Advertisement

Transport Processes in Membranes: A Consideration of Membrane Potential across Thick and Thin Membranes

Chapter

Abstract

Any phase that acts as a barrier preventing mass movement but allowing restricted or regulated passage of one or several species through it may be defined as a membrane. This could be a solid or liquid or even a gas (see Buck, 1976) containing ionized or ionizable groups, or it may be completely unionized. All membranes are active in an operational sense when used as barriers to separate two solutions or phases unless they are too fragile or too porous. Membranes may be broadly classified into natural and artificial or man-made. Natural membranes are thin (<100 Å), whereas artificial polymeric membranes that have proved their usefulness in several successful unit processes are thick (more than a few micrometers), even though thin (≥ 50 Å) membranes of parlodion have been prepared (Lakshminarayanaiah and Shanes, 1963) and characterized (Lakshminarayanaiah, 1965a; Lakshminarayanaiah and Shanes, 1965). In addition, lipid bilayer membranes that are also thin (∼50 Å), since the time they were first generated in 1962 by Mueller et al. (1962a, b; 1963), have assumed great interest and importance. This is probably due to their close resemblance to natural membranes of living systems. Other model membrane systems of interest and significance are the so-called “liposomes,” which are also called “Bangosomes” (DeGier et al., 1968) after their discoverer, Bangham (Bangham et al., 1965). Several properties of phospholipid liposomes or vesicles or both were reviewed by Bangham (1968). A rough classification of several types of membranes according to their physical dimensions and chemical structure is shown in Figure 1.

Keywords

Lipid Bilayer Surface Charge Density Bilayer Membrane Lipid Bilayer Membrane Membrane Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, A. W., 1960, Physical Chemistry of Surfaces, p. 189, Interscience, New York.Google Scholar
  2. Adelman, W. J., Jr. (ed.), 1971, Biophysics and Physiology of Excitable Membranes, Van Nostrand Reinhold, New York.Google Scholar
  3. Adelman, W. J., Jr., and Senft, J. P., 1966, Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon, J. Gen. Physiol. 50:279–293.PubMedCrossRefGoogle Scholar
  4. Adrian, R. H., 1956, The effect of internal and external potassium concentration on the membrane potential of frog muscle, J. Physiol. (London) 133:631–658.Google Scholar
  5. Alkaitis, D., Merola, A. J., and Lehninger, A. L., 1972, Phospholipid bilayers as biological membrane models: The effect of N,N′-bis(dichloroacetyl)-1,12-diaminododecane, J. Membrane Biol. 10:237–246.CrossRefGoogle Scholar
  6. Alvarez, O., Latorre, R., and Verdugo, P., 1975a, Kinetic characteristics of the excitability-inducing material channel in oxidized cholesterol and brain lipid bilayer membranes, J. Gen. Physiol. 65:421–439.PubMedCrossRefGoogle Scholar
  7. Alvarez, O., Diaz, E., and Latorre, R, 1975b, Voltage-dependent conductance induced by hemocyanin in black lipid films, Biochim. Biophys. Acta 389:444–448.PubMedCrossRefGoogle Scholar
  8. Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (London) 235:655–691.Google Scholar
  9. Anderson, O. S., and Fuchs, M., 1975, Potential energy barriers to ion transport within lipid bilayers: Studies with tetraphenylborate, Biophys. J. 15:795–830.CrossRefGoogle Scholar
  10. Anderson, O. S., Finkelstein, A., Katz, I., and Cass, A., 1976, Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol. 67:749–771.CrossRefGoogle Scholar
  11. Andreoli, T. E., and Monahan, M., 1968, The interaction of polyene antibiotics with thin lipid membranes, J. Gen. Physiol. 52:300–325.PubMedCrossRefGoogle Scholar
  12. Andreoli, T. E., Tieffenberg, M., and Tosteson, D. C., 1967a, The effect of valinomycin on the ionic permeability of thin lipid membranes, J. Gen. Physiol. 50:2527–2545.PubMedCrossRefGoogle Scholar
  13. Andreoli, T. E., Bangham, J. A., and Tosteson, D. C., 1967b, The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids, J. Gen. Physiol. 50:1729–1749.PubMedCrossRefGoogle Scholar
  14. Andreoli, T. E., Dennis, V. W., and Weigl, A. M., 1969, The effect of amphotericin B on water and nonelectrolyte permeability of thin lipid membranes, J. Gen. Physiol. 53:133–156.PubMedCrossRefGoogle Scholar
  15. Apell, H.-J., Bamberg, E., Alpes, H., and Läuger, P., 1977, Formation of ion channels by a negatively charged analog of gramicidin A, J. Membrane Biol. 31:171–188.CrossRefGoogle Scholar
  16. Armstrong, C. M., 1971, Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons, J. Gen. Physiol. 58:413–437.PubMedCrossRefGoogle Scholar
  17. Armstrong, C. M., 1974, Ionic pores, gates and gating currents, Q. Rev. Biophys. 7:179–210.PubMedCrossRefGoogle Scholar
  18. Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of the Na channels, J. Gen. Physiol. 63:533–552.PubMedCrossRefGoogle Scholar
  19. Armstrong, C. M., and Bezanilla, F., 1975, Currents associated with the ionic gating structures in nerve membrane, Ann. N. Y. Acad. Sci. 264:265–277.PubMedCrossRefGoogle Scholar
  20. Armstrong, C. M., and Binstock, L., 1965, Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride, J. Gen Physiol. 48:859–872.PubMedCrossRefGoogle Scholar
  21. Armstrong, C. M., Bezanilla, F., and Rojas, E., 1973, Destruction of sodium conductance inactivation in squid axons perfused with pronase, J. Gen. Physiol. 62:375–391.PubMedCrossRefGoogle Scholar
  22. Babakov, A. V., Demin, V. V., Sokolov, S. D., and Satnikov, P. S., 1968, Effect of metal ions on the conductivity and current-voltage characteristics of bimolecular phospholipid membranes with tetrachlorotrifluoromethyl benzimidazole, Biophysics 13:1302–1304.Google Scholar
  23. Bach, D., 1973, Interaction of bilayers with basic polypeptides. II. Interaction of phospholipid bilayers with copolymer l-lysine-l-phenylalanine, J. Membrane Biol. 14:57–62.CrossRefGoogle Scholar
  24. Bach, D., and Miller, I. R., 1973, Interaction of bilayers with basic polypeptides, J. Membrane Biol. 11:237–254.CrossRefGoogle Scholar
  25. Baker, P. F., Hodgkin, A. L., and Meves, H., 1964, The effect of diluting the internal solution on the electrical properties of a perfused giant axon, J. Physiol. (London) 170:541–560.Google Scholar
  26. Bamberg, E., and Benz, R., 1976, Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation, Biochim. Biophys. Acta 426:570–580.PubMedCrossRefGoogle Scholar
  27. Bamberg, E., and Janko, K., 1976, Single channel conductance at lipid bilayer membranes in presence of monazomycin, Biochim, Biophys. Acta 426:447–450.CrossRefGoogle Scholar
  28. Bamberg, E., and Janko, K., 1977, The action of a carbon suboxide dimerized gramicidin A on lipid bilayer membranes, Biochim. Biophys. Acta 465:486–499.PubMedCrossRefGoogle Scholar
  29. Bamberg, E., and Läuger, P., 1973, Channel formation kinetics of gramicidin A in lipid bilayer membranes, J. Membrane Biol. 11:177–194.CrossRefGoogle Scholar
  30. Bamberg, E., and Läuger, P., 1974, Temperature dependent properties of gramicidin A channels, Biochim. Biophys. Acta 367:127–133.PubMedCrossRefGoogle Scholar
  31. Bamberg, E., Kolb, H.-A., and Läuger, P., 1976a, Ion transport through the gramicin A channel, in: The Structural Basis of Membrane Function (Y. Hatefi and L. Djavadi-Ohaniance, eds), pp. 143–157, Academic Press, New York.Google Scholar
  32. Bamberg, E., Noda, K., Gross, E., and Läuger, P., 1976b, Single channel parameters of gramicidin A, B, and C., Biochim. Biophys. Acta 419:223–228.PubMedCrossRefGoogle Scholar
  33. Bangham, A. D., 1968, Membrane models with phospholipids, Prog. Biophys. Mol. Biol. 18:29–95.CrossRefGoogle Scholar
  34. Bangham, A. D., Standish, M. M., and Watkins, J. C., 1965, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13:238–252.PubMedCrossRefGoogle Scholar
  35. Baumann, G., and Mueller, P., 1974, A molecular model of membrane excitability, J. Supramol. Struct. 2:538–577.PubMedCrossRefGoogle Scholar
  36. Baur, E., 1913, Ein Modell des elektrischen Organs der Fische, Z. Elektrochem. 19:590–592.Google Scholar
  37. Baur, E., and Allemann, E., 1926, Der Einzelpotentialsprung im Verteilungsgleichgewicht, Z. Elektrochem. 32:547–550.Google Scholar
  38. Bean, R. C., 1972, Multiple conductance states in single channels of variable resistance lipid bilayer membranes, J. Membrane Biol. 7:15–28.CrossRefGoogle Scholar
  39. Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes, J. Gen. Physiol. 53:741–757.PubMedCrossRefGoogle Scholar
  40. Begenisich, T., 1975, Magnitude and location of surface charges on Myxicola giant axons, J. Gen. Physiol. 66:47–65.PubMedCrossRefGoogle Scholar
  41. Begenisich, T., and Stevens, C. F., 1975, How many conductance states do potassium channels have?, Biophys. J. 15:842–846.CrossRefGoogle Scholar
  42. Benz, R., and Läuger, P., 1976, Kinetic analysis of carrier mediated ion transport by charge-pulse technique, J. Membrane Biol. 27:171–191.CrossRefGoogle Scholar
  43. Benz, R., and Stark, G., 1975, Kinetics of macrotetralide induced ion transport across lipid bilayer membranes, Biochim. Biophys. Acta 382:27–40.PubMedCrossRefGoogle Scholar
  44. Benz, R., Stark, G., Janko, K., and Läuger, P., 1973, Valinomycin mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature, J. Membrane Biol. 14:339–364.CrossRefGoogle Scholar
  45. Benz, R., Läuger, P., and Janko, K., 1976a, Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge-pulse relaxation studies, Biochim. Biophys. Acta 455:701–720.PubMedCrossRefGoogle Scholar
  46. Benz, R., Gisin, B. F., Ting-Beall, H. P., Tosteson, D. C., and Läuger, P., 1976b, Mechanism of ion transport through lipid bilayer membranes mediated by peptide cyclo-(d-val-l-pro-l-val-d-pro)3, Biochim. Biopys. Acta 455:665–684.CrossRefGoogle Scholar
  47. Benz, R., Fröhlich, O., and Läuger, P., 1977, Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers, Biochim. Biophys. Acta 464:465–481.PubMedCrossRefGoogle Scholar
  48. Beutner, R., 1913a, Neue Erscheinungen der Elektrizitätserregung, welche einige bioelektrische Phänomene erklären, Z. Elektrochem. 19:319–330.Google Scholar
  49. Beutner, R., 1913b, Neue Erscheinungen der Elektrizitätserregung, welche einige bioelektrische Phänomene erklären: Zweiter Teil, Z. Elektrochem. 19:461–477.Google Scholar
  50. Beutner, R., 1914a, Studies on a new kind of e.m.f. I. Introductory remarks, J. Am. Chem. Soc. 36:2040–2045.CrossRefGoogle Scholar
  51. Beutner, R., 1914b, Studies on a new kind of e.m.f. II. Cell arrangements of aqueous and nitrobenzene solutions containing one common ion in both phases, J. Am. Chem. Soc. 36:2045–2059.CrossRefGoogle Scholar
  52. Beutner, R., 1933, Physical Chemistry of Living Tissues and Life Processes, Williams and Wilkins, Baltimore.Google Scholar
  53. Bezanilla, F., and Armstrong, C. M., 1972, Negative conductance caused by entry of sodium and cesium ions into the potassium channel of squid axon, J. Gen. Physiol. 60:588–608.PubMedCrossRefGoogle Scholar
  54. Bielawski, J., Thompson, T. E., and Lehninger, A. L., 1966, The effect of 2,4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes, Biochem. Biophys. Res. Commun. 24:948–954.PubMedCrossRefGoogle Scholar
  55. Bier, M. (ed), 1971, Membrane Processes in Industry and Biomedicine, Plenum Press, New York.Google Scholar
  56. Binstock, L., and Lecar, H., 1969, Ammonium ion currents in the squid giant axon, J. Gen. Physiol. 53:342–360.PubMedCrossRefGoogle Scholar
  57. Bockris, J. O’M., and Reddy, A. K. N., 1970, Modern Electrochemistry, Plenum Press, New York.Google Scholar
  58. Boguslavskii, L. I., Bogolepova, F. I., and Lebedev, A. V., 1971, Conductivity mechanism of bimolecular phospholipid membranes in the iodine-iodide system, Chem. Phys. Lipids 6:296–310.CrossRefGoogle Scholar
  59. Boheim, G., 1974, Statistical analysis of alamethicin channels in black lipid membranes, J. Membrane Biol. 19:277–303.CrossRefGoogle Scholar
  60. Boheim, G., and Hall, J. E., 1975, Oscillation phenomena in black lipid membranes induced by a single alamethicin pore, Biochim. Biophys. Acta 389:436–443.PubMedCrossRefGoogle Scholar
  61. Boheim, G., Janko, K., Leibfritz, D., Ooka, T., König, W. A., and Jung, G., 1976, Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films, Biochim. Biophys. Acta 433:182–199.PubMedCrossRefGoogle Scholar
  62. Boyd, G. E., and Bunzl, K., 1967, The Donnan equilibrium in crosslinked polystyrene cation and anion exchangers, J. Am. Chem. Soc. 89:1776–1780.CrossRefGoogle Scholar
  63. Brismar, T., 1973, Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibers of Xenopus laevis: Potential clamp experiments, Acta Physiol. Scand. 87:474–484.PubMedCrossRefGoogle Scholar
  64. Bruner, L. J., 1975, The interaction of hydrophobic ions with lipid bilayer membranes, J. Membrane Biol. 22:125–141.CrossRefGoogle Scholar
  65. Buck, R. P., 1976, Electro-analytical chemistry of membranes, Crit. Rev. Anal. Chem. 5:323–420.CrossRefGoogle Scholar
  66. Cass, A., Finkelstein, A., and Krespi, V., 1970, The ion permeability induced in thin lipid membranes by polyene antibiotics nystatin and amphotericin B, J. Gen. Physiol. 56:100–124.PubMedCrossRefGoogle Scholar
  67. Cereijido, M., and Rotunno, C. A., 1970, Introduction to the Study of Biological Membranes, Gordon and Breach, New York.Google Scholar
  68. Chandler, W. K., and Meves, H., 1965, Voltage clamp experiments on internally perfused giant axons, J. Physiol. (London) 180:788–820.Google Scholar
  69. Chandler, W. K., Hodgkin, A. L., and Meves, H., 1965, The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons, J. Physiol. (London) 180:821–836.Google Scholar
  70. Chapman, D., and Wallach, D. F. H., 1968, Recent physical studies of phospholipids and natural membranes, in: Biological Membranes (D. Chapman, ed.), pp. 125–202, Academic Press, New York.Google Scholar
  71. Chapman, D., Kamat, V. B., and Levene, R. J., 1968, Infra-red spectra and the chain organization of erythrocyte membranes, Science 160:314–316.PubMedCrossRefGoogle Scholar
  72. Chapman, D., Cherry, R. J., Finer, E. G., Hauser, H., Phillips, M. C., Shipley, G. G., and McMullen, A. L, 1969, Physical studies of phospholipid/alamethicin interactions, Nature (London) 224:692–694.CrossRefGoogle Scholar
  73. Cherry, R. J., Dodd, G. H., and Chapman, D., 1970, Small molecule-lipid membrane interactions and the puncturing theory of olfaction, Biochim, Biophys. Acta 211:409–416.CrossRefGoogle Scholar
  74. Cherry, R. J., Chapman, D., and Graham, D. E., 1972, Studies of the conductance changes induced in bimolecular lipid membrances by alamethicin, J. Membrane Biol. 7:325–344.CrossRefGoogle Scholar
  75. Ciani, S., Eiseman, G., and Szabo, G., 1969, A theory for the effects of neutral carriers such as macrotetralide actin antibiotics on the electric properties of bilayer membranes, J. Membrane Biol. 1:1–36.CrossRefGoogle Scholar
  76. Ciani, S., Gamble, F., Gliozzi, A., and Rolandi, R., 1975, Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions, J. Membrane Biol. 24:1–34.CrossRefGoogle Scholar
  77. Cole, K. S., 1949, Dynamic electrical characteristics of the squid axon membrane, Arch. Sci. Physiol. 3:253–258.Google Scholar
  78. Cole, K. S., 1968, Membranes, Ions, and Impulses, University of California Press, Berkeley.Google Scholar
  79. Cole, K. S., and Curtis, H. J., 1939, Electric impedance of the squid giant axon during activity, J. Gen. Physiol. 22:649–670.PubMedCrossRefGoogle Scholar
  80. Conti, F., and Eisenman, G., 1965a, The non-steady state membrane potential of ion exchangers with fixed sites, Biophys. J. 5:247–256.PubMedCrossRefGoogle Scholar
  81. Conti, F., and Eisenman, G., 1965b, The steady state properties of ion exchange membranes with fixed sites, Biophys. J. 5:511–530.PubMedCrossRefGoogle Scholar
  82. Conti, F., and Eisenman, G., 1966, The steady state properties of ion exchange membrane with mobile sites, Biophys. J. 6:227–246.PubMedCrossRefGoogle Scholar
  83. Conti, F., and Wanke, E., 1975, Channel noise in nerve membranes and lipid bilayers, Q. Rev. Biophys. 8:451–506.PubMedCrossRefGoogle Scholar
  84. Conti, F., Defelice, L. J., and Wanke, E., 1975, Potassium and sodium ion current noise in the membrane of the squid giant axon, J. Physiol. (London) 248:45–82.Google Scholar
  85. Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli, R., 1977, Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier, J. Physiol. (London) 262:699–728.Google Scholar
  86. Conway, B. E., 1965, Theory and Principles of Electrode Processes, Ronald Press, New York.Google Scholar
  87. Danielli, J. F., and Davson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell. Physiol. 5:495–508.CrossRefGoogle Scholar
  88. D’Arrigo, J. S., 1973, Possible screening of surface charges on crayfish axon by polyvalent metal ions, J. Physiol. (London) 231:117–128.Google Scholar
  89. Davies, J. T., 1951, The distribution of ions under a charged monolayer and a surface equation of state for charged films, Proc. R. Soc. London Ser. A 208:224–247.CrossRefGoogle Scholar
  90. Davies, J. T., and Rideal, E., 1955, Interfacial potentials, Can. J. Chem. 33:947–960.CrossRefGoogle Scholar
  91. Davies, J. T., and Rideal, E., 1961, Interfacial Phenomena, pp. 64–83, Academic Press, New York.Google Scholar
  92. DeGier, J., Mandersloot, J. G., and Van Deenen, L. L. M., 1968, Lipid composition and permeability of liposomes, Biochim. Biophys. Acta 150:666–675.PubMedCrossRefGoogle Scholar
  93. De Levie, R., Seidah, N. G., and Larkin, D., 1974, Tetraphenylborate adsorption onto an artificial ultrathin membrane, J. Electroanal. Chem. Interfacial Electrochem. 49:153–159.CrossRefGoogle Scholar
  94. Dennis, V. W., Stead, N. W., and Andreoli, T. E., 1970, Molecular aspects of polyene-and sterol-dependent pore formation in thin lipid membranes, J. Gen. Physiol. 55:375–400.PubMedCrossRefGoogle Scholar
  95. Dixon, M., and Webb, E. C., 1964, Enzymes, 2nd ed., pp. 63–115, Academic Press, New York.Google Scholar
  96. Dobler, M., Dunitz, J. D., and Krajewski, J., 1969, Structure of K+-complex with enniatin B, a macrocyclic antibiotic with K+-transport properties, J. Mol. Biol. 42:603–606.PubMedCrossRefGoogle Scholar
  97. Dole, M., 1934, The theory of the glass electrode. III. Statistical explanation of the alkaline solution behavior, J. Chem. Phys. 2:862–866.CrossRefGoogle Scholar
  98. Dole, M., 1941, The Glass Electrode: Methods, Applications and Theory, Wiley, New York.Google Scholar
  99. Dowben, R. M., 1969, Composition and structure of membranes, in: Biological Membranes (R. Dowben, ed.), pp. 1–38, Little, Brown, Boston.Google Scholar
  100. Ehrenstein, G., and Lecar, H., 1972, The mechanism of signal transmission in nerve axons, Annu. Rev. Biophys. Bioeng. 1:347–368.PubMedCrossRefGoogle Scholar
  101. Ehrenstein, G., and Lecar, H., 1977, Electrically gated ionic channels in lipid bilayers, Q. Rev. Biophys. 10:1–34.PubMedCrossRefGoogle Scholar
  102. Ehrenstein, G., Lecar, H., and Nossal, R., 1970, The nature of negative resistance in bimolecular lipid membranes containing excitability-inducing material, J. Gen. Physiol. 55:119–133.PubMedCrossRefGoogle Scholar
  103. Ehrenstein, G., Blumenthal, R., Latorre, R., and Lecar, H., 1974, Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer, J. Gen. Physiol. 63:707–721.PubMedCrossRefGoogle Scholar
  104. Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Membrane Biol. 14:143–176.CrossRefGoogle Scholar
  105. Eisenman, G., 1962, Cation selective glass electrodes and their mode of operation, Biophys. J. Suppl. 2:259–323.CrossRefGoogle Scholar
  106. Eisenman, G., 1963, The influence of Na, K, Li, Rb, and Cs on cellular potentials and related phenomena, Bol. Inst. Estud. Med. Biol. Univ. Nac. Auton. Mex. 21:155–183.PubMedGoogle Scholar
  107. Eisenman, G., 1965, Some elementary factors involved in specific ion permeation, Proceedings of the 23rd International Congress of Physiological Science, Tokyo, Excerpta Med. Int. Congr. Ser. 87:489–506.Google Scholar
  108. Eisenman, G., 1968, Similarities and differences between liquid and solid ion exchangers and their usefulness as ion specific electrodes, Anal. Chem. 40:310–320.CrossRefGoogle Scholar
  109. Eisenman, G., 1969, Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules, in: Ion Selective Electrodes (R. A. Durst, ed.), pp. 1–56, Natl. Bur. Stand. (U.S.) Spec. Pub. 314, Washington, D.C.Google Scholar
  110. Eisenman, G. (ed.), 1972, Membranes, Vol. 1, Macroscopic Systems and Models, Marcel Dekker, New York.Google Scholar
  111. Eisenman, G. (ed.), 1973, Membranes, Vol 2, Lipid Bilayers and Antibiotics, Marcel Dekker, New York.Google Scholar
  112. Eisenman, G. (ed.), 1975, Membranes, Vol. 3., Lipid Bilayers and Biological Membranes: Dynamic Properties, Marcel Dekker, New York.Google Scholar
  113. Eisenman, G., Rudin, D. O., and Casby, J. U., 1957, Glass electrode for measuring sodium ion, Science 126:831–834.PubMedCrossRefGoogle Scholar
  114. Eisenman, G., Ciani, S. M., and Szabo, G., 1968, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions, Fed. Proc. Fed. Am. Soc. Exp. Biol. 27:1289–1304.Google Scholar
  115. Eisenman, G., Ciani, S., and Szabo, G., 1969, The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents, J. Membrane Biol. 1:294–345.CrossRefGoogle Scholar
  116. Eisenman, G., Szabo, G., McLaughlin, S. G. A., and Ciani, S. M., 1973a, Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes, J. Bioenerg. 4:93–148.PubMedCrossRefGoogle Scholar
  117. Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S., and Krasne, S., 1973b, Ion binding and ion transport produced by neutral lipid-soluble molecules, Prog. Surf. Membr. Sci. 6:139–241.Google Scholar
  118. Ermishkin, L. N., Kasumov, Kh. M., and Potzeluyev, V. M., 1976, Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatin, Nature (London) 262:698–699.CrossRefGoogle Scholar
  119. Feldberg, S. W., and Kissel, G., 1975, Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin-and valinomycin-mediated transport in glyceromonooleate bilayers, J. Membrane Biol. 20:269–300.CrossRefGoogle Scholar
  120. Feldberg, S. W., and Nakadomari, H., 1977, Charge pulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport, J. Membrane Biol. 31:81–102.CrossRefGoogle Scholar
  121. Fieser, L. F., and Fieser, M., 1956, Organic Chemistry, 3rd ed., p. 858, Heath, Boston.Google Scholar
  122. Finkelstein, A., 1970, Weak acid uncouplers of oxidative phosphorylation: Mechanism of action on thin lipid membranes, Biochim. Biophys. Acta 205:1–6.PubMedCrossRefGoogle Scholar
  123. Finkelstein, A., 1974, Aqueous pores created in thin lipid membranes by antibiotics nystatin, amphotericin B and gramicidin A: Implications for pores in plasma membranes, in: Drugs and Transport Processes (B. A. Callingham, ed.), pp. 241–250, University Park Press, Baltimore.Google Scholar
  124. Finkelstein, A., and Cass, A., 1968, Permeability and electrical properties of thin lipid membranes, J. Gen. Physiol. 52:145s-172s.Google Scholar
  125. Finkelstein, A., Rubin, L. L., and Tzeng, M. C., 1976, Black widow spider venom: Effect of purified toxin on lipid bilayer membranes, Science 193:1009–1011.PubMedCrossRefGoogle Scholar
  126. Flinn, J. E. (ed.) 1970, Membrane Science and Technology, Plenum Press, New York.Google Scholar
  127. Floyd, W. F., 1954, Electrochemical properties of nerve and muscle, in: Modern Aspects of Electrochemistry (J. O’M. Bockris, ed.), pp. 277–327, Butterworths, London.Google Scholar
  128. Foster, M., and McLaughlin, S., 1974, Complexes between uncouplers of oxidative phosphorylation, J. Membrane Biol. 17:155–180.CrossRefGoogle Scholar
  129. Frankenhaeuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. (London) 137:218–244.Google Scholar
  130. Friedlander, H. Z., 1968, Membranes, Encycl. Polymer Sci. Technol. 8:620–638.Google Scholar
  131. Gamble, F., Gliozzi, A., and Robello, M., 1973, Determination of rate constants in carrier-mediated diffusion through lipid bilayers, Biochim. Biophys. Acta 330:325–334.CrossRefGoogle Scholar
  132. Gavach, C., and Sandeaux, R., 1975, Non-mediated zero voltage conductance of hydrophobic ions through bilayer lipid membranes, Biochim. Biophys. Acta 413:33–44.PubMedCrossRefGoogle Scholar
  133. Gemant, A., 1962, Ions in Hydrocarbons, Wiley-Interscience, New York.Google Scholar
  134. Gilbert, D. L., 1971, Fixed surface charges, in: Biophysics and Physiology of Excitable Membranes (W. J. Adelman, Jr., ed.), pp. 359–378, Van Nostrand Reinhold, New York.Google Scholar
  135. Gilbert, D. L., and Ehrenstein, G., 1969, Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge, Biophys. J. 9:447–463.PubMedCrossRefGoogle Scholar
  136. Gilbert, D. L., and Ehrenstein, G., 1970, Use of fixed charge model to determine the pK of the negative sites on the external membrane surface, J. Gen. Physiol. 55:822–825.PubMedGoogle Scholar
  137. Ginsburg, H., and Stark, G., 1976, Facilitated transport of di-and trinitrophenolate ions across lipid membranes by valinomycin and nonactin, Biochim. Biophys. Acta 455:685–700.PubMedCrossRefGoogle Scholar
  138. Ginsburg, S., and Noble, D., 1974, The activation enthalpies for ion conductance systems in lipid bilaryer membranes, J. Membrane Biol. 18:163–176.CrossRefGoogle Scholar
  139. Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37–60.PubMedCrossRefGoogle Scholar
  140. Goodall, M. C., 1970a, Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. I. Tyrocidine B, Biochim. Biophys. Acta 203:28–33.PubMedCrossRefGoogle Scholar
  141. Goodall, M. C., 1970b, Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. II. Kinetics of tyrocidine B, Biochim. Biophys. Acta 219:28–36.PubMedCrossRefGoogle Scholar
  142. Goodall, M. C., 1970c, Ion dependent conductance: Switching in lipid bilayers, Nature (London) 225:1257–1258.CrossRefGoogle Scholar
  143. Goodall, M. C., 1970d, Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidins “A” and “S” and lipid specificity, Biochim. Biophys. Acta 219:471–478.PubMedCrossRefGoogle Scholar
  144. Goodall, M. C., 1971, Thickness dependence in the action of gramicidin A on lipid bilayers, Arch. Biochem. Biophys. 147:129–135.PubMedCrossRefGoogle Scholar
  145. Gordon, L. G. M., 1973a, Conductance channels in neutral lipid bilayers. I. The conductance of a model channel, J. Membrane Biol. 12:207–216.CrossRefGoogle Scholar
  146. Gordon, L. G. M., 1973b, Conductance channels in neutral lipid bilayers. II. High-level conductance of multi-channel systems, J. Membrane Biol. 12:217–225.CrossRefGoogle Scholar
  147. Gordon, L. G. M., 1974, Ion transport via alamethicin channels, in: Drugs and Transport Processes (B. A. Callingham, ed.), pp. 251–264, University Park Press, Baltimore.Google Scholar
  148. Gordon, L. G. M., and Haydon, D. A., 1972, The unit conductance channel of alamethicin, Biochim. Biophys. Acta 255:1014–1018.PubMedCrossRefGoogle Scholar
  149. Gordon, L. G. M., and Haydon, D. A., 1975, Potential dependent conductances in lipid membranes containing alamethicin, Philos. Trans. R. Soc. London Serv. B. 270:433–447.CrossRefGoogle Scholar
  150. Gordon, L. G. M., and Haydon, D. A., 1976, Kinetics and stability of alamethicin conducting channels in lipid bilayers, Biochim. Biophys Acta 436:541–556.PubMedCrossRefGoogle Scholar
  151. Grahame, D. C., 1947, The electrical double layer and the theory of electrocapillarity, Chem. Rev. 41:441–501.PubMedCrossRefGoogle Scholar
  152. Gregor’ev, P. A., and Ermishkin, L. N., 1970, Non-steady state current-voltage characteristics with negative resistance in artificial membranes, Biophysics 15:1174–1178.Google Scholar
  153. Gunn, R. B., and Curran, P. F., 1971, Membrane potentials and ion permeability in a cation exchange membrane, Biophys. J. 11:559–571.PubMedCrossRefGoogle Scholar
  154. Gutknecht, J., and Tosteson, D. C., 1970, Ionic permeability of thin lipid membrane: Effects of n-alkyl alcohols, polyvalent cations and a secondary amine, J. Gen. Physiol. 55:359–374.PubMedCrossRefGoogle Scholar
  155. Hall, J. E., 1975, Towards a molecular understanding of excitability: Alamethicin in black lipid films, Biophys. J. 15:934–939.PubMedCrossRefGoogle Scholar
  156. Hall, J. E., and Latorre, R., 1976, Nonactin-K+ complex as a probe for membrane asymmetry, Biophys. J. 16:99–103.PubMedCrossRefGoogle Scholar
  157. Hanai, T., Haydon, D. A., and Taylor, J., 1965, The influence of lipid composition and of some absorbed proteins on the capacitance of black hydrocarbon membranes, J. Theor. Biol. 9:422–432.PubMedCrossRefGoogle Scholar
  158. Harris, E. J., 1972, Transport and Accumulation in Biological Systems, 3rd ed., University Park Press, Baltimore.Google Scholar
  159. Haydon, D. A., 1975, Functions of the lipid in bilayer ion permeability, Ann. N. Y. Acad. Sci. 264:2–15.PubMedCrossRefGoogle Scholar
  160. Haydon, D. A., and Hladky, S. B., 1972, Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems, Q. Rev. Biophys. 5:187–282.PubMedCrossRefGoogle Scholar
  161. Haydon, D. A., and Myers, V. B., 1973, Surface charge, surface dipoles and membrane conductance, Biochim. Biophys. Acta 307:429–443.PubMedCrossRefGoogle Scholar
  162. Helfferich, F., 1962, Ion Exchange, McGraw-Hill, New York.Google Scholar
  163. Henderson, P. J. F., McGivan, J. D., and Chappell, J. B., 1969, The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes, Biochem. J. 111:521–535.PubMedGoogle Scholar
  164. Heyer, E. J., Muller, R. U., and Finkelstein, A., 1976a, Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions, J. Gen. Physiol. 67:703–729.PubMedCrossRefGoogle Scholar
  165. Heyer, E. J., Muller, R. U., and Finkelstein, A., 1976b, Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane, J. Gen. Physiol. 67:731–748.PubMedCrossRefGoogle Scholar
  166. Hille, B., 1967, The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion, J. Gen. Physiol. 50:1287–1302.PubMedCrossRefGoogle Scholar
  167. Hille, B., 1968a, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol. 51:199–219.PubMedCrossRefGoogle Scholar
  168. Hille, B., 1968b, Charges and potentials at the nerve surface, divalent ions and pH, J. Gen. Physiol. 51:221–236.PubMedCrossRefGoogle Scholar
  169. Hille, B., 1970, Ionic channels in nerve membranes, Prog. Biophys. Mol. Biol. 21:1–32.PubMedCrossRefGoogle Scholar
  170. Hille, B., 1971, The permeability of sodium channels to organic cations in myelinated nerves, J. Gen. Physiol. 58:599–619.PubMedCrossRefGoogle Scholar
  171. Hille, B., 1972, The permeability of sodium channels to metal cations in myelinated nerves, J. Gen. Physiol. 59:637–658.PubMedCrossRefGoogle Scholar
  172. Hille, B., 1973, Potassium channels in myelinated nerves, J. Gen. Physiol. 61:669–686.PubMedCrossRefGoogle Scholar
  173. Hille, B., 1976, Gating in sodium channels of nerve, Annu. Rev. Physiol. 38:139–152.PubMedCrossRefGoogle Scholar
  174. Hille, B., Woodhull, A. M., and Shapiro, B. I., 1975, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH, Philos. Trans. R. Soc. London Ser. B 270:301–318.CrossRefGoogle Scholar
  175. Hills, G. J., Jacobs, P. W. M., and Lakshminarayanaiah, N., 1961a, Membrane potentials. I. The theory of e.m.f. of cells containing ion exchange membranes, Proc. R. Soc. London Ser. A 262:246–256.CrossRefGoogle Scholar
  176. Hills, G. J., Jacobs, P. W. M., and Lakshminarayanaiah, N., 1961b, Membrane potentials. II. The measurement of the e.m.f. of cells containing the cation-exchange membrane, cross-linked polymethacrylic acid, Proc. R. Soc. London Ser. A 262:257–270.CrossRefGoogle Scholar
  177. Hilton, B. D., Bratkowski, T. A., Yamada, M., Narahashi, T., and O’Brien, R. D., 1973, Effects of DDT analogs upon potassium conductance in synthetic membranes, Pestic. Biochem. Physiol. 3:14–19.CrossRefGoogle Scholar
  178. Hladky, S. B., 1973, The effect of stirring on the flux of carriers into black lipid membranes, Biochim. Biophys. Acta 307:261–269.PubMedCrossRefGoogle Scholar
  179. Hladky, S. B., 1974a, The energy barriers to ion transport by nonactin across thin lipid membranes, Biochim. Biophys. Acta 352:71–85.PubMedCrossRefGoogle Scholar
  180. Hladky, S. B., 1974b, Pore or carrier? Gramicidin A as a simple pore, in: Drugs and Transport Processes (B. A. Callingham, ed.), pp. 193–209, University Park Press, Baltimore.Google Scholar
  181. Hladky, S. B., 1975a, Tests of the carrier model for ion transport by nonactin and trinactin, Biochim. Biophys. Acta 375:327–349.PubMedCrossRefGoogle Scholar
  182. Hladky, S. B., 1975b, Steady state ion transport by nonactin and trinactin, Biochim. Biophys. Acta 375:350–362.PubMedCrossRefGoogle Scholar
  183. Hladky, S. B., and Haydon, D. A., 1970, Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics, Nature (London) 225:451–453.CrossRefGoogle Scholar
  184. Hladky, S. B., and Haydon, D. A., 1972, Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel, Biochim. Biophys. Acta 274:294–312.PubMedCrossRefGoogle Scholar
  185. Hladky, S. B., and Haydon, D. A., 1973, Membrane conductance and surface potential, Biochim. Biophys. Acta 318:464–468.CrossRefGoogle Scholar
  186. Hladky, S. B., Gordon, L. G. M., and Haydon, D. A., 1974, Molecular mechanisms of ion transport in lipid membranes, Annu. Rev. Phys. Chem. 25:11–38.CrossRefGoogle Scholar
  187. Hodgkin, A. L., 1957, Ionic movements and electrical activity in giant nerve fibers, Proc. R. Soc. London Ser. B 148:1–37.CrossRefGoogle Scholar
  188. Hodgkin, A. L., 1964, The Conduction of the Nervous Impulse, Charles C Thomas, Springfield, Illinois.Google Scholar
  189. Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on the membrane potential of single muscle fibres, J. Physiol. (London) 148:127–160.Google Scholar
  190. Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116:449–472.Google Scholar
  191. Hodgkin, A. L., and Huxley, A. F., 1952b, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116:474–496.Google Scholar
  192. Hodgkin, A. L., and Huxley, A. F., 1952c, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (London) 116:497–506.Google Scholar
  193. Hodgkin, A. L., and Huxley, A. F., 1952d, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.Google Scholar
  194. Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108:37–77.Google Scholar
  195. Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116:424–448.Google Scholar
  196. Hoffman, R. A., Long, D. D., Arndt, R. A., and Roper, L. D., 1976, Voltage-clamp experiments on oxidized cholesterol membranes modified with excitability-inducing material and comparison with a model, Biochim. Biophys. Acta 455:780–795.PubMedCrossRefGoogle Scholar
  197. Holz, R., and Finkelstein, A., 1970, The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B, J. Gen. Physiol. 56:125–145.PubMedCrossRefGoogle Scholar
  198. Hope, A. B., 1971, Ion Transport and Membranes, University Park Press, Baltimore.Google Scholar
  199. Hopfer, U., Lehninger, A. L., and Lennarz, W. J., 1970, The effect of the polar moiety of lipids on bilayer conductance induced by uncouplers of oxidative phosphorylation, J. Membrane Biol: 3:142–155.CrossRefGoogle Scholar
  200. Huang, H. W., 1971a, Kinetic theory of antibiotic carrier. II, J. Theor. Biol. 32:363–371.PubMedCrossRefGoogle Scholar
  201. Huang, H. W., 1971b, Kinetic theory of antibiotic ion carrier. I, J. Theor. Biol. 32:351–361.PubMedCrossRefGoogle Scholar
  202. Hwang, S. T., and Kammermeyer, K., 1975, Membranes in Separation, Wiley-Interscience, New York.Google Scholar
  203. Ilani, A., 1963, K-Na discrimination by porous filters saturated with organic solvents as expressed by diffusion potentials, J. Gen. Physiol. 46:839–850.PubMedCrossRefGoogle Scholar
  204. Ilani, A., 1966, Interaction between cations in hydrophobic solvent-saturated filters containing fixed negative charges, Biophys. J. 6:329–352.PubMedCrossRefGoogle Scholar
  205. Jain, M. K., 1972, The Bimolecular Lipid Membrane, Van Nostrand Reinhold, New York.Google Scholar
  206. Jain, M. K., Strickholm, A., and Cordes, E. H., 1969, Reconstitution of an ATP-mediated active transport system across black lipid membranes, Nature (London) 222:871–872.CrossRefGoogle Scholar
  207. Jain, M. K., Strickholm, A., White, F. P., and Cordes, E. H., 1970, Electronic conduction across black lipid membrane, Nature (London) 227:705–707.CrossRefGoogle Scholar
  208. Jain, M. K., White, F. P., Strickholm, A., Williams, E., and Cordes, E. H., 1972, Studies concerning the possible reconstitution of an active cation pump across an artificial membrane, J. Membrane Biol. 8:363–388.CrossRefGoogle Scholar
  209. Jendrasiak, G. L., 1970, The interaction of iodine with lecithin micelles, Chem. Phys. Lipids 4:85–95.CrossRefGoogle Scholar
  210. Jung, G., Konig, W. A., Leibfritz, D., Ooka, T., Janko, K., and Boheim, G., 1976, Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. A. Sequence and conformation, Biochim. Biophys. Acta 433:164–181.PubMedCrossRefGoogle Scholar
  211. Kalkwarf, D. R., Frasco, D. L., and Brattain, W. H., 1972, Ion diffusion potentials and electrical rectification across lipid membranes activated by excitation-inducing material, Proc. Natl. Acad. Sci. U.S.A. 69:3765–3768.PubMedCrossRefGoogle Scholar
  212. Kamo, N., and Kobatake, K., 1974, Interpretation of asymmetric membrane potential, J. Colloid Interface Sci. 46:85–93.CrossRefGoogle Scholar
  213. Kao, C. Y., 1966, Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena, Pharmacol. Rev. 18:997–1049.PubMedGoogle Scholar
  214. Karreman, G., and Eisenman, G., 1962, Electrical potentials and ionic fluxes in ion exchangers. I. “n-Type” nonideal systems with zero current, Bull. Math. Biophys. 24:413–427.CrossRefGoogle Scholar
  215. Kasumov, KM., and Overman, YA., 1972, Ionic permeability of bimolecular membranes in the presence of polyene antibiotics. I. Nystatin and amphotericin B, Biophysics 17:1074–1083.Google Scholar
  216. Katz, B., 1966, Nerve, Muscle and Synapse, McGraw-Hill, New York.Google Scholar
  217. Kesting, R. E., 1971, Synthetic Polymeric Membranes, McGraw-Hill, New York.Google Scholar
  218. Ketterer, B., Neumcke, B., and Läuger, P., 1971, Transport mechanism of hydrophobic ions through lipid bilayer membranes, J. Membrane Biol. 5:225–245.CrossRefGoogle Scholar
  219. Keynes, R. D., and Lewis, P. R., 1951, The sodium and potassium content of cephalopod nerve fibres, J. Physiol. (London) 114:151–182.Google Scholar
  220. Keynes, R. D., and Rojas, E., 1974, Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon, J. Physiol (London) 239:393–434.Google Scholar
  221. Keynes, R. D., and Rojas, E., 1976, The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid axon, J. Physiol. (London) 255:157–189.Google Scholar
  222. Knoll, W., and Stark, G., 1975, An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes, J. Membrane Biol. 25:249–270.CrossRefGoogle Scholar
  223. Knoll, W., and Stark, G., 1977, Temperature jump experiments on thin lipid membranes in the presence of valinomycin, J. Membrane Biol. 37:13–28.CrossRefGoogle Scholar
  224. Kobatake, K., and Kamo, N., 1973, Transport processes in charged membranes, Prog. Polymer. Sci. 5:257–302.Google Scholar
  225. Kolb, H.-A., and Bamberg, E., 1977, Influence of membrane thickness and ion concentration on the properties of gramicidin A channel: Autocorrelation, spectral power density, relaxation and single channel studies, Biochim. Biophys. Acta 464:127–141.PubMedCrossRefGoogle Scholar
  226. Kolb, H.-A., Läuger, P., and Bamberg, E., 1975, Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels, J. Membrane Biol. 20:133–154.CrossRefGoogle Scholar
  227. Koryta, J., 1972, Theory and applications of ion selective electrodes, Anal. Chim. Acta 61:329–411.CrossRefGoogle Scholar
  228. Koryta, J., 1977, Theory and applications of ion selective electrodes. Part II, Anal. Chim. Acta 91:1–85.CrossRefGoogle Scholar
  229. Kotyk, A., and Janacek, K., 1975, Cell Membrane Transport: Principles and Techniques, 2nd ed., Plenum Press, New York.CrossRefGoogle Scholar
  230. Krasne, S., and Eisenman, G., 1976, Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes. I. Tetranactin and methylation of nonactin-type carriers, J. Membrane Biol. 30:1–44.CrossRefGoogle Scholar
  231. Kuo, K.-H., and Bruner, L. J., 1973, Uncoupler antagonism of valinomycin induced bilayer membrane conductance, Biochem. Biophys. Res. Commun. 52:1079–1085.PubMedCrossRefGoogle Scholar
  232. Kuo, K.-H., and Bruner, L. J., 1976, Modification of valinomycin-mediated bilayer membrane conductance by 4,5,6,7-tetrachloro-2-methyl benzimidazole, J. Membrane Biol. 26:385–403.CrossRefGoogle Scholar
  233. Kuo, K.-H., Fukuto, T. R., Miller, T. A., and Bruner, L. J., 1976, Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles, Biophys. J. 16:143–150.PubMedCrossRefGoogle Scholar
  234. Lakshminarayanaiah, N., 1965a, Preparation and characterization of thin parlodion membranes, J. Appl. Polymer Sci. 9:1285–1290.CrossRefGoogle Scholar
  235. Lakshminarayanaiah, N., 1965b, Transport phenomena in artificial membranes, Chem. Rev. 65:491–565.PubMedCrossRefGoogle Scholar
  236. Lakshminarayanaiah, N., 1966, Membrane potentials: Measurement of electromotive force of cells containing “untreated” collodion membrane, J. Phys. Chem. 70:1588–1590.CrossRefGoogle Scholar
  237. Lakshminarayanaiah, N., 1967, Studies with thin membranes. III. Measurement of water permeabilities of parlodion membranes formed by the dip technique, J. Appl. Polymer Sci. 11:1737–1754.CrossRefGoogle Scholar
  238. Lakshminarayanaiah, N., 1969a, Transport Phenomena in Membranes, Academic Press, New York.Google Scholar
  239. Lakshminarayanaiah, N., 1969b, Membrane potentials across permselective membranes, in: Proceedings—Conference on Natural and Synthetic Membranes (C. Saravis, K. Gershengorn, and M. E. Brown, eds.), pp. 125–142, U.S. Department of Health, Education and Welfare, NIH, Bethesda, Maryland.Google Scholar
  240. Lakshminarayanaiah, N., 1972, Membrane phenomena, in: Electrochemistry Vol. 2 (G. J. Hills, ed.), pp. 203–286, The Chemical Society, London.CrossRefGoogle Scholar
  241. Lakshminarayanaiah, N., 1974, Membrane phenomena, in: Electrochemistry, Vol. 4 (H. R. Thirsk, ed.), pp. 167–276, The Chemical Society, London.CrossRefGoogle Scholar
  242. Lakshminarayanaiah, N., 1975a, Membrane pheonomena, in: Electrochemistry, Vol. 5 (H. R. Thirsk, ed.), pp. 132–219, The Chemical Society, London.CrossRefGoogle Scholar
  243. Lakshminarayanaiah, N., 1975b, Measurement of membrane potential and estimation of effective fixed charge density in membranes, J. Membrane Biol. 21:175–189.CrossRefGoogle Scholar
  244. Lakshminarayanaiah, N., 1975c, Comment on “Evidence for a new concept of membrane potential” by Ohki, J. Theor. Biol. 50:497–500.PubMedCrossRefGoogle Scholar
  245. Lakshminarayanaiah, N., 1976a, Membrane Electrodes, Academic Press, New York.Google Scholar
  246. Lakshminarayanaiah, N., 1976b, Surface charges on membranes, J. Membrane Biol. 29:243–253.CrossRefGoogle Scholar
  247. Lakshminarayanaiah, N., 1977, Evaluation of membrane surface charge density: A discussion of some models, Bull. Math. Biol. 39:643–662.PubMedGoogle Scholar
  248. Lakshminarayanaiah, N., 1978, Membrane phenomena, in: Electrochemistry, Vol. 7 (H. R. Thirsk, ed.), The Chemical Society, London (in press).Google Scholar
  249. Lakshminarayanaiah, N., and Bianchi, C. P., 1977, Membranes, ions and drugs, in: Advances in General and Cellular Pharmacology (T. Narahashi and C. P. Bianchi, eds.), Vol. 2, p. 27, Plenum Press, New York.Google Scholar
  250. Lakshminarayanaiah, N., and Murayama, K., 1975, Estimation of surface charges in some biological membranes, J. Membrane Biol. 23:279–292.CrossRefGoogle Scholar
  251. Lakshminarayanaiah, N., and Rojas, E., 1973, Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres, J. Physiol. (London) 233:613–634.Google Scholar
  252. Lakshminarayanaiah, N., and Shanes, A. M., 1963, Thin membranes of parlodion, Science 141:43–44.PubMedCrossRefGoogle Scholar
  253. Lakshminarayanaiah, N., and Shanes, A. M., 1965, Electrochemical properties of thin parlodion membranes, J. Appl. Polymer Sci. 9:689–706.CrossRefGoogle Scholar
  254. Lakshminarayanaiah, N., and Siddiqi, F. A., 1971a, Studies with composite membranes. I. Preparation and measurement of impedances, Biophys. J. 11:603–616.PubMedCrossRefGoogle Scholar
  255. Lakshminarayanaiah, N., and Siddiqi, F. A., 1971b, Studies with composite membranes. II. Measurement of asymmetric properties, Biophys. J. 11:617–628.PubMedCrossRefGoogle Scholar
  256. Lakshminarayanaiah, N., and Siddiqi, F. A., 1971c, Some asymmetry properties of composite membranes, in: Membrane Processes in Industry and Biomedicine (M. Bier, ed.), pp. 301–309, Plenum Press, New York.CrossRefGoogle Scholar
  257. Lakshminarayanaiah, N., and Subrahmanyan, V., 1964, Measurement of membrane potentials and test of theories, J. Polymer Sci. A2:4491–4502.Google Scholar
  258. Laprade, R., Ciani, S., Eisenman, G., and Szabo, G., 1975, The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation, in: Membranes, Vol. 3, Lipid Bilayers and Biological Membranes: Dynamic Properties (G. Eisenman, ed.), pp. 127–214, Marcel Dekker, New York.Google Scholar
  259. Latorre, R., and Hall, J. E., 1976, Dipole potential measurements in asymmetric membranes, Nature (London) 264:361–363.CrossRefGoogle Scholar
  260. Latorre, R., Ehrenstein, G., and Lecar, H., 1972, Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes, J. Gen. Physiol. 60:72–85.PubMedCrossRefGoogle Scholar
  261. Latorre, R., Alvarez, O., and Verdugo, P., 1974, Temperature characterization of the conductance of the excitability-inducing material channel in oxidized cholesterol membranes, Biochim. Biophys. Acta 367:361–365.PubMedCrossRefGoogle Scholar
  262. Latorre, R., Alvarez, O., Ehrenstein, G., Espinoza, M., and Reyes, J., 1975, The nature of the voltage-dependent conductance of the hemocyanin channel, J. Membrane Biol. 25:163–182.CrossRefGoogle Scholar
  263. Läuger, P., 1972, Carrier mediated ion transport, Science 178:24–30.PubMedCrossRefGoogle Scholar
  264. Läuger, P., 1973, Ion transport through pores: A rate theory analysis, Biochim. Biophys. Acta 311:423–441.PubMedCrossRefGoogle Scholar
  265. Läuger, P., and Stark, G., 1970, Kinetics of carrier-mediated ion transport across lipid bilayer membranes, Biochim. Biophys. Acta 211:458–466.PubMedCrossRefGoogle Scholar
  266. Läuger, P., Lesslauer, W., Marti, E., and Richter, J., 1967a, Electrical properties of bimolecular phospholipid membranes, Biochim. Biophys. Acta 135:20–32.PubMedCrossRefGoogle Scholar
  267. Läuger, P., Richter, J., and Lesslauer, W., 1967b, Electrochemistry of bimolecular phospholipid membranes. I. Impedance measurements in aqueous iodine solutions, Ber. Bunsenges. Phys. Chem. 71:906–910.Google Scholar
  268. Lea, E. J. A., and Croghan, P. C., 1969, The effect of 2,4-dinitrophenol on the properties of thin phospholipid films, J. Membrane Biol. 1:225–237.CrossRefGoogle Scholar
  269. Lebedev, A. V., and Boguslavskii, L. I., 1971, Experimental study of the mechanism of conductivity of artificial phospholipid membranes using the method of impedance measurement, Biophysics 16:225–235.Google Scholar
  270. LeBlanc, O. H., Jr., 1969, Tetraphenylborate conductance through lipid bilayer membranes, Biochim. Biophys. Acta 193:350–360.CrossRefGoogle Scholar
  271. LeBlanc, O. H., Jr., 1970, Single ion conductances in lipid bilayers, Biophys. J. 10:94a (TPMA-3).Google Scholar
  272. LeBlanc, O. H., Jr., 1971, The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonycyanide-m-chlorophenylhydrazone, J. Membrane Biol. 4:227–251.CrossRefGoogle Scholar
  273. Lecar, H., Ehrenstein, G., and Latorre, R., 1975, Mechanism for channel gating in excitable bilayers, Ann. N. Y. Acad. Sci. 264:304–313.PubMedCrossRefGoogle Scholar
  274. Lee, A. G., 1975, Functional properties of biological membranes: A physical chemical approach, Prog. Biophys. Mol. BioL 29:3–56.PubMedCrossRefGoogle Scholar
  275. Leonard, J., and Singer, S. J., 1966, Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism, Proc. Natl. Acad. Sci. U.S.A. 56:1828–1835.CrossRefGoogle Scholar
  276. Lesslauer, W., Richter, J., and Läuger, P., 1967, Some electrical properties of bimolecular phosphatidylinositol membrane, Nature (London) 213:1224–1226.CrossRefGoogle Scholar
  277. Levinson, S. R., and Meves, H., 1975, The binding of tritiated tetrodotoxin to squid giant axons, Philas. Trans. R. Soc. London Ser. B 270:349–352.CrossRefGoogle Scholar
  278. Liberman, Ye. A., 1970, Membranes (ionic permeability, excitability, control), Biophysics 15:292–314.Google Scholar
  279. Liberman, Ye. A., and Topaly, V. P., 1969, Permeability of bimolecular phospholipid membranes for fat soluble ions, Biophysics 14:477–487.Google Scholar
  280. Liberman, Ye. A., Topaly, V. P., Tsofina, L. M., and Shkrob, A. M., 1969, Transfer of iodine ions across artificial phospholipid membranes, Biophysics 14:55–61.Google Scholar
  281. Liberman, Ye. A., Topaly, V. P., and Silberstein, A. Y., 1970a, Charged and neutral ion carriers through bimolecular phospholipid membranes, Biochim. Biophys. Acta 196:221–234.PubMedCrossRefGoogle Scholar
  282. Liberman, Ye. A., Topaly, V. P., and Tsofina, L. M., 1970b, Comparison of the properties of the bimolecular phospholipid membranes from brain, mitochondria and bacteria, Biophysics 15:67–74.Google Scholar
  283. Liberman, Ye. A., Pronevich, L. A., and Topaly, V. P., 1970c, Mechanism of permeability of phospholipid membranes for cations in presence of antibiotics, Biophysics 15:639–650.Google Scholar
  284. Liberman, Ye. A., Topaly, V. P., Zil’bershtein, Ya. A., and Okhlobystin, O. Yu., 1971, Mobile ion carriers and the negative resistance of membranes. I. Uncoupling agents of oxidative phosphorylation: Proton carriers, Biophysics 16:637–649.Google Scholar
  285. Lih, M. M., 1975, Transport Phenomena in Medicine and Biology, Wiley-Interscience, New York.Google Scholar
  286. Ling, G. N., 1967, Anion specific and cation specific properties of collodion coated glass electrode and a modification, in: Glass Electrodes for Hydrogen and Other Cations: Principles and Practice (G. Eisenman, ed.), pp. 284–292, Marcel Dekker, New York.Google Scholar
  287. Liquori, A. M., and Botre, C., 1967, The asymmetry potential effect across non-uniform ion selective membranes, J. Phys. Chem. 71:3765–3768.PubMedCrossRefGoogle Scholar
  288. Lonsdale, H. K., and Podall, H. E. (eds.), 1972, Reverse Osmosis Membrane Research, Plenum Press, New York.Google Scholar
  289. Lorimer, J. W., Boterenbrood, E. I., and Hermans, J. J., 1956, Transport processes in ion selective membranes: Conductivities, transport numbers and electromotive forces, Discuss. Faraday Soc. 21:141–149.CrossRefGoogle Scholar
  290. Lossen, O., Brennecke, R., and Schubert, D., 1973, Electrical properties of black membranes from oxidized cholesterol and a strongly bonded protein fraction of human erythrocyte membranes, Biochim. Biophys. Acta 330:132–140.PubMedCrossRefGoogle Scholar
  291. MacDonald, R. C., and Bangham, A. D., 1972, Comparison of double layer potentials in lipid monolayers and lipid bilayer membranes, J. Membrane Biol. 7:29–53.CrossRefGoogle Scholar
  292. Mackie, J. S., and Meares, P., 1955, The sorption of electrolytes by a cation-exchange resin membrane, Proc. R. Soc. London Ser. A 232:485–498.CrossRefGoogle Scholar
  293. Markin, V. S., Krishtalik, L. I., Liberman, Ye. A., and Topaly, V. P., 1969, Mechanism of conductivity of artificial phospholipid membranes in presence of ion carriers, Biophysics 14:272–282.Google Scholar
  294. Marty, A., and Finkelstein, A., 1975, Pores formed in lipid bilayer membranes by nystatin, J. Gen. Physiol. 65:515–526.PubMedCrossRefGoogle Scholar
  295. Massey, T. H., and McColloch, R. J., 1971, Langmuir adsorption behavior with cation induced voltages across bimolecular lipid membranes, Biochim. Biophys. Acta 241:661–674.PubMedCrossRefGoogle Scholar
  296. Mauro, A., Nanavati, R. P., and Heyer, E., 1972, Time variant conductance of bilayer membranes treated with monazomycin and alamethicin, Proc. Natl. Acad. Sci. U.S.A. 69:3742–3744.PubMedCrossRefGoogle Scholar
  297. McLaughlin, S. G. A., 1972, The mechanism of action of DNP on phospholipid bilayer membranes, J. Membrane Biol. 9:361–372.CrossRefGoogle Scholar
  298. McLaughlin, S., 1973, Salicylates and phospholipid bilayer membranes, Nature (London) 243:234–236.CrossRefGoogle Scholar
  299. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, Curr. Top. Membr. Transp. 9:71–144.CrossRefGoogle Scholar
  300. McLaughlin, S., and Eisenberg, M., 1975, Antibiotics and membrane biology, Annu. Rev. Biophys. Bioeng. 4:335–366.PubMedCrossRefGoogle Scholar
  301. McLaughlin, S., and Harary, H., 1976, The hydrophobic adsorption of charged molecules to bilayer membranes: A test of the applicability of the Stem equation, Biochemistry 15:1941–1948.PubMedCrossRefGoogle Scholar
  302. McLaughlin, S. G. A., Szabo, G., Eisenman, G., and Ciani, S. M., 1970, Surface charge and the conductance of phospholipid membranes, Proc. Natl. Acad. Sci. U.S.A. 67:1268–1275.PubMedCrossRefGoogle Scholar
  303. McLaughlin, S. G. A., Szabo, G., and Eisenman, G., 1971, Divalent ions and surface potential of charged phospholipid membranes, J. Gen. Physiol. 58:667–687.PubMedCrossRefGoogle Scholar
  304. McLaughlin, S. G. A., Szabo, G., Ciani, S., and Eisenman, G., 1972, The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membrane, J. Membrane Biol. 9:3–36.CrossRefGoogle Scholar
  305. McLaughlin, S., Bruder, A., Chen, S., and Moser, C., 1975, Chaotropic anions and the surface potential of bilayer membranes, Biochim. Biophys. Acta 394:304–313.PubMedCrossRefGoogle Scholar
  306. Meares, P. (ed,), 1976, Membrane Separation Processes, Elsevier, Amsterdam.Google Scholar
  307. Melnik, E., Latorre, R., Hall, J. E., and Tosteson, D. C., 1977, Phloretin-induced changes in ion transport across lipid bilayer membranes, J. Gen. Physiol. 69:243–257.PubMedCrossRefGoogle Scholar
  308. Merten, U. (ed.), 1966, Desalination by Reverse Osmosis, MIT Press, Cambridge.Google Scholar
  309. Meves, H., 1974, The effect of holding potential on the asymmetry currents in squid giant axons, J. Physiol. (London) 243:847–867.Google Scholar
  310. Meves, H., 1975, Asymmetry currents in intracellularly perfused squid giant axons, Philos. Trans. R. Soc. London Ser. B 270:493–500.CrossRefGoogle Scholar
  311. Miyamoto, V. K., and Thompson, T. E., 1967, Some electrical properties of lipid bilayer membranes, J. Colloid Interface Sci. 25:16–25.CrossRefGoogle Scholar
  312. Moelwyn-Hughes, E. A., 1961, Physical Chemistry, 2nd rev. ed., pp. 1106–1109, Pergamon Press, New York.Google Scholar
  313. Montal, M., 1972, Lipid-polypeptide interactions in bilayer lipid membranes, J. Membrane Biol. 7:245–266.CrossRefGoogle Scholar
  314. Montal, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.PubMedCrossRefGoogle Scholar
  315. Moore, J. W., Blaustein, M. P., Anderson, N. C., and Narahashi, T., 1967, Basis of tetrodotoxin’s selectivity in blockage of squid axons, J. Gen. Physiol. 50:1401–1412.PubMedCrossRefGoogle Scholar
  316. Moore, L. E., and Neher, E, 1976, Fluctuation and relaxation analysis of monazomycin-induced conductance in black lipid membranes, J. Membrane Biol. 27:347–362.CrossRefGoogle Scholar
  317. Moran, A., and Ilani, A., 1974, The effect of prymnesin on the electric conductivity of thin lipid membranes, J. Membrane Biol. 16:237–256.CrossRefGoogle Scholar
  318. Mozhayeva, G. N., and Naumov, A. P., 1970, Effect of surface charge on the steady state potassium conductance of nodal membrane, Nature (London) 228:164–165.CrossRefGoogle Scholar
  319. Mozhayeva, G. N., and Naumov, A. P., 1972a, Effect of the surface charge on the steady state potassium conductivity of the membrane of a node of Ranvier. I. Change in pH of external solution, Biophysics 17:429–439.Google Scholar
  320. Mozhayeva, G. N., and Naumov, A. P., 1972b, Effect of the surface charge on the steady state potassium conductivity of the membrane of the node of Ranvier. II. Change in ionic strength of the external solution, Biophysics 17:644–649.Google Scholar
  321. Mozhayeva, G. N., and Naumov, A. P., 1972c, Influence of the surface charge on steady state potassium conductivity of the membrane of a node of Ranvier. III. Effect of bivalent cations, Biophysics 17:839–847.Google Scholar
  322. Mueller, P., 1975a, Membrane excitation through voltage-induced aggregation of channel precursors, Ann. N. Y. Acad. Sci. 264:247–264.PubMedCrossRefGoogle Scholar
  323. Mueller, P., 1975b, Electrical excitability in lipid bilayers and cell membranes, in: Energy Transducing Mechanisms (E. Racker, ed.), Int. Rev. Sci. Biochem. Ser. 3:75–120, Butterworths, London.Google Scholar
  324. Mueller, P., and Rudin, D. O., 1967, Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics, Biochem. Biophys. Res. Commun. 26:398–404.PubMedCrossRefGoogle Scholar
  325. Mueller, P., and Rudin, D. O., 1968a, Action potentials induced in bimolecular lipid membranes, Nature (London) 217:713–719.CrossRefGoogle Scholar
  326. Mueller, P., and Rudin, D. O., 1968b, Resting and action potentials in experimental bimolecular lipid membranes, J. Theor. Biol. 18:222–258.PubMedCrossRefGoogle Scholar
  327. Mueller, P., and Rudin, D. O., 1969, Translocators in bimolecular lipid membranes: Their roles in dissipative and conservative bioenergy transductions, Curr. Top. Bioenerg. 3:157–249.Google Scholar
  328. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1962a, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature (London) 194:979–981.CrossRefGoogle Scholar
  329. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1962b, Reconstitution of excitable cell membrane structure in vitro, Circulation 26:1167–1171.Google Scholar
  330. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1963, Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem. 67:534–535.Google Scholar
  331. Muller, R. U., and Finkelstein, A., 1972a, Voltage-dependent conductance induced in thin lipid membranes by monazomycin, J. Gen. Physiol. 60:263–284.PubMedCrossRefGoogle Scholar
  332. Muller, R. U., and Finkelstein, A., 1972b, The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin, J. Gen. Physiol. 60:285–306.PubMedCrossRefGoogle Scholar
  333. Myers, V. B., and Haydon, D. A., 1972, Ion transport across lipid membranes in the presence of gramicidin A. H. The ion selectivity, Biochim. Biophys. Acta 274:313–322.PubMedCrossRefGoogle Scholar
  334. Narahashi, T., 1973, Drugs affecting axonal membranes, in: Fundamentals of Cell Pharmacology (S. Dikstein, ed.), pp. 395–424, Charles C Thomas, Springfield, Illinois.Google Scholar
  335. Narahashi, T., Moore, J. W., and Scott, W. R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol. 47:965–974.PubMedCrossRefGoogle Scholar
  336. Neher, E., 1975, Ionic specificity of the gramicidin channel and the thallous ion, Biochim. Biophys. Acta 401:540–544.CrossRefGoogle Scholar
  337. Neher, E., and Eibel, H., 1977, The influence of phospholipid polar groups on gramicidin channels, Biochim. Biophys. Acta 464:37–44.PubMedCrossRefGoogle Scholar
  338. Neher, E., and Sakmann, B., 1976, Agonist-induced discrete conductance changes in frog muscle, Biophys. J. 16:154a.Google Scholar
  339. Neumann, E., and Bernhardt, J., 1977, Physical chemistry of excitable membranes, Annu. Rev. Biochem. 46:117–141.PubMedCrossRefGoogle Scholar
  340. Neumcke, B., 1970, Ion flux across lipid bilayer membranes with charged surface, Biophysik 6:231–240.PubMedCrossRefGoogle Scholar
  341. Nicolsky, B. P., Shultz, M. M., Belijustin, A. A., and Lev, A. A., 1967, Recent development in the ion-exchange theory of the glass electrode and its application in the chemistry of glass in: Glass Electrodes for Hydrogen and Other Cations: Principles and Practice (G. Eisenman, ed.), pp. 174–222, Marcel Dekker, New York.Google Scholar
  342. Nikol’sakaya, G. A., Lebedev, A. V., and Boguslavskii, L. I., 1972, Determination of the delayed stage during movement of a proton across a bimolecular lipid membrane in the presence of an uncoupling agent of oxidative phosphorylation—tetrachlorotrifluoro-methyl benzimidazole, Biophysics 17:345–348.Google Scholar
  343. Nonner, W., Rojas, E., and Stämpfli, R., 1975a, Gating currents in the node of Ranvier: Voltage and time dependence, Philos. Trans. R. Soc. London Ser. B 270:483–492.CrossRefGoogle Scholar
  344. Nonner, W., Rojas, E., and Stämpfli, R., 1975b, Displacement currents in the node of Ranvier: Voltage and time dependence, Pflügers Arch. 354:1–18.PubMedCrossRefGoogle Scholar
  345. Ohki, S., 1970, Effect of local anesthetics on phospholipid bilayers, Biochim. Biophys. Acta 219:18–27.CrossRefGoogle Scholar
  346. Ohki, S., 1971, Electrical potential of an asymmetric membrane. J. Colloid Interface Sci. 37:318–324.CrossRefGoogle Scholar
  347. Ohki, S., 1972, Membrane potential of phospholipid bilayers: Ion concentration and pH difference, Biochim. Biophys. Acta 282:55–71.PubMedCrossRefGoogle Scholar
  348. Ohki, S., 1973, Evidence for a new concept of membrane potential, J. Theor. Biol. 42:593–596.CrossRefGoogle Scholar
  349. Ohki, S., 1976, Membrane potential of phospholipid bilayer and biological membranes, Prog. Surf. Membr. Sci. 10:117–252.Google Scholar
  350. Osterhout, W. J. V., 1940, Some models of protoplasmic surfaces, Cold Spring Harbor Symp. Quant. Biol. 8:51–62.CrossRefGoogle Scholar
  351. Pant, H. C., and Conran, P., 1972, Keyhole limpet hemocyanin (KLH)-lipid bilayer membrane (BLM) interaction, J. Membrane Biol. 8:357–362.CrossRefGoogle Scholar
  352. Pashayev, P. A., and Tsofina, L. M., 1968, Effect of iodine ions on the electrical properties of bimolecular phospholipid membranes, Biophysics 13:427–429.Google Scholar
  353. Passino, R. (ed.), 1976, Biological and Artificial Membranes and Desalination of Water, Elsevier, Amsterdam.Google Scholar
  354. Paterson, S. J., Butler, K. W., Huang, P., Labelle, J., Smith, I. C. P., and Schneider, H., 1972, The effects of alcohols on lipid bilayers: A spin label study, Biochim. Biophys. Acta 266:597–602.PubMedCrossRefGoogle Scholar
  355. Petkau, A., and Chelack, W. S., 1972, Permeability of a modified lipid membrane to 22Na+, Biochim Biophys. Acta 255:161–166.PubMedCrossRefGoogle Scholar
  356. Pickar, A. D., and Amos, W. D., 1976, Alternating current studies of charge carrier transport in lipid bilayers: Pentachlorophenol in lecithin-cholesterol membrane, Biochim. Biophys. Acta 455:36–55.PubMedCrossRefGoogle Scholar
  357. Pressman, B. C., 1973, Properties of ionophores with broad range of cation selectivity, Fed. Proc. Fed. Am. Soc. Exp. Biol. 32:1698–1703.Google Scholar
  358. Redwood, W. R., Gibbes, D. C., and Thompson, T. E., 1973, Interaction of a solubilized membrane ATPase with lipid bilayer membranes, Biochim. Biophys. Acta 318:10–22.PubMedCrossRefGoogle Scholar
  359. Reman, F. C., Demel, R. A., DeGier, J., Van Deenen, L. L. M., Eibel, H., and Westphal, O., 1969, Studies on the lysis of red cells and bimolecular lipid leaflets by synthetic lysolecithins, lecithins and structural analogs, Chem. Phys. Lipids 3:221–233.PubMedCrossRefGoogle Scholar
  360. Robertson, J. D., 1964, Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes, in: Cellular Membranes in Development (M. Locke, ed.), pp. 1–81, Academic Press, New York.Google Scholar
  361. Rogers, C. E. (ed.), 1971, Permselective Membranes, Marcel Dekker, New York.Google Scholar
  362. Rojas, E., and Armstrong, C. M., 1971, Sodium conductance activation without inactivation in pronase perfused axons, Nature (London) 229:177–178.Google Scholar
  363. Rojas, E., and Atwater, I., 1967, Effect of tetrodotoxin on the early outward currents in perfused giant axons, Proc. Natl. Acad. Sci. U.S.A. 57:1350–1355.PubMedCrossRefGoogle Scholar
  364. Rojas, E., and Keynes, R. D., 1975, On the relation between displacement currents and activation of the sodium conductance in the squid giant axon, Philos. Trans. R. Soc. London Ser. B 270:459–482.CrossRefGoogle Scholar
  365. Romine, W. O., Sherette, G. R., Brown, G. B., and Bradley, R. J., 1977, Evidence that nystatin may not form channels in thin lipid membranes, Biophys. J. 17:269–274.PubMedCrossRefGoogle Scholar
  366. Rosenberg, B., and Bhowmik, B. B., 1969, Donor-acceptor complexes and the semiconductivity of lipids, Chem. Phys. Lipids 3:109–124.CrossRefGoogle Scholar
  367. Rosenberg, B., and Jendrasiak, G. L., 1968, Semiconductive properties of lipids and their possible relationship to lipid bilayer conductivity, Chem. Phys. Lipids 2:47–54.PubMedCrossRefGoogle Scholar
  368. Rosenberg, B., and Pant, H. C., 1970, The semiconducting rectifier behavior of a bimolecular lipid membrane, Chem. Phys. Lipids 4:203–207.PubMedCrossRefGoogle Scholar
  369. Roy, G., 1975, Properties of the conductance induced in lecithin bilayer membranes by alamethician, J. Membrane Biol. 24:71–85.CrossRefGoogle Scholar
  370. Sachs, F., and Lecar, H., 1973, Acetylcholine noise in tissue culture muscle cell, Nature (London) 246:214–216.Google Scholar
  371. Sandblom, J., 1969a, Liquid ion exchange membranes with weakly ionized groups. I. Theoretical study of their steady state properties, J. Phys. Chem. 73:249–256.CrossRefGoogle Scholar
  372. Sandblom, J., 1969b, Liquid ion exchange membranes with weakly ionized groups. II. The resistance and electromotive force of a thin membrane, J. Phys. Chem. 73:257–264.CrossRefGoogle Scholar
  373. Sandblom, J., and Orme, F., 1972, Liquid membranes as electrodes and biological models, in: Membranes (G. Esienman, ed.), Vol. 1, pp. 125–177, Marcel Dekker, New York.Google Scholar
  374. Sandblom, J., Eisenman, E., and Walker, J. L., Jr., 1967a, Electrical phenomena associated with the transport of ions and ion pairs in liquid ion exchange membranes. I. Zero current properties, J. Phys. Chem. 71:3862–3870.PubMedCrossRefGoogle Scholar
  375. Sandblom, J., Eisenman, G., and Walker, J. L., Jr., 1967b, Electrical phenomena associated with the transport of ions and ion pairs in liquid ion exchange membranes. II. Nonzero current properties, J. Phys. Chem. 71:3871–3878.CrossRefGoogle Scholar
  376. Sandblom, J., Hägglund, J., and Eriksson, N. E., 1975, Electrical relaxation processes in black lipid membranes in the presence of a cation selective ionophore, J. Membrane Biol. 23:1–19.CrossRefGoogle Scholar
  377. Sandblom, J., Eisenman, G., and Neher, E., 1977, Ionic selectivity, saturation and block in gramicidin A channels. I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states, J. Membrane Biol. 31:383–417.CrossRefGoogle Scholar
  378. Scatchard, G., 1953, Ion exchanger electrodes, J. Am. Chem. Soc. 75:2883–2887.CrossRefGoogle Scholar
  379. Schauf, C. L., 1975, The interactions of calcium with Myxicola giant axons and a description in terms of a simple surface charge model, J. Physiol. (London) 248:613–624.Google Scholar
  380. Schein, S. J., Colombini, M., and Finkelstein, A., 1976, Reconstitution in planar lipid bilayers of a voltage-dependent anion selective channel obtained from paramecium mitochondria, J. Membrane Biol. 30:99–120.CrossRefGoogle Scholar
  381. Schulman, J. H., and Rideal, E. K., 1931, On the surface potentials of unimolecular films of long chain fatty acids. Part 1. Experimental method, Proc. R. Soc. London Ser. A 130:259–270.CrossRefGoogle Scholar
  382. Schuster, B. G., Palmer, R. F., and Aronson, R. S., 1970, The effect of endotoxin on thin lipid bilayer membranes, J. Membrane Biol. 3:67–72.CrossRefGoogle Scholar
  383. Schwartz, T. L., 1971, The thermodynamic foundations of membrane physiology, in: Biophysics and Physiology of Excitable Membranes (W. J. Adelman, Jr., ed.), pp. 41–95, Van Nostrand Reinhold, New York.Google Scholar
  384. Seufert, W. D., 1965, Induced permeability changes in reconstituted cell membrane structure, Nature (London) 207:174–176.CrossRefGoogle Scholar
  385. Shanes, A. M., 1958, Electrochemical aspects of physiological and pharmacological action in excitable cells. Part I. The resting cell and its alteration by extrinsic factors, Pharmacol. Rev. 10:59–164.PubMedGoogle Scholar
  386. Shean, G. M., and Sollner, K., 1966, Carrier mechanisms in the movement of ions across porous and liquid ion exchange membranes, Ann. N. Y. Acad. Sci. 137:759–776.PubMedCrossRefGoogle Scholar
  387. Shemyakin, M. M., Antonov, V. K., Bergelson, L. D., Ivanov, V. T., Malenkov, G. G., Ovchinnikov, Yu. A., and Shkrob, A. M., 1969, Chemistry of membrane-affecting peptides, depsipeptides and depsides (structure-function relations), in: Molecular Basis of Membrane Function (D. C. Tosteson, ed.), pp. 173–210, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  388. Skhrob, A. M., and Mel’nik, Ye. I., 1972, Transfer of protons across bilayer lipid membranes in the presence of dibasic phenol: Dependence of the mechanism of conductivity on the pH of aqueous solution, Biophysics 17:743–746.Google Scholar
  389. Shkrob, A. M., Mel’nik, Ye. I., Terekhov, O. P., and Ovchinnikov, Yu. A., 1973, Use of valinomycin as a probe for investigating the properties of the membranes. I. Nonmonotonic change in the properties of bilayer membranes of bovine brain lipids with increase in ionic strength of the bathing solutions, Biophysics 18:691–697.Google Scholar
  390. Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 145–222, Academic Press, New York.Google Scholar
  391. Singer, S. J., and Nocolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  392. Smejtek, P., Hsu, K., and Perman, W. H., 1976, Electrical conductivity in lipid bilayer membranes induced by pentacholorophenol, Biophys. J. 16:319–336.PubMedCrossRefGoogle Scholar
  393. Sollner, K., and Shean, G. M., 1964, Liquid ion exchange membranes of extreme selectivity and high permeability for anions, J. Am. Chem. Soc. 86:1901–1902.CrossRefGoogle Scholar
  394. Sourirajan, S., 1970, Reverse Osmosis, Academic Press, New York.Google Scholar
  395. Sourirajan, S. (ed.), 1976, Reverse Osmosis and Synthetic Membranes: Theory, Technology and Engineering, Marcel Dekker, New York.Google Scholar
  396. Spiegler, K. S. (ed.), 1966, Principles of Desalination, Academic Press, New York.Google Scholar
  397. Stark, G., 1973, Rectification phenomena in carrier-mediated ion transport, Biochim. Biophys. Acta 298:323–332.PubMedCrossRefGoogle Scholar
  398. Stark, G., and Benz, R., 1971, The transport of potassium through lipid bilayer membranes by neutral carriers, valinomycin and nonactin, J. Membrane Biol. 5:133–153.CrossRefGoogle Scholar
  399. Stark, G., Ketterer, B., Benz, R., and Läuger, P., 1971, The rate constants of valinomycin-mediated ion transport through thin lipid membranes, Biophys. J. 11:981–994.PubMedCrossRefGoogle Scholar
  400. Stark, G., Benz, R., Pohl, G. W., and Janko, K., 1972, Valinomycin as a probe for the study of structural changes of black lipid membranes, Biochim. Biophys. Acta 266:603–612.PubMedCrossRefGoogle Scholar
  401. Staverman, A. J., 1952, Nonequilibrium thermodynamics of membrane processes, Trans. Faraday Soc. 48:176–185.CrossRefGoogle Scholar
  402. Steim, J. M., 1968, Spectroscopic and calorimetric studies of biological membrane structure, Adv. Chem. Ser. 84:259–302.CrossRefGoogle Scholar
  403. Stein, W. D., 1967, The Movement of Molecules across Cell Membranes, Academic Press, New York.Google Scholar
  404. Stevens, C. F., 1977, Conductance fluctuations and ionic pores in membranes, Annu. Rev. Biophys. Bioeng. 6:345–381.PubMedCrossRefGoogle Scholar
  405. Stoeckenius, W., and Engelman, D. M., 1969, Current models for the structure of biological membranes, J. Cell Biol. 42:613–646.PubMedCrossRefGoogle Scholar
  406. Szabo, G., 1974, Dual mechanism for the action of cholesterol on membrane permeability, Nature (London) 252:47–49.CrossRefGoogle Scholar
  407. Szabo, G., Eisenman, G., and Ciani, S., 1969, The effects of macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, J. Membrane Biol. 1:346–382.CrossRefGoogle Scholar
  408. Szabo, G., Eisenman, G., and Ciani, S. M., 1970, Ion distribution equilibria in bulk phases and the ion transport properties of bilayer membranes produced by neutral macrocyclic antibiotics, in: Physical Principles of Biological Membranes (F. Snell, J. Wolken, G. Iverson, and J. Lam, eds.), pp. 79–135, Gordon and Breach, New York.Google Scholar
  409. Szabo, G., Eisenman, G., McLaughlin, S. G. A., and Krasne, S., 1972, Ionic probes of membrane structures, Ann. N. Y. Acad. Sci. 195:273–290.PubMedCrossRefGoogle Scholar
  410. Tasaki, I., 1968, Nerve Excitation: A Macromolecular Approach, Charles C Thomas, Springfield, Illinois.Google Scholar
  411. Teorell, T., 1936, Ionic transference numbers in cellophane membranes, J. Gen. Physiol. 19:917–927.PubMedCrossRefGoogle Scholar
  412. Teorell, T., 1953, Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. Biophys. Chem. 3:305–369.Google Scholar
  413. TerMinassian-Saraga, L., and Wietzerbian, J., 1970, The action of hexadecyl trimethylammonium bromide on bilayer lipid membranes, Biochem. Biophys. Res. Commun. 41:1231–1237.CrossRefGoogle Scholar
  414. Tien, H. T., 1974, Bilayer Lipid Membranes (BLM): Theory and Practice, Marcel Dekker, New York.Google Scholar
  415. Tosteson, M. T., Lau, F., and Tosteson, D. C., 1973, Incorporation of a functional membrane glycoprotein into lipid bilayer membranes, Nature (London) New Biol. 243:112–114.Google Scholar
  416. Tredgold, R. H., Hole, P. N., Sproule, R. C., and Elgamal, M., 1977, Single channel characteristics of some synthetic gramicidins, Biochim. Biophys. Acta 471:189–194.PubMedCrossRefGoogle Scholar
  417. Tsofina, L. M., Liberman, E. A., and Babakov, A. V., 1966, Production of bimolecular protein-lipid membranes in aqueous solution, Nature (London) 212:681–683.CrossRefGoogle Scholar
  418. Ulbright, W., 1977, Ionic channels and gating currents in excitable membranes, Annu. Rev. Biophys. Bioeng. 6:7–31.CrossRefGoogle Scholar
  419. Urry, D. W., Goodall, M. C., Glickson, J. D., and Mayers, D. F., 1971, The gramicidin A transmembrane channel: Characteristics of head to head dimerized H(L, D) helices, Proc. Natl. Acad. Sci. U.S.A. 68:1907–1911.PubMedCrossRefGoogle Scholar
  420. Vanderkooi, G., and Green, D. E., 1970, Biological membrane structure. I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S.A. 66:615–621.PubMedCrossRefGoogle Scholar
  421. Van Zutphen, H., and Cornwell, D. G., 1973, Some studies on lipid peroxidation in monomolecular and bimolecular lipid films, J. Membrane Biol. 13:79–88.CrossRefGoogle Scholar
  422. Van Zutphen, H., Demel, R. A., Norman, A. W., and Van Deenen, L. L. M., 1971, The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions, Biochim. Biophys. Acta 241:310–330.PubMedCrossRefGoogle Scholar
  423. Van Zutphen, H., Merola, A. J., Brierley, G. P., and Cornwell, D. G., 1972, The interaction of nonionic detergents with lipid bilayer membranes, Arch. Biochem. Biophys. 152:755.-766.Google Scholar
  424. Veatch, W., 1976, The structure of the gramicidin A transmembrane channel, J. Supramol. Struct. 5:431–451.PubMedCrossRefGoogle Scholar
  425. Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L., 1975, Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A, J. Mol. Biol. 99:75–92.PubMedCrossRefGoogle Scholar
  426. Vogel, W., 1973, Effect of lanthanum at the nodal membrane, Experientia 29:1517.PubMedCrossRefGoogle Scholar
  427. Walker, J. L., Jr., Eisenman, G., and Sandblom, J., 1968, Electrical phenomena associated with the transport of ions and ion pairs in liquid ion exchange membrane. III. Experimental observations in a model system, J. Phys. Chem. 72:978–990.PubMedCrossRefGoogle Scholar
  428. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membranes, Proc. Natl. Acad. Sci. U.S.A. 56:1552–1559.PubMedCrossRefGoogle Scholar
  429. Wanke, E., and Prestipino, G., 1976, Monazomycin channel noise, Biochim. Biophys. Acta 436:721–726.PubMedCrossRefGoogle Scholar
  430. Woodhull, A. M., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61:687–708.PubMedCrossRefGoogle Scholar
  431. Wulf, J., and Pohl, W. G., 1977, Calcium ion flux across phosphatidylcholine membranes mediated by ionophore A23187, Biochim. Biophys. Acta 465:471–485.PubMedCrossRefGoogle Scholar
  432. Wulf, J., Benz, R., and Pohl, W. G., 1977, Properties of bilayer membranes in the presence of dipicrylamine: A comparative study of optical absorption and electrical relaxation experiments, Biochim. Biophys. Acta 465:429–442.PubMedCrossRefGoogle Scholar
  433. Wyllie, M. R. J., and Patnode, H. W., 1950, The development of membranes prepared from artificial cation exchange materials with particular reference to the determination of sodium ion activities, J. Phys. Chem. 54:204–227.CrossRefGoogle Scholar
  434. Yafuso, M., Kennedy, S. J., and Freeman, A. R., 1974, Spontaneous conductance changes, multilevel conductance states and negative differential resistance in oxidized cholesterol black lipid membranes, J. Membrane Biol. 17:201–212.CrossRefGoogle Scholar
  435. Yamins, H. G., and Zisman, W. A., 1933, A new method for studying the electrical properties of monomolecular films on liquids, J. Chem. Phys. 1:656–661.CrossRefGoogle Scholar
  436. Zingsheim, H. P., and Neher, E., 1974, The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes, Biophys. Chem. 2:197–207.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  1. 1.Department of PharmacologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations