • Swanson, L. W., and Kuypers, H. G. J. M., 1980, The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of the projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labelling methods, J. Comp. Neurol. 194: 555–570.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Legendre, P., Vincent, J. D., and Cooke, I., 1983, Immunocytochemically identified vasopressin neurons in culture show slow calcium dependent electrical responses. Science 221: 1052–1054.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S., and Smith, S. J., 1976, Depolarizing after-potentials and burst production in molluscan pacemaker neurones, J. Neurophysiol. 39: 153–161.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M., 1982, Responses of supraoptic neurones to electrical stimulation of the medial amygdaloid nucleus, Neuroscience 7: 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., 1984, Correlations between the firing of supraoptic neurones in slices of rat hypothalamus, Exp. Brain Res. 54: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., 1984, Slow, regular discharge in suprachiasmatic neurones is calcium dependent, in slices of rat brain, Neuroscience 13: 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., West, D. C., and Vlachonikolis, I. G., 1984, Regular firing patterns of suprachiasmatic neurons maintained in vitro, Neurosci. Lett. 52: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., 1983, Ultrastructural manifestations of increased hormone release in the neurohypophysis, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng eds.), pp. 259–272, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1980, Evidence for dynamic interactions between pituicytes and neurosecretory endings in the neurohypophysis, Neuroendocrinology 38: 504–510.

    Google Scholar 

  • Ueda, S., Kawata, K., and Sano, Y., 1983, Identification of serotonin and vasopressin immunoreac-tivities in the suprachiasmatic nucleus of four mammalian species, Cell Tissue Res. 234: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen, F. W., and Caffe, R., 1983, Immunoreactive vasopressin cell bodies in the rat bed nucleus of the stria terminalis, Cell Tissue Res. 228: 525–534.

    Article  PubMed  Google Scholar 

  • Van Leeuwen, F. W., Caffe, A. R., and De Vries, G. J., 1985, Vasopressin cells in the bed nucleus of the stria terminalis of the rat: Sex differences and the influence of androgens, Brain Res. 325: 391–394.

    Article  PubMed  Google Scholar 

  • Van Leeuwen, F. W., and De Vries, G. J., 1983, Enkephalin-glial interaction and its consequence for vasopressin and oxytocin release from the rat neural lobe, in: The Neurohypophysis: Structure, Function and Control. Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, eds.), pp. 343–351, Elsevier, Amsterdam.

    Article  Google Scholar 

  • Van Leeuwen, F. W., Pool, C. W., and Sluiter, A., 1983, Enkephalin immunoreactivity in synaptoid elements in glial cells in the rat neural lobe, Neuroscience 8: 229–241.

    Article  PubMed  Google Scholar 

  • Vandesande, F., Dierickx, K., and De Mey, J., 1975, Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei, Cell Tissue Res. 156: 377–380.

    PubMed  CAS  Google Scholar 

  • Veale, W. L., Kasting, N. W., and Cooper, K. E., 1981, Arginine vasopressin and endogenous anti-pyresis: Evidence and significance, Fed. Proc. 40: 2750–2753.

    PubMed  CAS  Google Scholar 

  • Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. R. Soc. Lond. (Biol.) 135: 25–106.

    Article  CAS  Google Scholar 

  • Vincent, J. D., Arnauld, E., and Bioulac, B., 1972, Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking, Brain Res. 44: 371–384.

    Article  PubMed  CAS  Google Scholar 

  • Wakerley, J. B., and Lincoln, D. W., 1973, The milk-ejection reflex of rat: A 20-to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release, J. Endocrinol. 57: 477–493.

    Article  PubMed  CAS  Google Scholar 

  • Wakerley, J. B., and Noble, R., 1983, Extrinsic control of phasic supraoptic neurones in vitro: Burst initiation and termination following brief changes in excitatory drive, Neurosci. Lett. 42: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Wakerley, J. B., Poulain, D. A., and Brown, D., 1978, Comparison of firing patterns in oxytocin-and vasopressin-releasing neurones during progressive dehydration, Brain Res. 148: 425–440.

    Article  PubMed  CAS  Google Scholar 

  • Walters, J. K., and Hatton, G. L, 1974, Supraoptic neuronal activity in rats during five days of water deprivation, Physiol. Behav. 13: 661–667.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B. C., Share, L., Crofton, J. T., and Kimura, T., 1982, Effect of intravenous and intracerebro-ventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations, Neuroendocrinology 34: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B. C., Sundet, W. D., Hakumaki, M. O. K., and Goetz, K. L., 1983, Vasopressin and renin responses to haemorrhage in conscious, cardiac denervated dogs, Am. J. Physiol. 245: H399–H405.

    PubMed  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., and Van Wimersma Greidanus, T. B., 1982, Dynorphin and vasopressin: Common localization in magnocellular neurons, Science 216: 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E., Roth, K. A., and Barchas, J. D., 1981, Co-localization of α-neoendorphin and dynorphin immunoreactivity in hypothalamic neurones, Biochem. Biophys. Res. Commun. 103: 951–958.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, R. E., Fisher, D. A., DiStephano, J. J., and Bennett, C. M., 1977, Episodic secretion of arginine vasopressin, Am. J. Physiol. 233: E32–E36.

    PubMed  CAS  Google Scholar 

  • Wheal, H. V., and Thomson, A. M., 1984, The electrical properties of neurones of the rat suprachias-matic nucleus recorded intracellularly in vitro, Neuroscience 13: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K., Azuma, T., and Matsuda, K., 1966, Neurosecretory cell: Capable of conducting impulse in rats, Science 154: 778–779.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., 1977, Effect of baro-and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus, Brain Res. 126: 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., and Koizumi, K., 1979, Influence of carotid and aortic baroreceptors on neurosecretory neurons in supraoptic nuclei, Brain Res. 170: 259–277.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Inenaga, K., Kawata, M., and Sano, M., 1983, Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: Immunocytochemical and electrophysiological studies, Neurosci. Lett. 37: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Kannan, H., Inenaga, K., and Koizumi, K., 1984a, The role of cardiovascular and muscle afferent systems in control of body water balance, J. Auton. Nerv. Syst. 10: 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Osaka, T., and Kannan, H., 1984b, Effects of electrical and chemical stimulation of the paraventricular nucleus on neurons in the subfornical organ of cats, Brain Res. 323: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Inenaga, K., and Koizumi, K., 1984c, Possible projections from regions of paraventricular and supraoptic nucleus to the spinal cord: Electrophysiological studies, Brain Res. 296: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano, D., and De Robertis, E., 1966, The secretory cycle of supraoptic neurons in the rat. A structural-functional correlation, Z. Zeilforsch. 73: 414–431.

    Article  CAS  Google Scholar 

  • Zerbe, R. L., and Palkovits, M., 1984, Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion, Neuroendocrinology 38: 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Zerihun, L., and Harris, M. C., 1981, Electrophysiological identification of neurones of paraventricular nucleus sending axons to both the neurohypophysis and the medulla in the rat, Neurosci. Lett. 23: 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Zerihun, L., and Harris, M., 1983, An electrophysiological analysis of caudally-projecting neurones from the hypothalamic paraventricular nucleus in the rat, Brain Res. 261: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Zingg, H. H., Baertschi, A. J., and Dreifuss, J. J., 1979, Action of gamma-aminobutyric acid on hypothalamo-neurohypophysial axons, Brain Res. 171: 453–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Wakerley, J.B. (1987). Electrophysiology of the Central Vasopressin System. In: Gash, D.M., Boer, G.J. (eds) Vasopressin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8129-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8129-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8131-4

  • Online ISBN: 978-1-4615-8129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics