Skip to main content

Biosynthesis of Vasopressin and Neurophysins

  • Chapter
Vasopressin

Abstract

Vasopressin (VP) is a product of magnocellular neurons in the anterior hypothalamus, most of which have axons that terminate in the neural lobe. The VP gene is also probably expressed by neurons in other brain loci (Caffe and Van Leeuwen, 1983; Sofroniew, 1983; Caffe et al., 1985), and by cells outside the central nervous system (CNS) (Lim et al., 1984; Nussey et al., 1984), but it has yet to be established that VP itself is the final secreted product of this expression. In hypothalamic neurons, VP is translated as a preprohormone that loses an N-ter-minal signal peptide and undergoes final glycosylation in the Golgi apparatus to form a prohormone. This prohormone is packaged into neurosecretory vesicles (NSV); during transport within these vesicles to axonal terminals, it is acted on by intravesicular enzymes that generate the active nonapeptide amide, a 10,000-M r protein called neurophysin, and a 39-amino acid glycopeptide. All three products are released into the peripheral circulation and have been immunologically identified in plasma (North et al., 1983a; Groesbeck et al., 1983). The nomenclature preproVP and pro VP is used in this text to denote preprohormone and prohormone. Distinct neurons in the hypothalamus produce oxytocin (OX), a peptide that is chemically and structurally similar to VP. In fact, it is highly likely that the OX and the VP genes are derived from a common ancestral gene—that VP and OX neurons share a common ancestral neuron (Sawyer, 1977). Therefore, not surprisingly, OX was found to be first translated as a preprohormone (prepro-oxytocin); this converted to a prohormone (pro-oxytocin). Pro-oxytocin undergoes enzymatic modification in the NSV of OX neurons to form oxytocin and a neurophysin (NP). However, through what is currently believed to have arisen as a base deletion or a base insertion in the OX gene, pro-oxytocin does not contain a moiety that will become a glycopeptide (Ivell and Richter, 1984). Since the neu-rophysins produced with each hormone are distinct molecules, they have been named vasopressin-associated neurophysin (VP-NP) and oxytocin-associated neurophysin (OX-NP) (North et al., 1911a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bargmann, W., and Gaudecker, B. V., 1969, Uber die Ultrastrukture neurosekretorischer Elementar-granular, Z. Zellforsch. Microsk. Anat. 96: 495–504.

    CAS  Google Scholar 

  • Berde, B., and Boissonnas, R. A., 1968, Basic pharmacological properties of synthetic analogues and homologues of the neurohypophysial hormones, in: Handbook of Experimental Pharmacology, Vol. 23 (B. Berde, ed.), pp. 802–870, Springer-Verlag, Berlin.

    Google Scholar 

  • Bettinger, G. E., and Young, E. F., 1975, Tunicamycin, an inhibitor of Barillas peptidoglycan synthesis: A new site of inhibition, Biochem. Biophys. Res. Commun. 67: 16–21.

    PubMed  CAS  Google Scholar 

  • Birkett, S. D., Swann, R. W., Gonzalez, C. B., and Pickering, B. T., 1983, Analysis of the neurohy-pophyseal components accumulating in the supraoptic nucleus of the rat after injection of col-chicine, Arch. Biochem. Biophys. 225: 430–435.

    PubMed  CAS  Google Scholar 

  • Bradbury, A. F., Finnie, M. D. A., and Smyth, D. G., 1982, Mechanism of C-terminal amide formation by pituitary enzymes, Nature (Lond.) 298: 686–688.

    CAS  Google Scholar 

  • Breslow, E., 1979, Chemistry and biology of the neurophysins, Annu. Rev. Biochem. 48: 251–274.

    PubMed  CAS  Google Scholar 

  • Breslow, E., Pagnozzi, M., and Tiao-te Co, R., 1982, Chemical modification or excision of neurophy-sin arginine-8 is associated with loss of peptide-binding ability, Biochem. Biophys. Res. Commun. 106: 194–201.

    PubMed  CAS  Google Scholar 

  • Brownstein, M. J., and Gainer, H., 1977a, Neurophysin biosynthesis in normal rats and in rats with hereditary diabetes insipidus, Proc. Natl. Acad. Sci. U.S.A. 74: 4046–4049.

    PubMed  CAS  Google Scholar 

  • Brownstein, M. J., Robinson, A. G., and Gainer, H., 1977b, Immunological identification of rat neurophysin precursor, Nature (Lond.) 269: 259–261.

    CAS  Google Scholar 

  • Brownstein, M. J., Russell, J. T., and Gainer, H., 1979, Synthesis, transport, and release of posterior pituitary hormones, Science 207: 373–378.

    Google Scholar 

  • Buijs, R. M., and Van Heerikhuize, J. J., 1982, Vasopressin and oxytocin release in the brain—A synaptic event, Brain Res. 252: 71–76.

    PubMed  CAS  Google Scholar 

  • Burbach, J. P. H., and Lebouille, J. L. M., 1983, Proteolytic conversion of arginine-vasopressin and oxytocin by brain synaptic membranes, J. Biol. Chem. 258: 1487–1494.

    PubMed  CAS  Google Scholar 

  • Burbach, J. P. H., Kovacs, G. L., De Wied, D., Van Nispen, J. W., and Greven, H. M., 1983a, A major metabolite of arginine-vasopressin in the brain is a highly potent neuropeptide, Science 221: 1310–1312.

    PubMed  CAS  Google Scholar 

  • Burbach, J. P. H., Wang, X.-C, and van Ittersum, M., 1983b, Difference in susceptibility of arginine-vasopressin and oxytocin to aminopeptidase activity in brain synaptic membranes, Biochem. Biophys. Res. Commun. 108: 1165–1171.

    Google Scholar 

  • Burbach, J. P. H., Wang, X.-C., Ten Haaf, J. A., and De Wied, D., 1984, Substances resembling C-terminal vasopressin fragments are present in the brain but not in the pituitary gland, Brain Res. 306: 384–387.

    PubMed  CAS  Google Scholar 

  • Burbach, J. P. H., De Hoop, M. J., Schmale, H., Richter, D., De Kloet, E. R., Ten Haaf, J. A., and De Wied, D., 1984, Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei, Neuroendocrinology 39: 582–584.

    PubMed  CAS  Google Scholar 

  • Burford, G. D., and Pickering, B. T., 1973, Intra-axonal transport and turnover of neurophysins in the rat. A proposal for a possible origin of the minor neurophysin component, Biochem. J. 136: 1047–1052.

    PubMed  CAS  Google Scholar 

  • Caffe, A. R., and Van Leeuwen, F. W., 1983, Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat, Cell Tissue Res. 233: 23–33.

    PubMed  CAS  Google Scholar 

  • Caffe, A. R., Van Leeuwen, F. W., Buijs, R. M., de Vries, G. J., and Geffard, M., 1985, Coexistence of vasopressin, neurophysin and noradrenaline immunoreactivity in medium-sized cells of the locus coeruleus and subcoeruleus in the rat, Brain Res. 338: 160–164.

    PubMed  CAS  Google Scholar 

  • Carney, D. N., Gazdar, A. F., Oie, H. K., Herbert, K., Cuttitta, F., and Minna, J. D., 1983, The in vitro growth and characterization of small cell lung cancer, in: Biology and Management of Lung Cancer (F. A. Greco, ed.), pp. 1–24. Martinus Nijhoff, Boston.

    Google Scholar 

  • Chaiken, I. M. Abercrombie, D. M., Kanmera, T., and Sequeria, R. P., 1983, Neuronal peptide-protein complexes: Neurophysins and associated neuropeptide hormones, in: Peptide and Protein Reviews, vol. 1 (M. T. W. Hearn, ed.), pp. 139–209, Dekker, New York.

    Google Scholar 

  • Chauvet, M.-T., Cadogno, P., Chauvet, J., and Acher, R., 1977, Phylogeny of the neurophysins: Complete amino acid sequence of horse MSEL-neurophysin, FEBS Lett. 80: 374–376.

    PubMed  CAS  Google Scholar 

  • Chauvet, M.-T., Chauvet, J., and Acher, R., 1981, Identification of rat neurophysins: Complete amino acid sequences of MSEL-and VLDV-neurophysins, Biochem. Biophys. Res. Commun. 103: 595–603.

    PubMed  CAS  Google Scholar 

  • Chauvet, M.-T., Hurpet, D., Chauvet, J., and Acher, R., 1982, The neurophysin domain of human vasopressin precursor, FEBS Lett. 143: 183–187.

    PubMed  CAS  Google Scholar 

  • Chauvet, J., Chauvet, M.-T., Hurpet, D., and Acher, R., 1984, Evolution of multidomain neuropep-tide precursors: Vertebrate neurohypophysial hormones and neurophysins, in: Seventh International Congress on Endocrinology, Canada. (Abst. 347.)

    Google Scholar 

  • Czichi, U., and North, W. G., 1985, Ectopic production and processing of provasopressin by small cell carcinoma of the lung, in: Proceedings of the National Meeting of the Endocrinology Society, Baltimore. (Abst. 963.)

    Google Scholar 

  • De Wied, D., 1983, Central actions of neurohypophysial hormones, Prog. Brain Res. 60: 155–168.

    PubMed  Google Scholar 

  • Docherty, K., and Steiner, D., 1982, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu. Rev. Physiol. 44: 625–638.

    PubMed  CAS  Google Scholar 

  • du Vigneaud, V., Ressler, C., Swann, J. M., Katsoyannis, P. G., and Roberts, C. W., 1954a, Synthesis of oxytocin, J. Am. Chem. Soc. 76: 3115–3121.

    Google Scholar 

  • du Vigneaud, V., Gish, D. T., and Katsoyannis, P. G., 1954b, A synthetic preparation processing biological properties associated with arginine vasopressin, J. Am. Chem. Soc. 76: 4751–4752.

    Google Scholar 

  • Eipper, B. A., Mains, R. E., and Glembotski, C. C, 1983, Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides requires molecular oxygen, copper, and ascorbic acid, Proc. Natl. Acad. Sci U.S.A. 80: 5144–5148.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., and Snyder, S. H., 1982, Enkephalin convertase: Purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin vesicles, Proc. Natl. Acad. Sci. U.S.A. 79: 3886–3890.

    PubMed  CAS  Google Scholar 

  • Flicker, L. D., and Snyder, S. H., 1983, Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase, J. Biol. Chem. 258: 10950–10955.

    Google Scholar 

  • Fuller, P. J., Clements, J. A., Tregear, G. W., Nikolaidis, I., Whitfield, P. L., and Funder, J. W., 1985, Vasopressin-neurophysin II gene expression in the ovary: Studies in Sprague-Dawley, Long-Evans and Brattleboro rats, J. Endocrinol. 105: 317–321.

    PubMed  CAS  Google Scholar 

  • Gainer, H., Same, Y., and Brownstein, M. J., 1977, Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides, J. Cell. Biol. 73: 366–381.

    CAS  Google Scholar 

  • Gainer, H., Russell, J. T., and Loh, Y. P., 1984, An amidopeptidase activity in bovine pituitary secretory vesicles that cleaves the N-terminal arginine from β-lipotropin 60–65 FEBS Lett. 175: 135–139.

    CAS  Google Scholar 

  • Gainer, H., Russell, J. T., and Loh, Y. P., 1985, The enzymology and intracellular organization of peptide precursor processing: The secretory vesicle hypophesis, Neuroendocrinology 40: 171–184.

    PubMed  CAS  Google Scholar 

  • Gonzalez, C. B., 1983, Components in the biosynthetic pathway to neurohypophyseal hormones with special reference to glycosylation, Ph.D. thesis, University of Bristol.

    Google Scholar 

  • Greep, R. O., and Astwood, E. B., 1974, Handbook of Physiology. Endocrinology, Vol. IV: The Pituitary Gland and Its Neuroendocrine Control, Part 1, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Groesbeck, M. D., Shome, B., and Parlow, A. F., 1983, The isolated carboxy terminal glycopeptide of rat vasopressin-neurophysin precursor, in: Proceedings of the National Endocrine Society. (Abst. 259.)

    Google Scholar 

  • Hamilton, B. P., Upton, G. V., and Amatruda, T. T., Jr., 1972, Evidence for the presence of neurophysin in tumors producing the syndrome of inappropriate antidiuresis, J. Clin. Endocrinol. 35: 764–767.

    CAS  Google Scholar 

  • Hirs, C. H. W., 1976, Specificity of chymotrypsin for hydrolysis of peptide bonds in proteins and polypeptides, in: Handbook of Biochemistry and Molecular Biology, Proteins, Vol. II, 3rd ed. (G. D. Fasman, ed.), pp. 212–213, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Holwerda, D. A., 1972, A glycopeptide from the posterior lobe of pig pituitaries. II. Primary structures, Eur. J. Biochem. 28: 340–346.

    PubMed  CAS  Google Scholar 

  • Hook, V. Y. H., and Loh, Y. P., 1984, Carboxypeptidase β-like converting enzyme activity in secretory vesicles of rat pituitary, Proc. Natl. Acad. Sci. U.S.A. 81: 2777–2780.

    Google Scholar 

  • Hubbard, S. C., and Ivatt, R. J., 1981, Synthesis and processing of asparagine-linked oligosaccharides Annu. Rev. Biochem. 50: 555–583.

    PubMed  CAS  Google Scholar 

  • Ivell, R., and Richter, D., 1984, Structure and comparison of the oxytocin and vasopressin genes from rat, Proc. Natl. Acad. Sci. U.S.A. 81: 2006–2010.

    PubMed  CAS  Google Scholar 

  • Ivell, R., Schmale, H., and Richter, D., 1983, Vasopressin and oxytocin precursors as model prepro-hormones, Neuroendocrinology 37: 235–239.

    PubMed  CAS  Google Scholar 

  • Ivell, R., Schmale, H., Krisch, B., Nahke, P., and Richter, D. 1986, Expression of a mutant vasopressin gene: Differential polyadenylation and read-through of the mRNA 3′-end in a frame-shift mutant, EMBO J. 5: 971–977.

    PubMed  CAS  Google Scholar 

  • Jones, C. W., and Swann R. W., 1975, A glycoprotein in the neurosecretory vesicles of the neurohy-pophysis, J. Physiol. (Lond.) 245: 45P.

    CAS  Google Scholar 

  • Jones, P. M., Saermark, T., and Robinson, I.C.A.F., 1984, Conversion and release of an intermediate in vasopressin-neurophysin biosynthesis in the guinea-pig, J. Endocrinol. 103: 347–354.

    PubMed  CAS  Google Scholar 

  • Kirsch, B., 1980, Nongranular vasopressin biosynthesis and transport, Cell Tissue Res. 207: 89–107.

    Google Scholar 

  • Land, H., Schutz, G., Schmale, H., and Richter, D., 1982, Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor, Nature (Lond.) 295: 299–303.

    CAS  Google Scholar 

  • Land, H., Grez, M., Ruppert, S., Schmale, H., Rehbein, M., Richter, D., and Schutz, G., 1983, Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA, Nature (Lond.) 302: 342–344.

    CAS  Google Scholar 

  • LaRochelle, F. T., Jr., North, W. G., and Stern, P., 1980, A new extraction of arginine vasopressin from blood: The use of octadecasilyl-silica, Pflugers Arch. Eur. J. Physiol. 387: 79–81.

    CAS  Google Scholar 

  • Lauber, M., Nicholas, P., Boussetta, H., Fahy, C., Beguin, P., Camier, M., Vaudry, H., and Cohen, P., 1981, The Mr 80,000 common forms of neurophysin and vasopressin from bovine neurohypo-physis have corticotrophin-and ′-endorphin-like sequences and liberate by proteolysis biologically active corticotrophin, Proc. Natl. Acad. Sci. U.S.A. 78: 6086–6090.

    PubMed  CAS  Google Scholar 

  • Legros, J.-J., Louis, F., Grotschel-Stewart, U., and Franchimont, P., 1975, Presence of immunoreac-tive neurophysin-like material in human target organs and pineal gland: Physiological meaning, NY. Acad. Sci. 248: 157–171.

    CAS  Google Scholar 

  • Lewis, R. V., and Stern, A. S., 1983, Biosynthesis of the enkephalins and enkephalin-containing poly-peptides, Annu. Rev. Pharmacol. 23: 353–372.

    CAS  Google Scholar 

  • Lim, A. T. W., Lolait, S. J., Barlow, J. W., Autelitano, D. J., Toh, B. H., Boublik, J., Abraham, J., Johnston, C. I., and Funder, J. W., 1984, Immunoreactive arginine-vasopressin in Brattleboro rat ovary, Nature (Lond.) 310: 61–64.

    CAS  Google Scholar 

  • Livingston, A., and Lederis, K., 1971, Functional ultrastructure of the neurohypophysis, Mem. Soc. Endocrinol. 19: 233–262.

    Google Scholar 

  • Loh, Y. P., and Gainer, H., 1982, Characterization of pro-opiocortin-converting activity in purified secretory vesicles from rat pituitary neurointermediate lobe, Proc. Natl. Acad. Sci. U.S.A. 79: 108–112.

    CAS  Google Scholar 

  • Loh, Y. P., Parish, D. C., and Tuteja, R., 1984, Proteolytic processing of pro-opiomelanocortin by an unique LYS-ARG specific converting enzyme from bovine pars intermedia secretory vesicles, in: Endocrinology (F. Labrie and L. Proulx, eds.), pp. 393–396, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Mains, R. E., Eipper, B. A., Glembotski, C. C., and Dores, R. M., 1983, Strategies for the biosynthesis of bioactive peptides, Trends Neurosci. 52: 229–235.

    Google Scholar 

  • Mains, R. E., Glembotski, C., and Eipper, B. A., 1984, Peptide α-amidation activity in mouse anterior pituitary At T-20 cell vesicles: Properties and secretion, Endocrinology 114: 1522–1530.

    PubMed  CAS  Google Scholar 

  • Majzoub, J. A., 1985, Vasopressin biosynthesis, in: Vasopressin (R. W. Schrier, ed.) pp. 465–474, Raven, New York.

    Google Scholar 

  • Majzoub, J. A., Pappey, A., Burg, R., and Habener, J. F., 1984a, Vasopressin gene is expressed at low levels in the hypothalamus of the Brattleboro rat, Proc. Natl. Acad. Sci. U.S.A. 81: 5296–5299.

    PubMed  CAS  Google Scholar 

  • Majzoub, J. A., Sokol, J., and Habener, J., 1984b, Vasopressin gene regulation in the rat hypothalamus, in: Seventh International Congress of Endocrinology. (Abst. 1293.)

    Google Scholar 

  • Manning, M., and Sawyer, W. H., 1977, Structure-activity studies on oxytocin and vasopressin 1954–1976: From empiricism to design, in: Conference on the Neurohypophysis (A. Moses and L. Share, eds.), pp. 9–21, Karger, Basel.

    Google Scholar 

  • Manning, M., and Sawyer, W. H., 1983, Design of potent and selective in vivo antagonists of the neurohypophysial peptides, Prog. Brain Res. 60: 367–382.

    PubMed  CAS  Google Scholar 

  • Manning, M., Olma, A., Klis, W., Kolodziejczyk, A., Nawrocka, E., Misicka, A., Seto, J., and Sawyer, W. H., 1984, Carboxy terminus of vasopressin required for activity but not for binding, Nature (Lond.) 308: 652–653.

    CAS  Google Scholar 

  • Maurer, L. H., O’Donnell, J. F., Kennedy, S., Faulkner, C. S., Rist, K., and North, W. G., 1983, Human neurophysins in carcinoma of the lung: Relation to histology, disease stage, survival, and syndrome of inappropriate antidiuretic hormone secretion, Cancer Treatm. Rep. 67: 971–976.

    CAS  Google Scholar 

  • Mehmet, F. F., Grosh, W. W., and Greco, F. A., 1983, Morphologic changes in small cell lung cancer, in: Biology and Management of Lung Cancer (F. A. Greco, ed.), pp. 109–124, Martinus-Nijhoff, Boston.

    Google Scholar 

  • Mohr, E., Hillers, M., Ivell, R., Haulica, I. D., and Richter, D., 1985, Expression of the vasopressin and oxytocin genes in human hypothalami, FEBS Lett. 193: 12–16.

    PubMed  CAS  Google Scholar 

  • Moore, G. J., Kwok, Y. C., Ko, E. M., Severson, D. L., and Rosenior, J. C., 1982, Extended chain analogs of [arginine8] vasopressin as model prohormones: Investigation of precursor-processing enzymes in extracts of the rat hypothalamus and neural lobe, Endocrinology 111: 1626–1631.

    PubMed  CAS  Google Scholar 

  • Morris, J. F., and Cannata, M. A., 1973, Ultrastructural preservation of the dense core of posterior pituitary neurosecretory vesicles and its implications for hormone release, J. Endocrinol. 57: 517–529.

    PubMed  CAS  Google Scholar 

  • Morris, J. F., 1976, Hormone storage in individual neurosecretory vesicles of the pituitary gland: A quantitative ultrastructural approach to hormone storage in the neural lobe, J. Endocrinol. 68: 209–224.

    PubMed  CAS  Google Scholar 

  • Morris, J. F., Sokol, H. W., and Valtin, H., 1977, One neuron-one hormone? Recent evidence from Brattleboro rats, in: Neurohypophysis (A. M. Moses and L. Share, eds.), pp. 56–66, Karger, Basel.

    Google Scholar 

  • Morris, J. F., 1982, The Brattleboro magnocellular neurosecretory system: A model for the study of peptidergic neurons, Ann. N.Y. Acad. Sci. 394: 54–71.

    PubMed  CAS  Google Scholar 

  • Morris, J. F., 1983, Organization of neural inputs to the supraoptic and paraventricular nuclei: Anatomical aspects, Prog. Brain Res. 60: 3–18.

    PubMed  CAS  Google Scholar 

  • Nordmann, J. J., 1982, Evidence for an aging process within neurosecretory vesicles, in: Vasopressin, Corticoliberin and ACTH-related Peptides (A. J. Baartschi and J. J. Dreifus, eds.), pp. 11.-20, Academic, London.

    Google Scholar 

  • Nordmann, J. J., 1983, Stimulus-secretion coupling, Prog. Brain Res. 60: 281–304.

    CAS  Google Scholar 

  • North, W. G., 1983, Biosynthesis of vasopressin, in: Proceedings of the Thirty-Ninth International Congress of Physiological Science, Sydney, Australia.

    Google Scholar 

  • North, W. G., 1984, Processing of provasopressin: Identification of a carboxypeptidase associated with neurosecretory vesicles, in: Proceedings of the Seventh International Congress of Endocrinology. (Abst. 1568.)

    Google Scholar 

  • North, W. G., and Mitchell, T. I., 1981, Evolution of neurophysin proteins: The partial sequence of rat neurophysins, FEBS Lett. 126: 41–44.

    PubMed  CAS  Google Scholar 

  • North, W. G., Walter, R., Schlesinger, D. H., Breslow, E., and Capra, L. D., 1975, Structural studies of bovine neurophysin-I, Ann. N.Y. Acad. Sci. 248: 408–422.

    PubMed  CAS  Google Scholar 

  • North, W. G., Morris, J. F., LaRochelle, F. T., Jr., and Valtin, H., 1977a, Enzymatic interconversions of neurophysins, in: Neurohypophysis (A. M. Moses and L. Share, eds.), pp. 43–52, Karger, Basel.

    Google Scholar 

  • North, W. G., Valtin, H., Morris, J. F., and LaRochelle, F. T., Jr., 1977b, Evidence for metabolic conversions of rat neurophysins within neurosecretory vesicles of the hypothalamo-neurohypo-physial system, Endocrinology 101: 110–118.

    PubMed  CAS  Google Scholar 

  • North, W. G., LaRochelle, F. T., Jr., Morris, Jr. R., Sokol, H. W., and Valtin, H., 1978, Biosynthetic specificity of neurons producing neurohypophysial principles, in: Current Studies of Hypotha-lamic Function (K. Lederis and W. L Veale, eds.), pp. 62–76, Karger, Basel.

    Google Scholar 

  • North, W. G., LaRochelle, F. T., Jr., Melton, J., and Mills, R. C., 1980a, Isolation and partial characterization of two human neurophysins: Their use in the development of specific radioimmu-noassays, J. Clin. Endocrinol. Metab. 51: 884–891.

    PubMed  CAS  Google Scholar 

  • North, W. G., Maurer, L. H., Valtin, H., and O’Donnell, J., 1980b, Human neurophysins as potential tumor markers for small-cell carcinoma of the lung: Application of specific radioimmunoassays for vasopressin-associated and oxytocin-associated neurophysins, J. Clin. Endocrinol. Metab. 51: 892–896.

    PubMed  CAS  Google Scholar 

  • North, W. G., Mitchell, T. I., and North, G. M., 1982, Characteristics of a precursor to vasopressin-associated bovine neurophysin, FEBS Lett. 152: 29–34.

    Google Scholar 

  • North, W. G., LaRochelle, F. T., Jr., and Hardy, G. R., 1983a, Development of radioimmunoassays to individual rat neurophysins, J. Endocrinol. 96: 373–386.

    PubMed  CAS  Google Scholar 

  • North, W. G., Maurer, L. H., and O’Donnell, J. F., 1983b, The neurophysins and small cell cancer, in: Biology and Management of Lung Cancer (F. A. Greco, ed.), pp. 143–170, Martinus Nijhoff, Boston.

    Google Scholar 

  • North, W. G., Valtin, H., Cheng, S., and Hardy, G. R., 1983c, The neurophysins: Production and turnover, Prog. Brain Res. 60: 217–225.

    PubMed  CAS  Google Scholar 

  • North, W. G., O’Connor, E., and Gonzalez, C. B., 1985, Structural identification of two provasopres-sins, in: Proceedings of the Sixty-Seventh Meeting of the Endocrinology Society, Baltimore. (Abst. 860.)

    Google Scholar 

  • Nussey, S. S., Ang, V. T. Y., Jenkins, J. S., Chowdrey, H. S., and Bisset, G. W., 1984, Brattleboro rat adrenal contains vasopressin, Nature (Lond.) 310: 64–66.

    CAS  Google Scholar 

  • Oliver, G., and Schafer, E. A., 1895, On the physiological actions of extracts of the pituitary body and certain other glandular organs, J. Physiol. (Lond.) 18: 277–279.

    CAS  Google Scholar 

  • Pettengill, O. S., Faulkner, C. S., Wurster-Hill, D. H., Maurer, L. H., Sorenson, G. D., Robinson, A. G., and Zimmerman, E. A., 1977, Isolation and characterization of a hormone-producing cell line from human small cell anaplastic carcinoma of the lung, J. Nat I. Cancer Inst. 58: 511–518.

    CAS  Google Scholar 

  • Phelps, C. F., 1980, Glycosylation, in: The Enzymology of Post-translational Modification of Proteins, Vol. 1 (R. B. Freedman and H. C. Hawkins, eds.), pp. 105–155, Academic, London.

    Google Scholar 

  • Pickering, B. T., 1978, The neurohypophysial neuron: A model for the study of secretion, Essays Bio-chem. 14: 45–81.

    CAS  Google Scholar 

  • Pickering, B. T., Swann, R. W., and Gonzalez, C. B., 1983, Biosynthesis and processing of neurohypophysial hormones, Pharm. Ther. 22: 143–161.

    CAS  Google Scholar 

  • Rabbani, L. D., Pagnozzi, M., Chang, P., and Breslow, E., 1982, Partial digestion of neurophysins with proteolytic enzymes: Unusual interactions between bovine neurophysin II and chymotrypsin, Biochemistry 21: 817–826.

    PubMed  CAS  Google Scholar 

  • Rhodes, C. H., Morrell, J. L, and Pfaff, D. W., 1981, Changes in the oxytocin content in the magno-cellular neurons of the rat hypothalamus following water deprivation or estrogen treatment. Quantitative immunohistological studies, Cell Tissue Res. 216: 47–55.

    PubMed  CAS  Google Scholar 

  • Richter, D., Schmale, H., Ivell, R., and Schmidt, C., 1980, Hypothalamic mRNA-directed synthesis of neuropolypeptides: Immunological identification of precursors to neurophysin II, arginine vasopressin and neurophysin I/oxytocin, in: Biosynthesis, Modification and Processing of Cellular and Viral Polyproteins (G. Koch and D. Richter, eds.), pp. 43–66, Academic, New York.

    Google Scholar 

  • Richter, D., Schmale, H., Ivell, R., and Rehbein, M., 1984, The molecular basis of neurohypophysial hormone expression, in: Endocrinology (F. Labrie and L. Proulx, eds.), pp. 885–890, Elsevier, New York.

    Google Scholar 

  • Robinson, A. G., Halusczak, C., Wilkins, J. E., Hallmantel, A. B., and Watson, C. G., 1977, Physiologic control of two neurophysins in humans, J. Clin. Endocrinol. Metab. 44: 330–339.

    PubMed  CAS  Google Scholar 

  • Robinson, I. C. A. F., 1983, Neurohypophysial peptides in cerebrospinal fluid, Prog. Brain Res. 60: 129–146.

    PubMed  CAS  Google Scholar 

  • Robinson, I. C. A. F., and Jones, P. M., 1983, An intermediate in the biosynthesis of vasopressin and neurophysin in the guinea-pig posterior pituitary, Neurosci. Lett. 39: 273–278.

    PubMed  CAS  Google Scholar 

  • Rosenior, J. C., North, W. G., and Moore, G. J., 1981, Putative precursors of vasopressin, oxytocin, and neurophysins in the rat hypothalamus, Endocrinology 109: 1067–1072.

    PubMed  CAS  Google Scholar 

  • Ruppert, S., Scherer, G., and Schutz, G., 1984, Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequences, Nature (Lond.) 308: 554–557.

    CAS  Google Scholar 

  • Russell, J. T., and Holz, R. W., 1981, Measurement of delta pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses, J. Biol. Chem. 256: 5950–5953.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., Brownstein, M. J., and Gainer, H., 1979, Trypsin liberates an arginine vasopressin-like peptide and neurophysin from a Mr 20,000 putative common precursor, Proc. Natl. Acad. Sci. U.S.A. 76: 6086–6090.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., Brownstein, M. J., and Gainer, H., 1980, Biosynthesis of vasopressin, oxytocin and neurophysins: Isolation and characterization of two common precursors (Propressophysin and prooxyphysin), Endocrinology 107: 1880–1891.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., Brownstein, M. J., and Gainer, H., 1981, Time course of appearance and release of 35cysteine labelled neurophysins and peptides in the neurohypophysis, Brain Res. 205: 299–311.

    PubMed  CAS  Google Scholar 

  • Sachs, H., and Takabatake, Y., 1964, Evidence for a precursor in vasopressin biosynthesis, Endocrinology 75: 943–948.

    PubMed  CAS  Google Scholar 

  • Sachs, H., Fawcett, P., Takabatake, Y., and Portanova, R., 1969, Biosynthesis and release of vasopressin and neurophysin, Rec. Prog. Hormone Res. 25: 447–491.

    CAS  Google Scholar 

  • Saermark, T., Thorn, N. A., and Gratzl, M., 1983, Calcium/sodium exchange in purified secretory vesicles from bovine neurohypophysis, Cell Calcium 4: 151–170.

    PubMed  CAS  Google Scholar 

  • Sawyer, W. H., 1977, Evolution of active neurohypophysial principles among the vertebrates, Am. Zool. 17: 727–737.

    CAS  Google Scholar 

  • Scherman, D., and Nordmann, J. J., 1982, Internal pH of isolated newly formed and aged neurohypophysial vesicles, Proc. Natl. Acad. Sci. U.S.A. 79: 476–479.

    PubMed  CAS  Google Scholar 

  • Schlesinger, D. H., and Audhya, T. K., 1981, A comparative study of mammalian neurophysin protein sequences, FEBS Lett. 128: 325–328.

    PubMed  CAS  Google Scholar 

  • Schmale, H., and Richter, D., 1981, Immunological identification of a common precursor to arginine vasopressin and neurophysin II synthesized by in vitro translation of bovine hypothalamic mRNA, Proc. Natl. Acad. Sci. U.S.A. 78: 766–769.

    PubMed  CAS  Google Scholar 

  • Schmale, H., and Richter, D., 1981, Tryptic release of authentic arginine vasopressin 1–8 from a composite vasopressin, neurophysin II precursor, Neuropeptides 2: 47–52.

    CAS  Google Scholar 

  • Schmale, H., and Richter, D., 1984, Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats, Nature (Lond.) 308: 705–709.

    CAS  Google Scholar 

  • Schmale, H., Leipold, B., and Richter, D., 1979, Cell-free translation of bovine hypothalamic mRNA, FEBS Lett. 108: 311–316.

    PubMed  CAS  Google Scholar 

  • Schmale, H., Heinsohn, S., and Richter, D., 1983, Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor, EMBO J. 2: 763–767.

    PubMed  CAS  Google Scholar 

  • Schmale, H., Ivell, R., Higgins, G., and Richter, D., 1986, Expression of the vasopressin precursor gene in normal and diabetes insipidus rats, in press.

    Google Scholar 

  • Seidah, N. G., Benjannet, S., and Chretien, M., 1981, The complete sequence of a novel human pituitary glycopeptide homologous to pig posterior pituitary glycopeptide, Biochem. Biophys. Res. Commun. 100: 901–907.

    PubMed  CAS  Google Scholar 

  • Share, L., 1983, Centrally acting humoral factors in the control of vasopressin release, Prog. Brain Res. 60: 425–435.

    PubMed  CAS  Google Scholar 

  • Slaninova, J., and Thorn, N. A., 1983, Production of a high affinity antibody specific to the calcium-free-form of calmodulin, using N-acetyl-myramyl-L-alanyle-D-isoglutamine-calmodulin conjugate, J. Immunoassay 4: 395–406.

    PubMed  CAS  Google Scholar 

  • Smyth, D. G., and Massey, D., 1979, A new glycopeptide in pig, ox and sheep pituitary, Bochem. Biophys. Res. Commun. 87: 1006–1010.

    CAS  Google Scholar 

  • Sofroniew, M. V., 1983, Morphology of vasopressin and oxytocin neurones and their central and vascular projections, Prog. Brain Res. 60: 101–114.

    PubMed  CAS  Google Scholar 

  • Sokol, H. W., and Valtin, H. (eds.), 1982, The brattleboro rat, Ann. NY. Acad. Sci. 394: 1–828.

    Google Scholar 

  • Staneloni, R. J., and Leloir, L. F., 1982, The biosynthetic pathway of the asparagine-linked olgosac-charide of glycoproteins, Crit. Rev. Biochem. 12: 298–326.

    Google Scholar 

  • Steiner, D. F., San Segundo, B., Chan, S. J., and Docherty, K., 1984, Proteolytic mechanisms in pro-hormone processing-cathepsin B-like enzymes in islet secretion vesicles, in: Endocrinology (F. Labrie and L. Proulx, eds.), pp. 387–392, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Stern, J. E., Mitchell, T., Herzberg, V. L., and North, W. G., 1986, Secretion of vasopressin, oxytocin and two neurophysins from rat hypothalamo-neurohypophyseal expiants in organ culture, Neu-roendocrinology 43: 252–258.

    CAS  Google Scholar 

  • Sunde, D. A., and Sokol, H. W., 1975, Quantification of rat neurophysins by polyacrylamide gel elec-trophoresis: Application to the rat with hereditary hypothalamic diabetes insipidus, Ann. N. Y. Acad. Sci. 248: 345–364.

    PubMed  CAS  Google Scholar 

  • Swann, W., Gonzalez, C. B., Birkett, S. D., and Pickering, B. T., 1982, Precursors in the biosynthesis of vasopressin and oxytocin in the rat, Biochem. J. 208: 339–349.

    PubMed  CAS  Google Scholar 

  • Tarentino, A. L., and Maley, F., 1974, Purification and properties of an endo-N-acetylglucaminidase from Streptomyces griseus, J. Biol. Chem. 249: 811–817.

    PubMed  CAS  Google Scholar 

  • Turner, R. A., Pierce, J. G., and du Vigneaud, V., 1951, The purification and amino acid content of vasopressin preparations, J. Biol. Chem. 191: 21–28.

    PubMed  CAS  Google Scholar 

  • Valtin, H., Sawyer, W. H., and Sokol, H. W., 1965, Neurohypophysial principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain), Endocrinology 77: 701–706.

    PubMed  CAS  Google Scholar 

  • Valtin, H., Stewart, J., and Sokol, H. W., 1974, Genetic control of the production of posterior pituitary principles, in: Handbook of Physiology, Section 7, Vol. IV, Part 1: The Pituitary Gland and Its Neuroendocrine Control (E. Knobil and W. H Sawyer, eds.), pp. 131–171, American Physiology Society, Washington, D.C.

    Google Scholar 

  • Valtin, H., North, W. G., Edwards, B. R., and Gellai, M., 1984, Animal models of diabetes insipidus, Front. Hormone Res. 13: 105–126.

    Google Scholar 

  • van Leeuwen, F. W., and de Vries, G. J., 1983, Enkephalin glial interaction and its consequence for vasopressin release from the rat neural lobe, Prog. Brain Res. 60: 343–352.

    PubMed  Google Scholar 

  • Velden, R. von den, 1913, Die Nierenwirkung von Hypophysenextrakten beim Menschen, Berl. Klin. Wochschr. 50: 2083–2086.

    Google Scholar 

  • Wang, B. C., Share, L., Crofton, J. T., and Kimura, T., 1982, Effect of intravenous and intracerebro-ventricular infusion of hypertonic solutions on plasma and cerebrospinal fluid vasopressin concentrations, Neuroendocrinology 34: 215–221.

    PubMed  CAS  Google Scholar 

  • Wang, X.-C, Burbach, J. P. H., Verhoef, J. C., and De Wied, D., 1983, Proteolytic conversion of arginine-vasotocin by supraoptic membranes from rat and chicken brain, Brain Res. 275: 83–90.

    PubMed  CAS  Google Scholar 

  • Yamaji, T., Ishibashi, M., and Katayama, S., 1981, Nature of the immunoreactive neurophysins in ectopic vasopressin-producing oat cell carcinomas of the lung, J. Clin. Invest. 68: 388–398.

    PubMed  CAS  Google Scholar 

  • Yamaji, T., Ishibashi, M., and Hori, T., 1984, Propressophysin in human blood: A possible marker of ectopic vasopressin production, J. Clin. Endocrinol. Metab. 59: 505–512.

    PubMed  CAS  Google Scholar 

  • Yoo, O. J., Powell, C. T., and Pigarwal, K. L., 1982, Molecular cloning and nucleotide sequence of full-length cDNA coding for porcine gastrin, Proc. Natl. Acad. Sci. U.S.A. 79: 1049–1053.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

North, W.G. (1987). Biosynthesis of Vasopressin and Neurophysins. In: Gash, D.M., Boer, G.J. (eds) Vasopressin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8129-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8129-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8131-4

  • Online ISBN: 978-1-4615-8129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics