Skip to main content

Micellization of Polyoxyethylene Monohexadecyl Ethers in Water

  • Chapter
Surfactants in Solution
  • 386 Accesses

Abstract

The micellar behaviour of non-ionic surfactant systems of the polyoxyethylene n-alkanol type has been studied in terms of hydrodynamic, volumetric, light scattering and thermodynamic properties. The intrinsic viscosity of the micelles increased as the ethylene oxide chain length increased. The increment in relative viscosity, and in intrinsic viscosity of the micelles appeared to be due to the hydration of micelles, micellar size and shape. The observed critical micelle concentrations (cmc) indicated that the critical micelle concentration decreased as the ethylene oxide chain length increased. This unusual behaviour has been discussed by considering the decrement in solubility of non-ionics in aqueous solution when the ethylene oxide chain length is increased, and the increment in degree of coiling as the hydrophilic chain length increases. It is likely that the hydrophobic chain coils tightly at the end of the hydrocarbon chain. This is entropically favourable allowing hydrogen bonded water molecules to be released. The volumetric properties of the micelles showed that a volume change occurred during micelle formation. The partial molal volume change decreased with increasing hydrophilic chain length. The relationship between intrinsic viscosity and molecular configuration below cmc has been examined in terms of established hydrodynamic theories. The results show that polyoxyethylene surfactants are randomly coiled in aqueous solution. The addition of small concentrations of aromatic alcohols to the system caused the critical micelle concentration and micellar molecular weight to increase but at higher concentrations the critical micelle concentration decreased. The thermodynamic investigation of the micellization process showed that micelle formation was an entropy directed process. The free energy of micellization decreased as the ethylene oxide chain length increased. This decrement has been attributed to the reduction of structural order of water molecules which arises from the minimization of the hydrocarbon-water interface. This causes the transference of monomers to nonpolar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Becher, in“Nonionic Surfactants”, M.J. Schick, Editor, Chap. 15, Marcel Dekker, New York, 1967.

    Google Scholar 

  2. B.W. Barry and D.I.D. El Eini, J. Colloid Interface Sci. 54, 339 (1976).

    Article  CAS  Google Scholar 

  3. D.I.D. El Eini, B.W. Barry and C.T. Rhodes, J. Colloid Interface Sci., 54, 348 (1976).

    Article  CAS  Google Scholar 

  4. N. Nishikido, Y. Moroi, H. Uehara and R. Matuura, Bull. Chem. Soc. Japan, 47, 2634 (1974).

    Article  CAS  Google Scholar 

  5. B. Weibull, in“Proc. of The Third International Congress on Surface Active Compounds”, Butterworths, London, p. 121, 1960.

    Google Scholar 

  6. D.E. Guveli, S.S. Davis and J.B. Kayes, J. Colloid Interface Sci., 8”6, 213 (1982).

    Article  Google Scholar 

  7. J.K. Tayler, in“Treatise of Analytical Chemistry”, I.M. Kolthof, P.J. Elving and E.B. Sandel, Editors, Part 1, Vol. 7, Interscience, New York, 1967.

    Google Scholar 

  8. D.P. Shoemaker and C.W. Garland,“Experiments in Physical Chemistry”, 2nd ed., McGraw-Hill, New York, 1967.

    Google Scholar 

  9. A. Bondi, J. Phys. Chem. 68, 441 (1964).

    Article  CAS  Google Scholar 

  10. British Standards, BS 188, 1957.

    Google Scholar 

  11. D.E. Guveli, J.B. Kayes and S.S. Davis, J. Colloid Interface Sci. 72, 130 (1979).

    Article  CAS  Google Scholar 

  12. W.D. Harkins and H.F. Jordan, J. Amer. Chem. Soc. 52, 1751 (1930).

    Article  CAS  Google Scholar 

  13. D.E. Guveli, S.S. Davis and J.B. Kayes, J. Colloid Interface Sci., 91, 1 (1983).

    Article  Google Scholar 

  14. P. Debye, J. Phys. Colloid Chem., 53, 1 (1949).

    Article  CAS  Google Scholar 

  15. G.C. Benson and G.W. Benson, Rev. Sci. Intrum. 26 477 (1955).

    Article  CAS  Google Scholar 

  16. D.E. Guveli, Ph.D. Thesis, University of Aston in Birmingham, 1976.

    Google Scholar 

  17. J.E. Carless, R.A. Challis and B.A. Mulley, J. Colloid Sci. 19, 201 (1964).

    Article  CAS  Google Scholar 

  18. Schick, M.J., S.M. Atlas and F.R. Eirich, J. Phys. Chem. 66, 1326 (1962).

    Article  CAS  Google Scholar 

  19. J. Eriksson and G. Gillberg, Acta Chem. Scand. 20, 2019 (1966).

    Article  CAS  Google Scholar 

  20. M.J. Schick, J. Colloid Sci. 17, 801 (1962).

    Article  CAS  Google Scholar 

  21. M.J. Schick, J. Phys. Chem. 67, 1796 (1963).

    Article  CAS  Google Scholar 

  22. A.M. Mankowich, J. Amer. Oil Chem. Soc. 43, 615 (1966).

    Article  CAS  Google Scholar 

  23. C. Tanford, Y. Nozaki and M.F. Rhode, J. Phys. Chem. 81, 1555 (1977).

    Article  CAS  Google Scholar 

  24. S. Kaneshina, M. Yoshimoto, H. Kobayashi, N. Nishikido, G. Sugihara and M. Tanaka, J. Colloid Interface Sci. 73, 124 (1980).

    Article  CAS  Google Scholar 

  25. S. Kuchurski, A. Sokolowski and B. Burczyk, Rocz. Chem. 47, 2045 (1973).

    Google Scholar 

  26. E.J. King, J. Phys. Chem. 73, 1220 (1969).

    Article  CAS  Google Scholar 

  27. C. Tanford,“Physical Chemistry of Macromolecules”, Chapter 6, Wiley, New York, 1961.

    Google Scholar 

  28. M.L. Huggins, J. Amer. Chem. Soc. 64, 2716 (1942).

    Article  CAS  Google Scholar 

  29. A. Einstein, Ann. Phys. (Leipzig), 19, 289, 1906; 34, 591 (1911).

    CAS  Google Scholar 

  30. J. Mehl, J.L. Oncley and R. Simha, Science, 92, 132 (1940).

    Article  CAS  Google Scholar 

  31. C. Tanford,“The Hydrophobic Effect”, John Wiley, New York, 1973.

    Google Scholar 

  32. H.A. Scheraga, J. Chem. Phys. 23, 1526 (1955).

    Article  CAS  Google Scholar 

  33. J.L. Oncley, Ann. N.Y. Acad. Sci. 41, 121 (1940).

    Article  Google Scholar 

  34. H.A. Scheraga and L. Mandelkern, J. Amer. Chem. Soc. 75, 179 (1953).

    Article  CAS  Google Scholar 

  35. F. Perrin, J. Phys. Radium 7, 1 (1936).

    Article  CAS  Google Scholar 

  36. J.G. Kirkwood and J. Reiseman, J. Chem. Phys. 16, 565 (1948).

    Article  CAS  Google Scholar 

  37. P. Debye and A.M. Bueche, J. Chem. Phys. 16, 573 (1948).

    Article  CAS  Google Scholar 

  38. P.J. Flory and T.G. Fox Jr., J. Amer. Chem. Soc. 73, 1904 (1951).

    Article  CAS  Google Scholar 

  39. A. Peterlin, J. Polym. Sci. 5, 473 (1950).

    Article  CAS  Google Scholar 

  40. F.E. Bailey Jr. and R.W. Callard, J. Appl. Polym. Sci., 1, 56 (1959).

    Article  CAS  Google Scholar 

  41. J.E. Mark and P.J. Flory, J. Amer. Chem. Soc. 87, 1415 (1965).

    Article  CAS  Google Scholar 

  42. F.E. Bailey Jr. and J.V. Koleske, in “Nonionic Surfactants”, M.J. Schick, Editor, Chap. 23, Marcel Dekker, New York, 1967.

    Google Scholar 

  43. T.L. Hill, “Thermodynamics of Small Systems”, Vol. 1, W.A. Benjamin Inc., New York, 1964.

    Google Scholar 

  44. D.H. Hall and B.A. Pethica, in “Nonionic Surfactants”, M.J. Schick, Editor, Marcel Dekker, New York, 1967.

    Google Scholar 

  45. E. Tomlinson, Int. J. Pharmaceut. 13, 115 (1983).

    Article  CAS  Google Scholar 

  46. P.H. Elworthy and C. McDonald, Kolloid, Z. 195, 16 (1964).

    Article  CAS  Google Scholar 

  47. J.M. Corkhill, J.F. Goodman, P. Robson and J.R. Tate, Trans. Faraday Soc. 62, 987 (1966).

    Article  Google Scholar 

  48. Y. Moroi, N. Nishikido, H. Uehara and R. Matuura, J. Colloid Interface Sci. 50, 254 (1975).

    Article  CAS  Google Scholar 

  49. E.D. Goddard, C.A.J. Hoeve and G.L. Benson, J. Phys. Chem. 61, 593 (1957).

    Article  CAS  Google Scholar 

  50. S. Ozeki and S. Ikeda, J. Phys. Chem. 77, 219 (1980).

    CAS  Google Scholar 

  51. S. Ikeda, S. Ozeki and M. Tsunoda, J. Colloid Interface Sci. 73, 27 (1980).

    Article  CAS  Google Scholar 

  52. R. Simha, J. Phys. Chem. 44, 25 (1940).

    Article  CAS  Google Scholar 

  53. J.G. Kirkwood and P.L. Auer, J. Chem. Phys. 19, 281 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Davis, S.S., Guveli, D.E. (1989). Micellization of Polyoxyethylene Monohexadecyl Ethers in Water. In: Mittal, K.L. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7984-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7984-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7986-1

  • Online ISBN: 978-1-4615-7984-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics