Skip to main content

Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion

  • Chapter
Book cover Super-Intense Laser-Atom Physics

Part of the book series: NATO ASI Series ((NSSB,volume 316))

Abstract

In recent years there have been very significant advances in short pulse, high intensity laser technology. Lasers with pulse lengths of 0.1–1 ps and wavelengths from 0.2–1 μm can be focused to produce intensities from 1012 to above 1018 W/cm2. One major use of these systems has been for studies of the response of atoms and molecules to such intense, well characterized electromagnetic fields. Because these pulses are very short, neutral atoms can survive to experience intensities where theoretical treatments based on the traditional perturbation expansion of the wave function in terms of the field-free states will fail completely to describe the dynamics of the system. An explicit, non-perturbative time-dependent calculation is one approach which can represent these strong field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Petit, P. Agostini and F. Yergeau, J. Opt. Soc. Am. B 4:765 (1987).

    ADS  Google Scholar 

  2. K. J. Sehafer and K. C. Kulander, Phys. Rev. A 42:5794 (1990);

    ADS  Google Scholar 

  3. K. J. Sehafer, Comp. Phvs. Comm. 63:427 (1991).

    Article  ADS  Google Scholar 

  4. J. Macklin, J. D. Kmetec and C. L. Gordon III, Phys. Rev. Lett. 70:766 (1993);

    Article  ADS  Google Scholar 

  5. A. L’Huillier and P. Balcou, Phys. Rev. Lett. 70:774 (1993).

    Article  ADS  Google Scholar 

  6. A. L’Huillier, K. J. Sehafer and K. C. Kulander, J. Phvs. B 24:3315 (1991).

    ADS  Google Scholar 

  7. K. C. Kulander, K. J. Sehafer and J. L. Krause, Time-dependent studies of multiphoton processes, in: “Atoms in Intense Radiation Fields,” M. Gavrila, ed. (Advances in Atomic, Molecular and Optical Physics, Supplement 1) Academic Press, New York (1992)

    Google Scholar 

  8. K. C. Kulander and T. N. Rescigno, Comp. Phys. Comm. 63:523 (1991).

    Article  ADS  MATH  Google Scholar 

  9. K. C. Kulander, J. L. Krause, K. J. Sehafer, S. W. Allendorf, J. K. Crane, K. S. Budil and M. D. Perry, in Time Dependent Quantum Molecular Dynamics: Experiment and Theory. J. Broekhove and L. Lathouwers, Eds. (Plenum, New York, 1992).

    Google Scholar 

  10. S. W. Allendorf, J. K. Crane, K. S. Budil and M. D. Perry, to be published.

    Google Scholar 

  11. K. C. Kulander, Phys. Rev. A 38:778 (1988).

    Article  ADS  Google Scholar 

  12. K. C. Kulander and B. W. Shore, J. Opt. Soc. B 7:502 (1990).

    Article  ADS  Google Scholar 

  13. J. L. Krause, K. J. Schafer and K. C. Kulander, Phys. Rev. A 45:4998 (1992).

    Article  ADS  Google Scholar 

  14. K. Burnett, V. C. Reed, J. Cooper and P. L. Knight, Phys. Rev. A 45:3347 (1992).

    Article  ADS  Google Scholar 

  15. K. J. Sehafer, B. Yang, L. F. DiMauro and K. C. Kulander, Phys. Rev. Lett. 70:xxxx (1993).

    Google Scholar 

  16. A. L’Huillier, P. Balcou, C. Candel, K. J. Sehafer and K. C. Kulander, Phys. Rev. A 46:2778 (1992).

    Article  ADS  Google Scholar 

  17. B. W. Shore and K. C. Kulander, J. Mod. Opt. 36:857 (1989).

    Article  ADS  Google Scholar 

  18. P. B. Corkum, N. H. Burnett and F. Brunei, Phys. Rev. Lett. 62:1259 (1989).

    Article  ADS  Google Scholar 

  19. J. Javanainen, Q. Su and J. H. Eberly, Phys. Rev. A 38:3430 (1988). The parameter in the denominator of this potential is set to 2.0 to obtain a binding energy of 13.6 eV.

    Article  ADS  Google Scholar 

  20. H. A. Bethe and E. E. Salpeter. “Quantum Mechanics of One- and Two-Electron Atoms,” Plenum, New York (1977).

    Book  Google Scholar 

  21. R. A. Smith, J. W. G. Tisch, M. S. N. Ciarrocca, S. Augst and M. H. R. Hutchinson, this workshop.

    Google Scholar 

  22. J. Larsson, A. Persson, S.Svanberg, C.-G. Wahlström, P. Balcou and A. L’Huillier, this workshop.

    Google Scholar 

  23. J. L. Krause, K. J. Sehafer and K. C. Kulander, Phys. Rev. Lett. 68:3535 (1992).

    Article  ADS  Google Scholar 

  24. B. Wolff, H. Rottke, D. Feldmann and K. H. Welge, Z. Phys. D 10:35 (1988).

    Article  ADS  Google Scholar 

  25. We note that Paul Corkum has independently extended his quasi-static model (Ref. 16) also along these lines to consider both harmonic generation and impact ionization of the ion core by returning electrons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Plenum Press, New York

About this chapter

Cite this chapter

Kulander, K.C., Schafer, K.J., Krause, J.L. (1993). Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion. In: Piraux, B., L’Huillier, A., Rzążewski, K. (eds) Super-Intense Laser-Atom Physics. NATO ASI Series, vol 316. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7963-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7963-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7965-6

  • Online ISBN: 978-1-4615-7963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics