Dehydrogenases of the Plasma Membrane



Oxidation-reduction reactions are widespread in biological systems and are basic to life processes and cellular metabolism. Nicotinamide-nucleotide-linked electron transport is generally part of a complex chain or array of carriers linked both structurally and functionally to cellular membranes. Some of the carriers may be loosely bound to the membrane or even “soluble” in the cytoplasm; others are structured as integral proteins of the membrane. The most widely studied are those of the electron-transport system found in and restricted to the inner mitochondrial membrane. Here, a sequence of components is organized mostly on the inner mitochondrial membrane with three sites of potential energy coupling to ATP formation (DePierre and Ernster, 1977).


Endoplasmic Reticulum NADPH Oxidase Adenylate Cyclase Xanthine Oxidase NADH Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altura, B. M., and Altura, B. T., 1977, Vascular smooth muscle and neurohypophyseal hormones, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:1853–1860.Google Scholar
  2. Amos, H., Christopher, C. W., and Musliner, T. A., 1976, Regulation of glucose transport in chick fibroblasts: Bicarbonate, lactate and ascorbic acid, J. Cell Physiol. 89:669–676.PubMedGoogle Scholar
  3. Anderson, W. B., and Pastan, I., 1975, Altered adenylate cyclase activity: Its role in growth regulation and malignant transformation of fibroblasts, in: Advances in Cyclic Nucleotide Research, Vol. 5 (G. I. Drummond, P. Greengard, and G. A. Robison, eds.), pp. 681–698, Raven Press, New York.Google Scholar
  4. Anderson, W. P., Hendrix, D. L., and Higinbotham, N., 1974, The effect of cyanide and carbon monoxide on the electrical potential and resistance of cell membranes, Plant Physiol. 54:712–716.PubMedGoogle Scholar
  5. Andrews, K. J., and Lin, E. C. C., 1976, Selective advantages of various bacterial carbohydrate transport mechanisms, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35:2185–2189.Google Scholar
  6. Aronson, N. N., Jr., and Touster, O., 1974, Isolation of rat liver plasma membrane fragments in isotonic sucrose, in: Methods in Enzymology, Vol. 31 (S. Fleischer and L. Packer, eds.), pp. 90–102, Academic Press, New York.Google Scholar
  7. Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifiers, Biochemistry 7:4030–4034.PubMedGoogle Scholar
  8. Augusto, O., Bechara, E. J. H., Sanioto, D. L., and Cilento, G., 1973, The effect of o-diphenols upon the microsomal NADPH and NADH oxidase activities, Arch. Biochem. Biophys. 158:359–364.PubMedGoogle Scholar
  9. Avruch, J., and Wallach, D. F. H., 1971, Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells, Biochim. Biophys. Acta 233:334–347.PubMedGoogle Scholar
  10. Babior, B. M., and Kipnes, R. S., 1977, Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement, Blood 50:517–524.PubMedGoogle Scholar
  11. Babitch, J. A., Breithaupt, T. B., Chiu, T.-C., Garadi, R., and Helseth, D. L., 1976, Preparation of chick brain synaptosomes and synaptosomal membranes, Biochim. Biophys. Acta 433:75–89.PubMedGoogle Scholar
  12. Barber, A. J., 1976, Cyclic nucleotides and platelet aggregation: Effect of aggregating agents on the activity of cyclic nucleotide-metabolizing enzymes, Biochim. Biophys. Act 444:579–595.Google Scholar
  13. Barbotin, J. N., 1976, Properties of lactic dehydrogenase immobilized in a lipid-protein matrix, FEBS Lett. 72:93–97.PubMedGoogle Scholar
  14. Bartfai, T., Berg, P., Schultzberg, M., and Heilbronn, E., 1976, Isolation of a synaptic membrane fraction enriched in cholinergic receptors by controlled phospholipase A2 hydrolysis of synaptic membranes, Biochim. Biophys. Acta 426:186–197.PubMedGoogle Scholar
  15. Basinger, S., Bok, D., and Hall, M., 1976, Rhodopsin in the rod outer segment plasma membrane, J. Cell Biol. 69:29–42.PubMedGoogle Scholar
  16. Baum, H., Murer, E., Slautterback, D. B., and McConnell, D. G., 1966, Association of integrated metabolic pathways with membranes. II. Electron micrographic studies on glycolytically active preparations from erythrocytes, Arch. Biochim. Biophys. 113:487–495.Google Scholar
  17. Bellavite, P., Dri, P., Bisiacchi, B., and Patriarca, P., 1977, Catalase deficiency in myeloperoxidase deficient polymorphonuclear leucocytes from chicken, FEBS Lett. 81:73–76.PubMedGoogle Scholar
  18. Berezney, R., and Crane, F. L., 1972, Characterization of electron transport activity in bovine liver nuclear membranes, J. Biol. Chem. 247:5562–5568.PubMedGoogle Scholar
  19. Bergeron, J. J. M., Ehrenreich, J. H., Siekevitz, P., and Palade, G. E., 1973, Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization, J. Cell Biol. 59:73–88.PubMedGoogle Scholar
  20. Berman, H. M., Gram, W., and Spirtes, M. A., 1969, An improved reproducible method of preparing rat liver plasma cell membranes in buffered isotonic sucrose, Biochim. Biophys. Acta 183:10–18.PubMedGoogle Scholar
  21. Bingham, R. W., and Burke, D. C., 1972, Isolation of plasma membrane and endoplasmic reticulum fragments from chick embryo fibroblasts, Biochim. Biophys. Acta 274:348–352.PubMedGoogle Scholar
  22. Bitensky, M. W., Gorman, R. E., and Miller, W. H., 1972, Digitonin effects on photoreceptor adenylate cyclase, Science 175:1363–1364.PubMedGoogle Scholar
  23. Blomberg, F., and Berzins, K., 1975, Epinephrine-binding plasma-membrane antigens in rat liver, Eur. J. Biochem. 56:319–326.PubMedGoogle Scholar
  24. Blomberg, F., and Raftell, M., 1974, Enzyme polymorphism in rat-liver microsomes and plasma membranes. 1. An immunochemical study of multienzyme complexes and other enzyme-active antigens, Eur. J. Biochem. 49:21–29.PubMedGoogle Scholar
  25. Boegman, R. J., Manery, J. F., and Pinteric, L., 1970, The separation and partial purification of membrane-bound (Na+ + K+)-dependent Mg2+-ATPase and (Na+ + K+)-independent Mg2+-ATPase from frog skeletal muscle, Biochim. Biophys. Acta 203:506–530.PubMedGoogle Scholar
  26. Boone, C. W., Ford, L. E., Bond, H. E., Stuart, D. C., and Lorenz, D., 1969, Isolation of plasma membrane fragments from He La cells, J. Cell Biol. 41:378–392.PubMedGoogle Scholar
  27. Borgese, N., and Meldolesi, J., 1976, Immunological similarity of the NADH-cytochrome c electron transport in microsomes, Golgi complex and mitochondrial outer membrane of rat liver cells, FEBS Lett. 63:231–234.PubMedGoogle Scholar
  28. Bowles, D. J., and Kauss, H., 1976, Characterization, enzymatic and lectin properties of isolated membranes from Phaseolus aureus, Biochim. Biophys. Acta 443:360–374.PubMedGoogle Scholar
  29. Brain, R. D., Freeberg, J. A., Weiss, C. V., and Briggs, W. R., 1977, Blue light-induced absorbance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59:948–952.PubMedGoogle Scholar
  30. Braughler, J. M., and Corder, C. N., 1977, Purification of the (Na+ + K+)-adenosine triphosphatase from human renal tissue, Biochim. Biophys. Acta 481:313–327.PubMedGoogle Scholar
  31. Braun, T., and Dods, R. F., 1975, Development of a Mn2+-sensitive, “soluble” adenylate cyclase in rat testis, Proc. Natl. Acad. Sci. U.S.A. 72:1097–1101.PubMedGoogle Scholar
  32. Bray, R. C., 1975, Molybdenum iron-sulfur flavin hydroxylases and related enzymes, in: The Enzymes, 3rd ed., Vol. 12 (P. D. Boyer, ed.), pp. 299–419, Academic Press, New York.Google Scholar
  33. Brdiczka, D., and Krebs, W., 1973, Localization of enzymes by means of proteases, Biochim. Biophys. Acta 297:203–212.PubMedGoogle Scholar
  34. Briggs, R. T., Drath, D. B., Karnovsky, M. L., and Karnovsky, M. J., 1975, Localization of NADH oxidase on the surface of human polymorphonuclear leucocytes by a new cytochemical method, J. Cell Biol. 67:566–586.PubMedGoogle Scholar
  35. Briley, M. S., and Eisenthal, R., 1975, Association of xanthine oxidase with the bovine milk-fat globule membrane: Nature of the enzyme-membrane association, Biochem. J. 147:417–423.PubMedGoogle Scholar
  36. Brown, A. E., Lok, M. P., and Elovson, J., 1976, Improved method for the isolation of rat liver plasma membrane, Biochim. Biophys. Acta 426:418–432.PubMedGoogle Scholar
  37. Browning, J. L., and Nelson, D. L., 1976, Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca2+ fluxes across resting and excited membrane, Biochim. Biophys. Acta 448:338–351.PubMedGoogle Scholar
  38. Carlson, R. W., Wada, H. G., and Sussman, H. H., 1976, The plasma membrane of human placenta: Isolation of microvillus membrane and characterization of protein and glycoprotein subunits, J. Biol. Chem. 251:4139–4146.PubMedGoogle Scholar
  39. Carter, J. R., Jr., Avruch, J., and Martin, D. B., 1972, Glucose transport in plasma membrane vesicles from rat adipose tissue, J. Biol. Chem. 247:2682–2688.PubMedGoogle Scholar
  40. Catignani, G. L., Chytil, F., and Darby, W. J., 1974, Vitamin E deficiency: Immunochemical evidence for increased accumulation of liver xanthine oxidase, Proc. Natl. Acad. Sci. U.S.A. 71:1966–1968.PubMedGoogle Scholar
  41. Chang, H., Saccomani, G., Rabon, E., Schackmann, R., and Sachs, G., 1977, Proton transport by gastric membrane vesicles, Biochim. Biophys. Acta 464:313–327.PubMedGoogle Scholar
  42. Charalampous, F. C., Gonatas, N. K., and Melbourne, A. D., 1973, Isolation and properties of the plasma membrane of KB cells, J. Cell Biol. 59:421–435.PubMedGoogle Scholar
  43. Cheng, H., and Farquhar, M. G., 1976a, Presence of adenylate cyclase in Golgi and other fractions from rat liver. I. Biochemical determinations, J. Cell Biol. 70:660–670.PubMedGoogle Scholar
  44. Cheng, H., and Farquhar, M. G., 1976b, Presence of adenylate cyclase activity in Golgi and other fractions from rat liver. II. Cytochemical localization within Golgi and ER membranes, J. Cell Biol. 70:671–684.PubMedGoogle Scholar
  45. Chmelar, M., and Giacobino, J.-P., 1976, Subcellular localization of fatty acid acetyl CoA and malonyl CoA elongation systems in rat adipocytes, Int. J. Biochem. 7:159–163.Google Scholar
  46. Clark, M. G., Filsell, O. H., and Jarrett, I. G., 1976, Hormonal control of glucose metabolism in isolated hepatocytes—a function of the intracellular redox state, Proc. Aust. Biochem. Soc. 9:25.Google Scholar
  47. Clark, M. G., Filsell, O. H., and Jarrett, I. G., 1977, An efifect of extracellular redox state on the glucagon-stimulated glucose release by rat hepatocytes and perfused liver, Hormone and Metabolic Research 9:213–217.PubMedGoogle Scholar
  48. Clarke, F. M., and Masters, C. J., 1975, On the association of glycolytic enzymes with structural proteins of skeletal muscle, Biochim. Biophys. Acta 381:37–46.PubMedGoogle Scholar
  49. Cleland, R., 1971, Cell wall extension, Annu. Rev. Plant Physiol. 22:197–222.Google Scholar
  50. Colbeau, A., Nachbaur, J., and Vignais, P. M., 1971, Enzymic characterization and lipid composition of rat liver subcellular membranes, Biochim. Biophys. Acta 249:462–492.PubMedGoogle Scholar
  51. Colombini, M., and Johnstone, R. M., 1973, Preparation and properties of the (Na+ + K+)-ATPase of plasma membranes from Ehrlich ascites cells, Biochim. Biophys. Acta 323:69–86.PubMedGoogle Scholar
  52. Conway, E. J., 1951, The biological performance of osmotic work: A redox pump, Science 113:270–273.PubMedGoogle Scholar
  53. Cooper, P. H., and Stanworth, D. R., 1976, Characterization of calcium-ion-activated adenosine triphosphatase in the plasma membrane of rat mast cells, Biochem. J. 156:691–700.PubMedGoogle Scholar
  54. Costa, M., Gerner, E. W., and Russell, D. H., 1976, G1 specific increases in cyclic AMP levels and protein kinase activity in Chinese hamster ovary cells, Biochim. Biophys. Acta 425:246–255.PubMedGoogle Scholar
  55. Cotman, C. W., and Matthews, D. A., 1971, Synaptic plasma membranes from rat brain synaptosomes: Isolation and partial characterization, Biochim. Biophys. Acta 249:380–394.PubMedGoogle Scholar
  56. Cotman, C., Mahler, H. R., and Anderson, N. G., 1968, Isolation of a membrane fraction enriched in nerve-end membranes from rat brain by zonal centrifugation, Biochim. Biophys. Acta 163:272–275.PubMedGoogle Scholar
  57. Crane, F. L., 1957, Electron transport and cytochromes of sub-cellular particles from cauliflower buds, Plant Physiol. 32:619–625.PubMedGoogle Scholar
  58. Crane, F. L., and Löw, H., 1976, NADH oxidation in liver and fat cell plasma membranes, FEB Lett. 68:153–156.Google Scholar
  59. Crane, F. L., and Morré, D. J., 1977, Evidence for coenzyme Q function in Golgi membranes, in: Biomedical and Clinical Aspects of Coenzyme Q (K. Folkers and Y. Yamamura, eds.), pp. 3–14, Elsevier, Amsterdam.Google Scholar
  60. Crane, F. L., Arntzen, C. J., Hall, J. D., Ruzicka, F. J., and Dilley, R. A., 1971, Binary membranes in mitochondria and chloroplasts, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), pp. 53–69, North-Holland, Amsterdam.Google Scholar
  61. Crass, M. F., III, 1977, Regulation of triglyceride metabolism in the isotopically prelabeled perfused heart, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:1995–1999.Google Scholar
  62. Czech, M. P., 1976, Current status of the thiol redox model for the regulation of hexose transport by insulin, J. Cell Physiol. 89:661–668.PubMedGoogle Scholar
  63. Czech, M. P., 1977, Molecular basis of insulin action, Annu. Rev. Biochem. 46:359–384.PubMedGoogle Scholar
  64. Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974, Evidence for electron transfer reactions involved in the Cu2+-dependent thiol activation of fat cell glucose utilization, J. Biol. Chem. 249:1001–1006.PubMedGoogle Scholar
  65. Daemen, F. J. M., 1973, Vertebrate rod outer segment membranes, Biochim. Biophys. Acta 300:255–288.PubMedGoogle Scholar
  66. Dallner, G., Siekevitz, P., and Palade, G. E., 1966, Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte, J. Cell Biol. 30:97–117.PubMedGoogle Scholar
  67. Dalton, C., Hope, H., and Martikes, L., 1974, Prostaglandin inhibition of cyclic-AMP accumulation and rate of lipolysis in fat cells, Prostaglandins 7:319–326.PubMedGoogle Scholar
  68. Da Silveira, J. F., Zingales, B., and Colli, W., 1977, Characterization of an adenylyl cyclase activity in particulate preparations from epimastigote forms of Trypanosoma cruzi, Biochim. Biophys. Acta 481:722–733.PubMedGoogle Scholar
  69. DeChatelet, L. R., Shirley, P. S., McPhail, L. C., Huntley, C. C., Muss, H. B., and Bass, D. A., 1977, Oxidative metabolism of the human eosinophil, Blood 50:525–535.Google Scholar
  70. De Domenech, E. M., Domenech, C. E., and Blanco, A., 1970, Distribution of lactate dehydrogenase isozymes in subcellular fractions of rat tissues, Arch. Biochem. Biophys. 141:147–154.PubMedGoogle Scholar
  71. De Luca, S., 1977, Incorporation of mannose and glucose into prenylphosphate sugars in isolated human platelet membranes, Biochim. Biophys. Acta 498:341–348.PubMedGoogle Scholar
  72. Demus, H., 1973, Subcellular fractionation of human lymphocytes: Isolation of two plasma membrane fractions and comparison of the protein components of the various lymphocytic organelles, Biochim. Biophys. Acta 291:93–106.PubMedGoogle Scholar
  73. DePierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46:201–262.Google Scholar
  74. De Pont, J. J. H. H. M., Daemen, F. J. M., and Bonting, S. L., 1970, Biochemical aspects of the visual process. VIII. Enzymatic conversion of retinylidene imines by retinoldehydrogenase from rod outer segments, Arch. Biochem. Biophys. 140:275–285.PubMedGoogle Scholar
  75. Dikstein, S., 1971, Stimulability, adenosine triphosphatases and their control by cellular redox processes, Naturwissenschaften 58:439–443.PubMedGoogle Scholar
  76. Donaldson, R. P., Tolbert, N. E., and Schnarrenberger, C., 1972, A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissues, Arch. Biochem. Biophys. 152:199–215.PubMedGoogle Scholar
  77. Douglas, A. P., Kerley, R., and Isselbacher, K. J., 1972, Preparation and characterization of the lateral and basal plasma membranes of the rat intestinal epithelial cell, Biochem. J. 128:1329–1338.PubMedGoogle Scholar
  78. Dowben, R. W., Brunner, J. R., and Philpott, D. E., 1967, Studies on milk fat globule membranes, Biochim. Biophys. Acta 135:1–10.PubMedGoogle Scholar
  79. Duchon, G., and Collier, H. B., 1971, Enzyme activities of human erythrocyte ghosts: Effects of various treatments, J. Membrane Biol. 6:138–157.Google Scholar
  80. Ebel, H., Aulbert, E., and Merker, H. J., 1976, Isolation of the basal and lateral membranes of rat kidney tubule cells, Biochim. Biophys. Acta 433:531–546.PubMedGoogle Scholar
  81. Ehrenreich, J. H., Bergeron, J. J. M., Siekevitz, P., and Palade, G. E., 1973, Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization, J. Cell Biol. 59:45–72.PubMedGoogle Scholar
  82. Eldan, M., and Mayer, A. M., 1972, Evidence for the activation of NADH-cytochrome c reductase during germination of lettuce, Physiol. Plant. 26:67–72.Google Scholar
  83. Elstner, E. F., and Heupel, A., 1976, Formation of hydrogen peroxide by isolated cell walls from horseradish, Planta 130:175–180.Google Scholar
  84. Emmelot, P., and Benedetti, E. L., 1967, Structure and function of isolated plasma membranes from liver, in: Protides of the Biological Fluids, Vol. 15 (H. Peeters, ed.), pp. 315–326, Elsevier, Amsterdam.Google Scholar
  85. Emmelot, P., and Bos, C. J., 1966, Differences in the association of two glycolytic enzymes with plasma membranes isolated from rat liver and hepatoma, Biochim. Biophys. Acta 121:434–436.PubMedGoogle Scholar
  86. Emmelot, P., and Bos, C. J., 1969, Studies on plasma membranes. X. A survey of enzyme activities displayed by plasma membranes isolated from mouse liver and three mouse hepatoma strains, Int. J. Cancer 4:723–734.PubMedGoogle Scholar
  87. Emmelot, P., Bos, C. J., Benedetti, E. L., and Rümke, P., 1964, Studies on plasma membranes. I. Chemical composition and enzyme content of plasma membranes isolated from rat liver, Biochim. Biophys. Acta 90:126–145.PubMedGoogle Scholar
  88. Ernster, L., and Kuylenstierna, B., 1969, Structure, composition and function of mitochondrial membranes, in: Mitochondria: Structure and Function (L. Ernster and Z. Drahota, eds.), pp. 5–31, Elsevier, Amsterdam.Google Scholar
  89. Eventoff, W., Rossmann, M. G., Taylor, S. S., Torff, H.-J., Meyer, H., Keil, W., and Kiltz, H.-H., 1977, Structural adaptations of lactate dehydrogenase isozymes, Proc. Natl. Acad. Sci. U.S.A. 74:2677–2681.PubMedGoogle Scholar
  90. Fang, M., and Butow, R. A., 1970, Nucleotide reversal of mitochondrial repression in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 41:1579–1583.PubMedGoogle Scholar
  91. Ferber, E., Resch, K., Wallach, D. F. H., and Imm, W., 1972, Isolation and characterization of lymphocyte plasma membranes, Biochim. Biophys. Acta 266:494–504.PubMedGoogle Scholar
  92. Fischer, S., Cellino, M., Zambrano, F., Zampighi, G., Tellez Nagel, M., Marcus, D., and Canessa-Fischer, M., 1970, The molecular organization of nerve membranes. I. Isolation and characterization of plasma membranes from the retinal axons of the squid: An axolemma-rich preparation, Arch. Biochem. Biophys. 138:1–15.PubMedGoogle Scholar
  93. Flatmark, T., Terland, O., and Helle, K. B., 1971a, Electron carriers of the bovine adrenal chromaffin granules, Biochim. Biophys. Acta 226:9–19.PubMedGoogle Scholar
  94. Flatmark, T., Lagercrantz, H., Terland, O., Helle, K. B., and Stjärne, L., 1971b, Electron carriers of the noradrenaline storage vesicles from bovine splenic nerves, Biochim. Biophys. Acta 245:249–252.PubMedGoogle Scholar
  95. Fleischer, B., and Fleischer, S., 1969, Glycosidase activity of bovine liver plasma membranes, Biochim. Biophys. Acta 183:265–275.PubMedGoogle Scholar
  96. Fleischer, B., and Fleischer, S., 1970, Preparation and characterization of Golgi membranes from rat liver, Biochim. Biophys. Acta 219:301–319.PubMedGoogle Scholar
  97. Fleischer, S., and Kervina, M., 1974, Subcellular fractionation of rat liver, in: Methods in Enzymology, Vol. 13 (S. Fleischer and L. Packer, eds.), pp. 6–41, Academic Press, New York.Google Scholar
  98. Fleischer, S., Fleischer, B., Azzi, A., and Chance, B., 1971, Cytochrome b 5 and P-450 in liver cell fractions, Biochim. Biophys. Acta 225:194–200.PubMedGoogle Scholar
  99. Forte, J. G., Forte, T. M., and Heinz, E., 1973, Isolation of plasma membranes from Ehrlich ascites tumor cells: Influence of amino acids on (Na+ + K+)-ATPase and K+-stimulated phosphatase, Biochim. Biophys. Acta 298:827–841.PubMedGoogle Scholar
  100. Forti, G., Tua, C., and Tognoli, L., 1959, Fractionation of oxidative particles of the pea stem, Biochim. Biophys. Acta 36:19–28.PubMedGoogle Scholar
  101. Fossel, E. T., and Solomon, A. K., 1977, Membrane mediated link between ion transport and metabolism in human red cells, Biochim. Biophys. Acta 464:82–92.PubMedGoogle Scholar
  102. Fowler, S., Remacle, J., Trouet, A., Beaufay, H., Berthet, J., Wibo, M., and Hauser, P., 1976, Analytical study of microsomes and isolated subcellular membranes from rat liver. V. Immunological localization of cytochrome b 5 by electron microscopy: Methodology and application to various subcellular fractions, J. Cell Biol. 71:535–550.PubMedGoogle Scholar
  103. Frantz, C. E., 1973, NADH: ferricyanide oxidoreductase in rat liver plasma membrane, M. S. thesis, Purdue University, West Lafayette, Indiana, 114 pp.Google Scholar
  104. Fridovich, I., 1970, Quantitative aspects of the production of Superoxide anion radical by milk xanthine oxidase, J. Biol. Chem. 245:4053–4057.PubMedGoogle Scholar
  105. Fridovich, I., 1977, Oxygen is toxic!, Bioscience 27:462–466.Google Scholar
  106. Fuhrmann, G. F., Boehm, C., and Theuvenet, A. P. R., 1976, Sugar transport and potassium permeability in yeast plasma vesicles, Biochim. Biophys. Acta 433:583–596.PubMedGoogle Scholar
  107. Futterman, S., 1963, Metabolism of the retina. III. The role of reduced triphosphopyridine nucleotide in the visual cycle, J. Biol. Chem. 238:1145–1150.PubMedGoogle Scholar
  108. Garcia-Sancho, J., Sanchez, A., Handlogten, M. E., and Christensen, H.N., 1977, Unexpected additional mode of energization of amino-acid transport into Ehrlich cells, Proc. Natl. Acad. Sci. U.S.A. 74:1488–1491.PubMedGoogle Scholar
  109. Gayda, D. P., Crane, F. L., Morré, D. J., and Löw, H., 1977, Hormone effects on NADH-oxidizing enzymes of plasma membranes of rat liver, Proc. Indiana Acad. Sci. 86:385–390.Google Scholar
  110. Gentleman, S., and Mansour, T. E., 1974, Adenylate cyclase in a sea anemone: Implication for chemoreception, Biochim. Biophys. Acta 343:469–479.PubMedGoogle Scholar
  111. Ghosh, S. K., and Koenig, E., 1977, Isolation of non-myelin plasma membrane unique to white matter, Biochim. Biophys. Acta 470:104–112.PubMedGoogle Scholar
  112. Giacobino, J.-P., and Chmelar, M., 1975, Comparison of plasma membranes and endoplasmic reticulum fractions obtained from whole white adipose tissue and isolated adipocytes, Biochim. Biophys. Acta 406:68–82.PubMedGoogle Scholar
  113. Giacobino, J.-P., and Chmelar, M., 1977, The role of chain elongation systems in the supplying of fatty acids to the adipocyte membrane lipids, Biochim. Biophys. Acta 487:269–276.PubMedGoogle Scholar
  114. Giacobino, J.-P., and Perrelet, A., 1971, Preparation of a plasma membrane fraction from the brown adipose tissue, Experientia 27:259–261.PubMedGoogle Scholar
  115. Gilkes, N. R., and Weeks, G., 1977, The purification and characterization of Dictyostelium discoideum plasma membranes, Biochim. Biophys. Acta 464:142–156.PubMedGoogle Scholar
  116. Goldberg, N. D., O’Dea, R. F., and Haddox, M. K., 1973, Cyclic GMP, in: Advances in Cyclic Nucleotide Research, Vol. 3 (P. Greengard and G. A. Robison, eds.), pp. 155–223, Raven Press, New York.Google Scholar
  117. Goldbeter, A., and Segel, L. A., 1977, Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum, Proc. Natl. Acad. Sci. U.S.A. 74:1543–1547.PubMedGoogle Scholar
  118. Goldenberg, H., Morré, D. J., and Crane, F. L., 1977, NADH oxido-reductase of liver plasma membranes, J. Cell Biol. 75:209a.Google Scholar
  119. Goldenberg, H., Morré, D. J., and Crane, F. L., 1978, Plasma membrane NADH oxidoreductase of mouse liver, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:1644.Google Scholar
  120. Goldfine, I. D., Simons, C. G., and Ingbar, S. H., 1975, Stimulation of the uptake of α-aminoisobutyric acid in rat thymocytes by L-triiodothyronine: A comparison with insulin and dibutyryl cyclic AMP, Endocrinology 96:802–805.PubMedGoogle Scholar
  121. Goldstein, I. M., Cerqueira, M., Lind, S., and Kaplan, H. B., 1977, Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface, J. Clin. Invest. 59:249–254.PubMedGoogle Scholar
  122. Gorman, R. R., Hamberg, M., and Samuelsson, B., 1976, Antagonism of the prostaglandin endoperoxide inhibition of hormone-stimulated adenylate cyclase by guanosine triphosphate and 5′-guanylyl-imidodiphosphate, Biochim. Biophys. Acta 444:596–603.PubMedGoogle Scholar
  123. Gospodarowicz, D., 1973, Preparation and characterization of plasma membranes from bovine corpus luteum, J. Biol. Chem. 248:5050–5056.PubMedGoogle Scholar
  124. Goto-Tamura, R., Takesue, Y., and Takesue, S., 1976, Immunological similarity between NADH-cytochrome b 5 reductase of erythrocytes and liver microsomes, Biochim. Biophys. Acta 423:293–302.PubMedGoogle Scholar
  125. Gould, J. M., and Cramer, W. A., 1977, Relationship between oxygen-induced proton efflux and membrane energization in cells of Escherichia coli, J. Biol. Chem. 252:5875–5882.PubMedGoogle Scholar
  126. Gray, N. C. C., Dickinson, J. R., and Swoboda, B. E. P., 1977, Cyclic GMP metabolism in Tetrahymena pyriformis synchronized by a single hypoxic shock, FEBS Lett. 81:311–314.PubMedGoogle Scholar
  127. Green, A. A., and Newell, P. C., 1974, The isolation and subfractionation of plasma membrane from the cellular slime mould Dictyostelium discoideum, Biochem. J. 140:313–322.PubMedGoogle Scholar
  128. Green, D. E., Murer, E., Hultin, H. O., Richardson, S. H., Salmon, B., Brierley, G. P., and Baum, H., 1965, Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast, Arch. Biochem. Biophys. 112:635–647.PubMedGoogle Scholar
  129. Green, J., 1972, Vitamin E and the biological antioxidant theory, Ann. N. Y. Acad. Sci. 203:29–44.PubMedGoogle Scholar
  130. Gross, G. G., 1977, Cell wall-bound malate dehydrogenase from horseradish, Phytochemistry 16:319–321.Google Scholar
  131. Gubitz, R. H., Akera, T., and Brody, T. M., 1977, Control of brain slice respiration by (Na+ + K+)-activated adenosine triphosphatase and the effects of enzyme inhibitors, Biochim. Biophys. Acta 459:263–277.PubMedGoogle Scholar
  132. Gurd, J. W., Jones, L. R., Mahler, H. R., and Moore, W. J., 1974, Isolation and partial characterization of rat brain synaptic plasma membranes, J. Neurochem. 22:281–290.PubMedGoogle Scholar
  133. Güttler, F., 1967, Lactic dehydrogenase isoenzyme activity associated with cytomembranes, in: Protides of the Biological Fluids, Vol. 15 (H. Peeters, ed.), pp. 167–173, Elsevier, Amsterdam.Google Scholar
  134. Haddox, M. K., Furcht, L. T., Gentry, S. R., Moser, M. E., Stephenson, J. H., and Goldberg, N. D., 1976, Periodate-induced increase in cyclic GMP in mouse and guinea pig splenic cells in association with mitogenesis, Nature (London) 262:146–148.Google Scholar
  135. Hellerman, L., Lindsay, A., and Bovarnick, M. R., 1946, Flavoenzyme catalysis: Inhibition of D-amino acid oxidase by competition with flavin-adenine-dinucleotide of atabrine (quinacrine), quinine, and certain other compounds, J. Biol. Chem. 163:553–570.PubMedGoogle Scholar
  136. Hendriks, T., De Pont, J. J. H. H. M., Daemen, F. J. M., and Bonting, S. L., 1973, Biochemical aspects of the visual process. XXIV. Adenylate cyclase and rod photoreceptor membranes: A critical appraisal, Biochim. Biophys. Acta 330:156–166.PubMedGoogle Scholar
  137. Hendrix, D. L., and Kennedy, R. M., 1977, Adenosine triphosphatase from soybean callus and root cells, Plant Physiol. 59:264–267.PubMedGoogle Scholar
  138. Henn, F. A., Hansson, H.-A., and Hamberger, A., 1972, Preparation of plasma membrane from isolated neurons, J. Cell Biol. 53:654–661.PubMedGoogle Scholar
  139. Hersey, S. J., 1969, A dual effect of sodium on oxygen consumption in toad bladder, Biochim. Biophys. Acta 183:155–161.PubMedGoogle Scholar
  140. Hersey, S. J., 1974, Interactions between oxidative metabolism and acid secretion in gastric mucosa, Biochim. Biophys. Acta 344:157–203.PubMedGoogle Scholar
  141. Hersey, S. J., 1977, Influence of amytal and menadione on high-energy phosphates and acid secretion in frog gastric mucosa, Biochim. Biophys. Acta 496:359–366.PubMedGoogle Scholar
  142. Hildebrandt, A. G., and Roots, I., 1975, Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes, Arch. Biochem. Biophys. 171:385–397.Google Scholar
  143. Hodges, T. K., and Leonard, R. T., 1974, Purification of a plasma membrane-bound adenosine triphosphatase from plant roots, in: Methods in Enzymology, Vol. 32 (S. Fleischer and L. Packer, eds.), pp. 392–406, Academic Press, New York.Google Scholar
  144. Holmgren, A., 1977, Bovine thioredoxin system: Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction, J. Biol. Chem. 252:4600–4606.PubMedGoogle Scholar
  145. Honda, S. I., 1957, Some effects of ascorbic acid and metal-complexing agents on the respiration of barley roots, Plant Physiol. 32:23–31.PubMedGoogle Scholar
  146. Huang, C.-S., Kopacz, S. J., and Lee, C.-P., 1977, Energy-linked protonation of quinacrine in beef heart submitochondrial membranes, Biochim. Biophys. Acta 459:241–249.PubMedGoogle Scholar
  147. Hultin, H. O., 1975, Effect of environment on kinetic characteristics of chicken lactate dehydrogenase isoenzymes, in: Isozymes, Third International Conference, 1974, Vol. 2 (C. L. Markert, ed.), pp. 69–85, Academic Press, New York.Google Scholar
  148. Humes, J. L., Bonney, R. J., Peius, L., Dahlgren, M. E., Sadowski, S. J., Kuehl, F. A., Jr., and Davies, P., 1977, Macrophages synthesise and release prostaglandins in response to inflammatory stimuli, Nature (London) 269:149–150.Google Scholar
  149. Ichikawa, Y., and Mason, H. S., 1973, Distribution of cytochrome P450 and related redox systems among hepatocyte membranes, in: Oxidases and Related Redox Systems, Proceedings of the Second International Symposium, Vol. 2 (T. E. King, ed.), pp. 605–625, University Park Press, Baltimore.Google Scholar
  150. Ichikawa, Y., and Yamano, T., 1970, Cytochrome b 5 and co-binding cytochromes in the Golgi membranes of mammalian livers, Biochem. Biophys. Res. Commun. 40:297–305.PubMedGoogle Scholar
  151. Isaacs, J., and Binkley, F., 1977, Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue, Biochim. Biophys. Acta 497:192–204.PubMedGoogle Scholar
  152. Israel, A., Verjus, M.-A., and Semmel, M., 1973, Isolation and characterization of surface membranes from chorioallantoic cells and chick fibroblasts, Biochim. Biophys. Acta 318:155–166.PubMedGoogle Scholar
  153. Iverson, D., DeChatelet, L. R., Spitznagel, J. K., and Wang, P., 1977, Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay, J. Clin. Invest. 59:282–290.PubMedGoogle Scholar
  154. Jacquet, M., and Kepes, A., 1969, The step sensitive to catabolite repression and its reversal by 3′-5′ cyclic AMP during induced synthesis of β-galactosidase in E. coli, Biochem. Biophys. Res. Commun. 36:84–92.PubMedGoogle Scholar
  155. Jakob, A., and Diem, S., 1974, Activation of glycogenolysis in perfused rat livers by glucagon and metabolic inhibitors, Biochim. Biophys. Acta 362:469–479.PubMedGoogle Scholar
  156. Jansson, I., and Schenkman, J. B., 1977, Studies on three microsomal electron transfer enzyme systems: Specificity of electron flow pathways, Arch. Biochem. Biophys. 178:89–107.PubMedGoogle Scholar
  157. Jarasch, E.-D., and Franke, W. W., 1974, Is cytochrome oxidase a constituent of nuclear membranes? J. Biol. Chem. 249:7245–7254.PubMedGoogle Scholar
  158. Jarasch, E.-D., Bruder, G., Keenan, T. W., and Franke, W. W., 1977, Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland, J. Cell Biol. 73:223–241.PubMedGoogle Scholar
  159. Jarasch, E.-D., Kartenbeck, J., Bruder, G., Fink, A., Morré, D. J., and Franke, W. W., 1978, b-Type cytochromes in plasma membranes isolated from rat liver, in comparison with those of endomembranes (Submitted for publication).Google Scholar
  160. Jaspers, H. T. A., and Van Steveninck, J., 1977, Active transport of l-sorbose and 2-deoxy-d-galactose in Saccharomyces fragilis, Biochim. Biophys. Acta 469:292–300.PubMedGoogle Scholar
  161. Jesaitis, A. J., Heners, P. R., Hertel, R., and Briggs, W. R., 1977, Characterization of a membrane fraction containing a b-type cytochrome, Plant Physiol. 59:941–947.PubMedGoogle Scholar
  162. Jett, M., Seed, T. M., and Jamieson, G. A., 1977, Isolation and characterization of plasma membranes and intact nuclei from lymphoid cells, J. Biol. Chem. 252:2134–2142.PubMedGoogle Scholar
  163. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367–416.PubMedGoogle Scholar
  164. Kahn, C. R., 1976, Membrane receptors for hormones and neurotransmitters, J. Cell Biol. 70:261–286.PubMedGoogle Scholar
  165. Kakinuma, K., and Chance, B., 1977, Spectrophotometric studies on NAD(P)H oxidase of leukocytes. I. The relationship between granule-NAD(P)H oxidase and myeloperoxidase, Biochim. Biophys. Acta 480:96–103.PubMedGoogle Scholar
  166. Kant, J. A., and Steck, T. L., 1973, Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes, J. Biol. Chem. 248:8457–8464.PubMedGoogle Scholar
  167. Kashnig, D. M., and Kasper, C. B., 1969, Isolation, morphology, and composition of the nuclear membrane from rat liver, J. Biol. Chem. 244:3786–3792.PubMedGoogle Scholar
  168. Keenan, T. W., Morré, D. J., Olson, D. E., Yunghans, W. N., and Patton, S., 1970, Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland, J. Cell Biol. 44:80–93.PubMedGoogle Scholar
  169. Kellogg, E. W., III, and Fridovich, I., 1975, Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system, J. Biol. Chem. 250:8812–8817.PubMedGoogle Scholar
  170. Kidwai, A. M., Radcliffe, M. A., and Daniel, E. E., 1971, Studies on smooth muscle plasma membrane. I. Isolation and characterization of plasma membrane from rat myometrium, Biochim. Biophys. Acta 233:538–549.Google Scholar
  171. Kitao, T., Sugita, Y., Yoneyama, Y., and Hattori, K., 1974, Methemoglobin reductase (cytochrome b 5 reductase) deficiency in congenital methemoglobinemia, Blood 44:879–884.PubMedGoogle Scholar
  172. Kitchen, B. J., 1974, A comparison of the properties of membranes isolated from bovine skim milk and cream, Biochim. Biophys. Acta 356:257–269.PubMedGoogle Scholar
  173. Koehler, D. E., Leonard, R. T., Vanderwoude, W. J., Linkins, A. E., and Lewis, L. N., 1976, Association of latent cellulase activity with plasma membranes from kidney bean abscission zones, Plant Physiol. 58:324–330.PubMedGoogle Scholar
  174. Kono, T., and Colowick, S. P., 1961, Isolation of skeletal muscle cell membrane and some of its properties, Arch. Biochem. Biophys. 93:520–533.PubMedGoogle Scholar
  175. Korbl, G. P., Sloan, I. G., and Gould, M. K., 1977, Effect of anoxia, 2,4-dinitrophenol and salicylate on xylose transport by isolated rat soleus muscle, Biochim. Biophys. Acta 465:93–109.PubMedGoogle Scholar
  176. Koyama, N., Sawada, K., and Kurihra, K., 1971, Isolation and some properties of plasma membranes from bovine olfactory epithelium, Biochim. Biophys. Acta 241:42–48.Google Scholar
  177. Kraska, R. C., Stephenson, J. H., and Goldberg, N. D., 1977, Spontaneous, oxidative activation and inactivation of rat uterine guanylate cyclase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:686.Google Scholar
  178. Križanová, O., and Čiampor, F., 1971, Interaction of plasma membranes with influenza virus, I. Isolation of plasma membranes from chick embryo cells, Acta Virol. 15:19–27.PubMedGoogle Scholar
  179. Kuma, F., Prough, R. A., and Masters, B. S. S., 1976, Studies on methemoglobin reductase: Immunochemical similarity of soluble methemoglobin reductase and cytochrome b 5 of human erythrocytes with NADH-cytochrome b 5 reductase and cytochrome b 5 of rat liver microsomes, Arch. Biochem. Biophys. 172:600–607.PubMedGoogle Scholar
  180. Kwock, L., Wallach, D. F. H., and Hefter, K., 1976, Involvement of sulfhydryl groups in the action of insulin and radiation on thymocyte Na+-dependent amino acid transport, Biochim. Biophys. Acta 419:93–103.PubMedGoogle Scholar
  181. Ladoulis, C. T., Misra, D. N., Estes, L. W., and Gill, T. J., III, 1974, Lymphocyte plasma membranes. I. Thymic and splenic membranes from inbred rats, Biochim. Biophys. Acta 356:27–35.PubMedGoogle Scholar
  182. Lea, M. A., Koch, M. R., Beres, B., and Dayal, V., 1977, Divergent effects of cyanate on amino acid and phosphate uptake by liver and hepatoma, Biochim. Biophys. Acta 474:321–328.PubMedGoogle Scholar
  183. Leigh, L. R. A., and Branton, D., 1976, Isolation of vacuoles from root storage tissue of Beta vulgaris, Plant Physiol. 58:656–662.PubMedGoogle Scholar
  184. Leonard, R. T., Hansen, D., and Hodges, T. K., 1973, Membrane-bound adenosine triphosphatase activities of oat roots, Plant Physiol. 51:749–754.PubMedGoogle Scholar
  185. Leroux, A., Torlinski, L., and Kaplan, J.-C., 1977, Soluble and microsomal forms of NADH-cytochrome b 5 reductase from human placenta: Similarity with NADH-methemoglobin reductase from human erythrocytes, Biochim. Biophys. Acta 481:50–62.PubMedGoogle Scholar
  186. Leuschen, M. P., and Amato, R. S., 1976, Regulation of mitotic activity in viral infected human brain tissue by cyclic nucleotides, J. Cell Biol. 70:191a.Google Scholar
  187. Lever, J. E., 1977, Active amino acid transport in plasma membrane vesicles from transformed mouse fibroblasts: Characteristics of electrochemical Na+ gradient stimulated uptake, J. Biol. Chem. 252:1990–1997.PubMedGoogle Scholar
  188. Levitan, I. B., Mushynski, W. E., and Ramirez, G., 1972, Highly purified synaptosomal membranes from rat brain: Preparation and characterization, J. Biol. Chem. 247:5376–5381.PubMedGoogle Scholar
  189. Li, E., and Kornfeld, S., 1977, Effects of wheat germ agglutinin on membrane transport, Biochim. Biophys. Acta 469:202–210.PubMedGoogle Scholar
  190. Lo, C.-H., 1973, The plasma membranes of bovine circumvallate papillae isolation and partial characterization, Biochim. Biophys. Acta 291:650–661.PubMedGoogle Scholar
  191. Løvtrup-Rein, H., and Løvtrup, S., 1975, Changes in the content of cyclic AMP and cyclic GMP during the development of Xenopus laevis, Exp. Cell Res. 94:216–220.PubMedGoogle Scholar
  192. Löw, H., and Crane, F. L., 1976, Hormone regulated redox function in plasma membranes, FEBS Lett. 68:157–159.PubMedGoogle Scholar
  193. Löw, H., and Werner, S., 1976, Effects of reducing and oxidizing agents on the adenylate cyclase activity in adipocyte plasma membranes, FEBS Lett. 65:96–98.PubMedGoogle Scholar
  194. Lundegårdh, H., 1945, Absorption, transport, and exudation of inorganic ions by the roots, Ark. Bot. 32A(12):1–139.Google Scholar
  195. Lutz, F., 1973, Isolation and some characteristics of liver plasma membranes from rainbow trout, Comp. Biochem. Physiol. 45B:805–811.Google Scholar
  196. Mack, J. P., Lui, N. S. T., Roels, O. A., and Anderson, O. R., 1972, The occurrence of vitamin A in biological membranes, Biochim. Biophys. Acta 288:203–219.PubMedGoogle Scholar
  197. Manthorpe, M., and McConnell, D. G., 1975, Cyclic nucleotide phosphodiesterases associated with bovine retinal outer-segment fragments, Biochim. Biophys. Acta 403:438–445.PubMedGoogle Scholar
  198. Marcus, D., Canessa-Fischer, M., Zampighi, G., and Fischer, S., 1972, The molecular organization of nerve membranes. VI. The separation of axolemma from Schwann cell membranes of giant and retinal squid axons by density gradient centrifugation, J. Membrane Biol. 9:209–228.Google Scholar
  199. McConnell, D. G., 1965, The isolation of retinal outer segment fragments, J. Cell Biol. 27:459–473.PubMedGoogle Scholar
  200. McDaniel, C. F., Kirtley, M. E., and Tanner, M. J. A., 1974, The interaction of glyceraldehyde 3-phosphate dehydrogenase with human erythrocyte membranes, J. Biol. Chem. 249:6478–6485.PubMedGoogle Scholar
  201. McKeel, D. W., and Jarett, L., 1970, Preparation and characterization of a plasma membrane fraction from isolated fat cells, J. Cell Biol. 44:417–432.PubMedGoogle Scholar
  202. McKeel, D. W., and Jarett, L., 1974, The enrichment of adenylate cyclase in the plasma membrane and Golgi subcellular fractions of porcine adenohypophysis, J. Cell Biol. 62:231–236.PubMedGoogle Scholar
  203. Medoff, J., Maresca, B., Medoff, G., and Kobayashi, G. S., 1976, Relationship of adenosine 3′,5′-cyclic monophosphate to morphogenesis of Histoplasma capsulatum, J. Cell Biol. 70:94a.Google Scholar
  204. Meister, A., 1952, Enzymatic preparation of α-keto acids, J. Biol. Chem. 197:309–317.PubMedGoogle Scholar
  205. Meldolesi, J., Jamieson, J. D., and Palade, G. E., 1971, Composition of cellular membranes in the pancreas of the guinea pig. III. Enzymatic activities, J. Cell Biol. 49:150–158.PubMedGoogle Scholar
  206. Mentze, J., Raymond, B., Cohen, J. D., and Rayle, D. L., 1977, Auxin-induced H+ secretion in Helianthus and its implications, Plant Physiol. 60:509–512.PubMedGoogle Scholar
  207. Miller, E. K., and Dawson, R. M. C., 1972, Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids?, Biochem. J. 126:805–821.PubMedGoogle Scholar
  208. Mircheff, A. K., and Wright, E. M., 1976, Analytical isolation of plasma membranes of intestinal epithelial cells: Identification of Na+, K+ATPase rich membranes and the distribution of enzyme activities, J. Membrane Biol. 28:309–333.Google Scholar
  209. Mishra, R. K., and Passow, H., 1969, Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells, J. Membrane Biol. 1:214–224.Google Scholar
  210. Mitchell, P., 1972, Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge, Bioenergetics 3:5–24.Google Scholar
  211. Mitchell, P., 1974, A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases, FEBS Lett. 43:189–194.PubMedGoogle Scholar
  212. Mitchell, P., 1976, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: Power transmission by proticity, Biochem. Soc. Trans. 4:399–430.PubMedGoogle Scholar
  213. Mitchell, P., 1977, A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photo synthetic phosphorylation, FEBS Lett. 78:1–20.PubMedGoogle Scholar
  214. Molnar, J., Markovic, G., Chao, H., and Molnar, Z., 1969, Glycoproteins of Ehrlich ascites carcinoma cells: Separation of plasma and endoplasmic reticular membrane fragments, Arch. Biochem. Biophys. 134:524–532.PubMedGoogle Scholar
  215. Mølstad, P., Bøhmer, T., and Eiklid, K., 1977, Specificity and characterisitcs of the carnitine transport in human heart cells (CC127) in culture, Biochim. Biophys. Acta 471:296–304.PubMedGoogle Scholar
  216. Morgan, I. G., Wolfe, L. S., Mandel, P., and Gombos, G., 1971, Isolation of plasma membranes from rat brain, Biochim. Biophys. Acta 241:737–751.PubMedGoogle Scholar
  217. Morré, D. J., 1977a, Membrane differentiation and the control of secretion: A comparison of plant and animal Golgi apparatus, in: International Cell Biology, 1976–1977 (B. R. Brinkley and K. R. Porter, eds.), pp. 293–303, Rockefeller University Press, New York.Google Scholar
  218. Morré, D. J., 1977b, The Golgi apparatus and membrane biogenesis, in: Cell Surface Reviews, Vol. 4 (G. Poste and G. L. Nicolson, eds.), pp. 1–21, Elsevier, Amsterdam.Google Scholar
  219. Morré, D. J., Franke, W. W., Deumling, B., Nyquist, S. E., and Ovtracht, L., 1971, Golgi apparatus function in membrane flow and differentiation: Origin of plasma membrane from endoplasmic reticulum, in: Biomembranes, Vol. 2 (L. A. Manson, ed.), pp. 95–104, Plenum Press, New York.Google Scholar
  220. Morré, D. J., Huang, C. M., Keenan, T. W., and Vigil, E. L., 1972, Cytochemical and biochemical comparisons of NADH-linked cytochrome c reductase of Golgi apparatus and endoplasmic reticulum of rat liver, J. Cell Biol. 55:181a.Google Scholar
  221. Morré, D. J., Yunghans, W. N., Vigil, E. L., and Keenan, T. W., 1974a, Isolation of organelles and endomembrane components from rat liver: Biochemical markers and quantitative morphometry, in: Methodological Developments in Biochemistry, Vol. 4 (E. Reid, ed.), pp. 195–236, Longman, London.Google Scholar
  222. Morré, D. J., Keenan, T. W., and Huang, C. M., 1974b, Membrane flow and differentiation: Origin of Golgi apparatus membranes from endoplasmic reticulum, in: Advances in Cytopharmacology, Vol. 2 (B. Ceccarelli, F. Clementi, and J. Meldolesi, eds.), pp. 107–125, Raven Press, New York.Google Scholar
  223. Morse, D. E., Duncan, H., Hooker, N., and Morse, A., 1977, Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase, Science 196:298–300.PubMedGoogle Scholar
  224. Morton, R. K., 1954, The liproprotein particles in cow’s milk, Biochem. J. 57:231–237.PubMedGoogle Scholar
  225. Moyle, J., and Mitchell, P., 1977, The lanthanide-sensitive calcium phosphate porter of rat liver mitochondria, FEBS Lett. 77:136–140.PubMedGoogle Scholar
  226. Mukherjee, S. P., and Lynn, W. S., 1977a, Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin, Arch. Biochem. Biophys. 184:69–76.PubMedGoogle Scholar
  227. Mukherjee, S. P., and Lynn, W. S., 1977b, Regulation of adenylate cyclase in adipocytes by redox reactions coupled with insulin-responsive glucose transport, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:736.Google Scholar
  228. Muñoz, V., and Butler, W. L., 1975, Photoreceptor pigment for blue light in Neurospora crassa, Plant Physiol. 55:421–426.PubMedGoogle Scholar
  229. Murad, F., and Kimura, H., 1974, Cyclic nucleotide levels in incubations of guinea pig trachea, Biochim. Biophys. Acta 343:275–286.PubMedGoogle Scholar
  230. Murphy, P., 1976, The Neutrophil, Plenum Press, New York.Google Scholar
  231. Nath, J., and Rebhun, L. I., 1976, Effects of caffeine and other methylxanthines on the development and metabolism of sea urchin eggs: Involvement of NADP+ and glutathione, J. Cell Biol. 68:440–450.PubMedGoogle Scholar
  232. Nathans, A. H., and Kitabchi, A. E., 1975, Effect of ascorbic acid on ACTH-induced cyclic AMP formation and steroidogenesis in isolated adrenal cells of vitamin E-deficient rats, Biochim. Biophys. Acta 399:244–253.PubMedGoogle Scholar
  233. Neer, E. J., 1974, The size of adenylate cyclase, J. Biol. Chem. 249:6527–6531.PubMedGoogle Scholar
  234. Neville, D. M., Jr., 1975, Isolation of cell surface membrane fractions from mammalian cells and organs, in: Methods in Membrane Biology, Vol. 3 (E. D. Korn, ed.), pp. 1–40, Plenum Press, New York.Google Scholar
  235. Newmark, P., 1977, Membranes and receptors, Nature (London) 267:107–109.Google Scholar
  236. Nielsen, C. S., and Bjerrum, O. J., 1977, Crossed immunoelectrophoresis of bovine milk fat globule membrane protein solubilized with non-ionic detergent, Biochim. Biophys. Acta 466:496–509.PubMedGoogle Scholar
  237. Nielsen, L. D., Monard, D., and Rickenberg, H. V., 1973, Cyclic 3′,5′-adenosine monophosphate phosphodiesterase of Escherichia coli, J. Bacteriol. 116:857–866.PubMedGoogle Scholar
  238. Nilsson, O., and Ronquist, G., 1969, Enzyme activities and ultrastructure of a membrane fraction from human erythrocytes, Biochim. Biophys. Acta 183:1–9.PubMedGoogle Scholar
  239. Orr, H. T., Lowry, O. H., Cohen, A. I., and Ferrendelli, J. A., 1976, Distribution of 3′:5′-cyclic AMP and 3′15′-cyclic GMP in rabbit retina in vivo: Selective effects of dark and light adaptation and ischemia, Proc. Natl. Acad. Sci. U.S.A. 73:4442–4445.PubMedGoogle Scholar
  240. Ostroy, S. E., 1977, Rhodopsin and the visual process. Biochim. Biophys. Acta 463:91–125.PubMedGoogle Scholar
  241. Passon, P. G., and Hultquist, D. E., 1972, Soluble cytochrome b 5 reductase from human erythrocytes, Biochim. Biophys. Acta 275:62–73.PubMedGoogle Scholar
  242. Pastan, I., and Perlman, R., 1970, Cyclic adenosine monophosphate in bacteria: In many bacteria the synthesis of inducible enzymes requires this cyclic nucleotide, Science 169:339–344.PubMedGoogle Scholar
  243. Perdue, J. F., 1974, The isolation and characterization of plasma membrane from cultured chick embryo fibroblasts, in: Methods in Enzymology, Vol. 31 (S. Fleischer and L. Packer, eds.), pp. 162–168, Academic Press, New York.Google Scholar
  244. Perdue, J. F., Kletzien, R., Miller, K., Pridmore, G., and Wray, V. L., 1971a, The isolation and characterization of plasma membranes from cultured cells. II. The chemical composition of membrane isolated fron uninfected and oncogenic RNA virus-converted parenchyma-like cells, Biochim. Biophys. Acta 249:435–453.PubMedGoogle Scholar
  245. Perdue, J. F., Kletzien, R., and Miller, K., 1971b, The isolation and characterization of plasma membrane from cultured cells. I. The chemical composition of membrane isolated from uninfected and oncogenic RNA vrus-converted chick embryo fibroblasts, Biochim. Biophys. Acta 249:419–434.PubMedGoogle Scholar
  246. Perdue, J. F., Warner, D., and Miller, K., 1973, The isolation and characterization of plasma membrane from cultured cells. V. The chemical composition of plasma membranes isolated from chicken tumors initiated with virus-transformed cells, Biochim. Biophys. Acta 298:817–826.PubMedGoogle Scholar
  247. Perkins, J. P., 1973, Adenyl cyclase, in: Advances in Cyclic Nucleotide Research, Vol. 3 (P. Greengard and G. A. Robison, eds.), pp. 1–64, Raven Press, New York.Google Scholar
  248. Peterkofsky, A., and Gazdar, C., 1975, Interaction of Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72:2920–2924.PubMedGoogle Scholar
  249. Pillion, D. J., Leibach, F. H., Von Tersch, F., and Mendicino, J., 1976, Inhibition of protein kinase activity and amino acid and α-methyl-d-glucoside transport by diamide, Biochim. Biophys. Acta 419:104–111.PubMedGoogle Scholar
  250. Pliam, N. B., and Goldfine, I. D., 1977, High affinity thyroid hormone binding sites on purified rat liver plasma membranes, Biochem. Biophys. Res. Commun. 79:166–172.PubMedGoogle Scholar
  251. Poff, K. L., and Butler, W. L., 1974, Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum, Nature (London) 248:799–801.Google Scholar
  252. Pollard, H. B., Miller, A., and Cox, G. C., 1973, Synaptic vesicles: Structure of chromaffin granule membranes, J. Supramol. Struct. 1:295–306.PubMedGoogle Scholar
  253. Quimby, P. C., Jr., and Kay, S. H., 1977, Hypoxic quiescence in alligatorweed, Physiol. Plant. 40:163–168.Google Scholar
  254. Raftell, M., and Blomberg, F., 1973, Membrane fractions from rat hepatoma. III. Immunochemical characterization of detergent-soluble membrane phosphatases, electron transport chains and catalase, Biochim. Biophys. Acta 291:442–453.PubMedGoogle Scholar
  255. Rebouche, C. J., 1977, Carnitine movement across muscle cell membranes studied in isolated rat muscle, Biochim. Biophys. Acta 471:145–155.PubMedGoogle Scholar
  256. Remacle, J., Fowler, S., Beaufay, H., Amar-Costesec, A., and Berthet, J., 1976, Analytical study of microsomes and isolated subcellular membranes from rat liver. VI. Electron microscope examination of microsomes for cytochrome b 5 by means of a ferritin-labeled antibody, J. Cell Biol. 71:551–564.PubMedGoogle Scholar
  257. Rickenberg, H. V., and Rahmsdorf, H. J., 1975, The inhibition of development in Dictyostelium discoideum by sugars, J. Cell Biol. 67:360a.Google Scholar
  258. Robertson, R. N., 1968, Protons, Electrons, Phosphorylation and Active Transport, Cambridge University Press, Cambridge.Google Scholar
  259. Rothstein, A., Cabantchik, Z. I., and Knauf, P., 1976, Mechanism of anion transport in red blood cells: Role of membrane proteins, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35:3–10.Google Scholar
  260. Schackmann, R., Schwartz, A., Saccomani, G., and Sachs, G., 1977, Cation transport by gastric H+: K+ ATPase, J. Membrane Biol. 32:361–381.Google Scholar
  261. Schiebler, W., Lauffer, L., and Hucho, F., 1977, Acetylcholine receptor enriched membranes: Acetycholine binding and excitability after reduction in vitro, FEBS Lett. 81:39–42.PubMedGoogle Scholar
  262. Schimmel, S. D., Kent, C., Bischoff, R., and Vagelos, P. R., 1973, Plasma membranes from cultured muscle cells: Isolation procedure and separation of putative plasma-membrane marker enzymes, Proc. Natl. Acad. Sci. U.S.A. 70:3195–3199.PubMedGoogle Scholar
  263. Schimmel, S. D., Kent, C., and Vagelos, P. R., 1977, Isolation of plasma membranes from cultured muscle cells, in: Methods in Cell Biology. Vol. 15 (D. M. Prescott, ed.), pp. 289–301, Academic Press, New York.Google Scholar
  264. Schmidt, W., Hart, J., Filner, P., and Poff, K. L., 1977, Specific inhibition of phototropism in corn seedlings, Plant Physiol. 60:736–738.PubMedGoogle Scholar
  265. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B. K., Cerda, J. J., and Crane, R. K., 1973, Purification of the human intestinal brush border membrane, Biochim. Biophys. Acta 323:98–112.PubMedGoogle Scholar
  266. Schrier, S. L., 1966, Organization of enzymes in human erythrocyte membranes, Am. J. Physiol. 210:139–145.PubMedGoogle Scholar
  267. Schrier, S. L., 1967, ATP synthesis in human erythrocyte membranes, Biochim. Biophys. Acta 135:591–598.PubMedGoogle Scholar
  268. Schrier, S. L., Junga, I., and Johnson, M., 1975, Comparison of the characteristics of the immobilized and solubilized glyceraldehyde phosphate dehydrogenase of human erythrocyte membranes, Life Sci. 17:735–738.PubMedGoogle Scholar
  269. Schroeder, J., 1974, Analogs of α-tocopherol as inhibitors of cyclic-AMP and cyclic-GMP phosphodiesterases and effects of α-tocopherol deficiency on cyclic AMP-controlled metabolism, Biochim. Biophys. Acta 343:173–181.PubMedGoogle Scholar
  270. Schuurmans Stekhoven, F. M. A. H., Van Heeswijk, M. P. E., De Pont, J. J. H. H. M., and Bonting, S. L., 1976, Studies on (Na+ + K+)-activated ATPase. XXXVIII. A 100,000 molecular weight protein as the low-energy phosphorylated intermediate of the enzyme, Biochim. Biophys. Acta 422:210–224.PubMedGoogle Scholar
  271. Schwartz, J. P., Passonneau, J. V., Johnson, G. S., and Pastan, I., 1974, The effect of growth conditions on NAD+ and NADH concentrations and the NAD+: NADH ratio in normal and transformed fibroblasts, J. Biol. Chem. 249:4138–4143.PubMedGoogle Scholar
  272. Scott, E. M., Duncan, I. W., and Ekstrand, V., 1965, The reduced pyridine nucleotide dehydrogenases of human erythrocytes, J. Biol. Chem. 240:481–485.PubMedGoogle Scholar
  273. Scott, R. E., 1976, Plasma membrane vesiculation: A new technique for isolation of plasma membranes, Science 194:743–745.PubMedGoogle Scholar
  274. Segal, A. W., and Peters, T. J., 1976, Characterization of the enzyme defect in chronic granulomatous disease, Lancet 1976(1): 1363–1365.Google Scholar
  275. Seglen, P. O., 1974, Autoregulation of glycolysis, respiration, gluconeogenesis, and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions, Biochim. Biophys. Acta 338:317–336.Google Scholar
  276. Shima, S., Kawashima, Y., Hirai, M., and Kouyama, H., 1976, Studies on cyclic nucleotides in cancer. I. Adenylate, guanylate cyclase and protein kinases in the prostatic sarcoma tissue, Biochim. Biophys. Acta 444:571–578.PubMedGoogle Scholar
  277. Shimasaki, H., and Privett, O. S., 1975, Studies on the role of vitamin E in the oxidation of blood components by fatty hydroperoxides, Arch. Biochem. Biophys. 169:506–512.PubMedGoogle Scholar
  278. Siekevitz, P., 1965, Origin and functional nature of microsomes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24:1153–1155.Google Scholar
  279. Silverberg, M., Chow, C. C., and Marchesi, V. T., 1977, Oxidation of methionine causes a change in the electrophoretic mobility of the major sialoglycoprotein of the human erythrocyte membrane, Biochim. Biophys. Acta 494:441–445.Google Scholar
  280. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46:669–722.PubMedGoogle Scholar
  281. Singer, S. J., 1972, A fluid lipid-globular protein mosaic model of membrane structure, Ann. N.Y. Acad. Sci. 195:16–23.PubMedGoogle Scholar
  282. Sjödin, B., 1976, Lactate dehydrogenase in human skeletal muscle, Acta Physiol. Scand. Suppl. 436:1–32.PubMedGoogle Scholar
  283. Skilleter, D. N., and Kun, E., 1972, The oxidation of l-lactate by liver mitochrondria, Arch. Biochem. Biophys. 152:92–104.PubMedGoogle Scholar
  284. Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev. 45:596–617.PubMedGoogle Scholar
  285. Smith, R. P. P., and Ellman, G. L., 1973, A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups, J. Membrane Biol. 12:177–188.Google Scholar
  286. Smith, R. P., and Kruszyna, H., 1976, Toxicology of some inorganic antihypertensive anions, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35:69–72.Google Scholar
  287. Solyom, A., and Trams, E. G., 1972, Enzyme markers in characterization of isolated plasma membranes, Enzyme 13:329–372.PubMedGoogle Scholar
  288. Sottocasa, G. L., Ernster, L., Kuylenstierna, B., and Bergstrand, A., 1967, Occurrence of an NADH-cytochrome c reductase system in the outer membrane of rat-liver mitochondria, in: Mitochondrial Structure and Compartmentation (E. Quagliariello, S. Papa, E. C. Slater, and J. M. Tager, eds.), pp. 74–89, Adriatica Editrice, Bari, Italy.Google Scholar
  289. Steck, T. L., 1974, Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membranes, in: Methods in Membrane Biology, Vol. 2 (E. D. Korn, ed.), pp. 245–281, Plenum Press, New York.Google Scholar
  290. Steiner, A. L., Ferrendelli, J. A., and Kipnis, D. M., 1972, Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mouse brain, J. Biol. Chem. 247:1121–1124.PubMedGoogle Scholar
  291. Steinman, R. M., Silver, J. M., and Cohn, Z. A., 1974, Pinocytosis in fibroblasts: Quantitative studies in vitro, J. Cell Biol. 63:949–969.PubMedGoogle Scholar
  292. Strittmatter, P., 1963, Microsomal cyctochrome b 5 and cytochrome b 5 reductase, in: The Enzymes, 2nd ed., Vol. 8 (P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 113–145, Academic Press, New York.Google Scholar
  293. Strittmatter, P., and Velick, S. F., 1956, A microsomal cytochrome reductase specific for diphosphopyridine nucleotide, J. Biol. Chem. 221:277–286.PubMedGoogle Scholar
  294. Stuhlfauth, I., and Seeds, N. W., 1976, Cerebellar plasma membrane proteins from normal and mutant mice, J. Cell Biol. 70:178a.Google Scholar
  295. Sutherland, R. M., and Pihl, A., 1967, Repair of radiation damage to membrane sulfhydryl groups of human erythrocytes, Biochim. Biophys. Acta 135:568–570.PubMedGoogle Scholar
  296. Sutherland, R. M., and Pihl, A., 1968, Repair of radiation damage to erythrocyte membranes: The reduction of radiation-induced disulfide groups, Radiat. Res. 34:300–314.PubMedGoogle Scholar
  297. Szent-Györgyi, A., 1965, Cell division and cancer: Substances which promote or retard cell growth may provide keys to fundamental problems of cellular biology. Science 149:34–37.Google Scholar
  298. Szent-Györgyi, A., Együd, L. G., and McLaughlin, J. A., 1967, Keto-aldehydes and cell division: Glyoxal derivatives may be regulators of cell division and open a new approach to cancer, Science 155:539–541.PubMedGoogle Scholar
  299. Takanaka, K., and O’Brien, P. J., 1975, Mechanisms of H2O2 formation by leukocytes: Evidence for a plasma membrane location, Arch. Biochem. Biophys. 169:428–435.PubMedGoogle Scholar
  300. Taylor, D. G., and Crawford, N., 1976, Enzymatic and chemical analyses of pig platelet membrane subfractions isolated by zonal centrifugation, Biochim. Biophys. Acta 436:77–94.PubMedGoogle Scholar
  301. Terland, O., Silsand, T., and Flatmark, T., 1974, Cytochrome b-561 as the single heme protein of the bovine adrenal chromaffin granule membrane, Biochim. Biophys. Acta 359:253–256.PubMedGoogle Scholar
  302. Thines-Sempoux, D., Amar-Costesec, A., Beaufay, H., and Berthet, J., 1969, The association of cholesterol, 5′-nucleotidase, and alkaline phosphodiesterase I with a distinct group of microsomal particles, J. Cell Biol. 43:189–192.PubMedGoogle Scholar
  303. Thompson, J. E., 1977, Preparation of plasma membranes from amoebae, in: Methods in Cell Biology, Vol. 15 (D. M. Prescott, ed.), pp. 303–323, Academic Press, New York.Google Scholar
  304. Tsai, C.-M., Chen, K.-Y., and Canellakis, E. S., 1975, Isolation and characterization of the plasma membrane of L-1210 cells: Iodination as a marker for the plasma membrane, Biochim. Biophys. Acta 401:196–212.PubMedGoogle Scholar
  305. Tuttle, J. V., and Krenitsky, T. A., 1977, Evidence for two types of mammalian xanthine oxidase, Fed. Proc. 36:776.Google Scholar
  306. Ulsamer, A. G., Wright, P. L., Wetzel, M. G., and Korn, E. D., 1971, Plasma and phagosome membranes of Acanthamoeba castellanii, J. Cell Biol. 51:193–215.PubMedGoogle Scholar
  307. Van Amelsvoort, J. M. M., De Pont, J. J. H. H. M., and Bonting, S. L., 1977, Is there a plasma membrane-located anion-sensitive ATPase?, Biochim. Biophys. Acta 466:283–301.PubMedGoogle Scholar
  308. Van Blitterswijk, W. J., Emmelot, P., and Feltkamp, C. A., 1973, Studies on plasma membranes. XIX. Isolation and characterization of a plasma membrane fraction from calf thymocytes, Biochim. Biophys. Acta 298:577–592.PubMedGoogle Scholar
  309. Vandenburgh, H. H., 1977, Separation of plasma membrane markers by glycerol-induced blistering of muscle cells, Biochim. Biophys. Acta 466:302–314.PubMedGoogle Scholar
  310. Vanderkooi, G., 1972, Molecular architecture of biological membranes, Ann. N. Y. Acad. Sci. 195:16–23.Google Scholar
  311. Van Der Ouderaa, F. J., Buytenhek, M., Nugteren, D. H., and Van Dorp, D. A., 1977, Purification and characterisation of prostaglandin endoperoxide synthetase from sheep vesicular glands, Biochim. Biophys. Acta 487:315–331.PubMedGoogle Scholar
  312. Van Leeuwen, C., Stam, H., and Oestreicher, A. B., 1976, Isolation and partial characterization of chick brain synaptic plasma membranes, Biochim. Biophys. Acta 436:53–67.PubMedGoogle Scholar
  313. Varandani, P. T., 1973, Insulin degradation. V. Unmasking of glutathione-insulin transhydrogenase in rat liver microsomal membrane, Biochim. Biophys. Acta 304:642–659.PubMedGoogle Scholar
  314. Vassiletz, I. M., Derkatchev, E. F., and Neifakh, S. A., 1967, The electron transfer chain in liver cell plasma membrane, Exp. Cell Res. 46:419–427.PubMedGoogle Scholar
  315. Vermorken, A. J. M., De Waal, R., Van De Ven, W. J. M., Bloemendal, H., and Henderson, P. T., 1977, Hydroxylation of dehydroepiandrosterone in the eye lens, Biochim. Biophys. Acta 496:495–506.PubMedGoogle Scholar
  316. Vigil, E. L., Morré, D. J., Frantz, C., and Huang, C. M., 1973, A NADH-ferricyanide oxidoreductase from plasma membranes of rat liver, J. Cell. Biol. 59:353a.Google Scholar
  317. Wallach, D. F. H., and Kamat, V. B., 1966, Preparation of plasma-membrane fragments from mouse ascites tumor cells, in: Methods in Enzymology, Vol. 8 (E. F. Neufeld and V. Ginsburg, eds.), pp. 164–172, Academic Press, New York.Google Scholar
  318. Walter, H., and Krob, E. J., 1976, Partition in two-polymer aqueous phases reflects differences between membrane surface properties of erythrocytes, ghosts and membrane vesicles, Biochim. Biophys. Acta 455:8–23.PubMedGoogle Scholar
  319. Warburg, O., 1956, On the origin of cancer cells, Science 123:309–314.PubMedGoogle Scholar
  320. Warley, A., and Cook, G. M. W., 1973, The isolation and characterization of plasma membranes from normal and leukaemic cells of mice, Biochim. Biophys. Acta 323:55–68.PubMedGoogle Scholar
  321. Wheeler, G. E., Schibeci, A., Epand, R. M., Rattray, J. B. M., and Kidby, D., 1974, Subcellular localization and some properties of the adenylate cyclase activity of the yeast, Saccharomyces cerevisiae, Biochim. Biophys. Acta 372:15–22.Google Scholar
  322. Whitmore, F. W., 1976, Binding of ferulic acid to cell walls by perioxidases of Pinus elliottii, Phytochemistry 15:375–378.Google Scholar
  323. Wins, P., and Schoffeniels, E., 1968, Possible involvement of electron transfer reactions in the (Mg++, Ca++)-dependent ATPase activity of red cell ghosts, Life Sci. 7(II):673–681.Google Scholar
  324. Wins, P., and Schoffeniels, E., 1969, The association of some oxidoreductases with the red cell membrane, Biochim. Biophys. Acta 185:287–296.PubMedGoogle Scholar
  325. Wisher, M. H., and Evans, W. H., 1975, Functional polarity of the rat hepatocyte surface membrane: Isolation and characterization of plasma-membrane subfractions from the blood-sinusoidal, bile-canalicular and contiguous surfaces of the hepatocyte, Biochem. J. 146:375–388.PubMedGoogle Scholar
  326. Woodin, A. M., and Wieneke, A. A., 1966, Composition and properties of a cell-membrane fraction from the polymorphonuclear leucocyte, Biochem. J. 99:493–500.PubMedGoogle Scholar
  327. Wooster, M. S., and Wrigglesworth, J. M., 1976a, Modification of glyceraldehyde 3-phosphate dehydrogenase activity by adsorption on phospholipid vesicles, Biochem. J. 159:627–631.PubMedGoogle Scholar
  328. Wooster, M. S., and Wrigglesworth, J. M., 1976b, Adsorption of glyceraldehyde 3-phosphate dehydrogenase on condensed monolayers of phospholipid, Biochem. J. 153:93–100.PubMedGoogle Scholar
  329. Wrigglesworth, J. M., Keokitichai, S., Wooster, M. S., and Millar, F. A., 1976, Modification of glyceraldehyde 3-phosphate dehydrogenase activity by adsorption to erythrocyte membranes and phospholipid vesicles, Biochem. Soc. Trans. 4:637–640.PubMedGoogle Scholar
  330. Wu, J. M., Nickels, J. S., and Fisher, J. R., 1977, Regulation of nitrogen catabolic enzymes in chick liver: Effects of insulin, Enzyme 22:60–69.PubMedGoogle Scholar
  331. Yamashita, K., and Field, J. B., 1970, Preparation of thyroid plasma membranes containing a TSH-responsive adenyl cyclase, Biochem. Biophys. Res. Commun. 40:171–178.PubMedGoogle Scholar
  332. Yunghans, W. N., and Morré, D. J., 1978, Distribution of adenylate cyclase among membrane fractions of rat liver, Cytobiology 17:212–231.Google Scholar
  333. Zamudio, I., and Canessa, M., 1966, Nicotinamide-adenine dinucleotide dehydrogenase activity of human erythrocyte membranes, Biochim. Biophys. Acta 120:165–169.PubMedGoogle Scholar
  334. Zamudio, I., Cellino, M., and Canessa-Fischer, M., 1969a, The relation between membrane structure and NADH: (acceptor) oxidoreductase activity of erythrocyte ghosts, Arch. Biochem. Biophys. 129:336–345.PubMedGoogle Scholar
  335. Zamudio, I., Cellino, M., and Canessa-Fischer, M., 1969b, A NADH oxidizing system of the cell membrane of human erythrocytes, in: The Molecular Basis of Membrane Function (D. C. Tosteson, ed.), pp. 545–559, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  336. Zederman, R., Löw, H., and Hall, K., 1977, Effect of ethanol and lactate on the basal and glucagon-activated cyclic AMP formation in isolated heaptocytes, FEBS Lett. 75:291–294.PubMedGoogle Scholar
  337. Zeiger, E., Moody, W., Hepler, P., and Varela, F., 1977, Light sensitive membrane potentials in onion guard cells, Nature (London) 270:270–271.Google Scholar
  338. Zentgraf, H., Deumling, B., Jarasch, E.-D., and Franke, W. W., 1971, Nuclear membranes and plasma membranes from hen erythrocytes. I. Isolation, characterization, and comparison, J. Biol. Chem. 246:2986–2995.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  1. 1.Department of Biological Sciences and Department of Medicinal Chemistry and PharmacognosyPurdue UniversityWest LafayetteUSA
  2. 2.Department of EndocrinologyKarolinska HospitalStockholmSweden

Personalised recommendations