The Role of Lipids in the Structure and Function of Membranes



The increased knowledge of the properties of membrane lipids (Ansell et al., 1973) and of lipid-protein interactions (Singer, 1971; Lenaz, 1973, 1977; Vanderkooi, G., 1974) allows a better understanding of the role of lipids in membrane structure and functions. Nevertheless, a unifying picture of such a role is lacking, and it is often tacitly assumed that lipids have different roles; this is indeed the main conclusion emerging from analysis of the literature. In fact, lipids in membranes have different functions, affecting enzymic activity positively or negatively, being determinants of permeability properties and transport and being involved in the action of membrane binding sites and receptors. Moreover, they are determinants of membrane phenomena involving fusion processes (e.g., cell movement, pinocytosis, cell division, cell adhesion, secretion). In such functions, lipids may be specific or not. The physical state of a lipid, besides the specific chemical nature of certain groups, appears to be very important in its functions. It seems therefore appropriate to assign to lipids many different roles.


Lipid Bilayer Sarcoplasmic Reticulum Arrhenius Plot Erythrocyte Membrane Spin Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



1-anilinonaphthalene 8-sulfonate


β-hydroxybutyrate dehydrogenase


cyclic 3′,5′-AMP


circular dichroism




dimyristoyl lecithin


dioleyl lecithin


dipalmitoyl lecithin


differential scanning calorimetry


essential fatty acid(s)


electron microscopy


electron spin resonance


excited dimer


growth hormone


highdensity lipoproteins


nuclear magnetic resonance


phosphatidylcholine (lecithin)








2,2,-6,6-tetramethyl piperidine-1-oxyl


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizono, Y., Roberts, J. E., Sonenberg, M., and Swislocki, N. J., 1974, Effects of growth hormone on ATPase and fluorescence of isolated liver membranes utilizing the fluorescent substrate 1-N-6-etheno-ATP, Arch. Biochem. Biophys. 163:634–643.PubMedGoogle Scholar
  2. Andrews, A. L., Atkinson, D., Barrat, M. D., Finer, Z. G., Hauser, H., Henry, H., Leslie, R. B., Owens, N. L., Phillips, M. C., and Robertson, R. N., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithin, Eur. J. Biochem. 64:549–563.PubMedGoogle Scholar
  3. Ansell, G. B., Dawson, R. M. C., and Hawthorne, J. N. (eds.), 1973, Form and Function of Phospholipids, 2nd ed., Elsevier, Amsterdam.Google Scholar
  4. Archakov, A. I., Karyakin, A. V., and Skulachev, V. P., 1975, A hypothesis on membranous proteins specialized in lateral transport, FEBS Lett. 60:244–246.PubMedGoogle Scholar
  5. Arion, W. J., Ballas, L. M., Lange, A. J., and Wallin, B. R., 1976, Microsomal membrane permeability and the hepatic glucose-6-phosphatase system, J. Biol. Chem. 251:4901–4907.Google Scholar
  6. Assmann, G., and Brewer, H. B., 1974, Lipid-protein interactions in high density lipoproteins, Proc. Natl. Acad. Sci. U.S.A. 71:989–993.PubMedGoogle Scholar
  7. Atkinson, D., Smith, H. M., Dickson, J., and Austin, J. P., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithins, Eur. J. Biochem. 64:541–547.PubMedGoogle Scholar
  8. Awasthi, Y. C., Ruzicka, F. J., and Crane, F. L., 1970, The relation between phospholipase action and release of NADH dehydrogenase from mitochondrial membrane, Biochim. Biophys. Acta 203:233–248.PubMedGoogle Scholar
  9. Azzi, A., Montecucco, C., and Santato, M., 1974, The interaction of site specific spin labels (nitroxide-cytochrome c and nitroxide carbodiimide) with the mitochondrial membrane, in: Membrane Proteins in Transport and Phosphorylation (C. F. Azzone, M. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 205–210, North-Holland, Amsterdam.Google Scholar
  10. Bach, D., and Miller, I. R., 1973, Interaction of bilayers with basic polypeptides, J. Membrane Biol. 11:237–254.Google Scholar
  11. Bach, D., and Miller, I. R., 1976, Influence of basic polypeptides on the phase transition of phospholipid liposomes, Biochim. Biophys. Acta 433:13–19.PubMedGoogle Scholar
  12. Bach, D., Rosenheck, K., and Miller, I. R., 1975, Interaction of basic polypeptides with phospholipid vesicles: Conformational study, Eur. J. Biochem. 53:265–269.Google Scholar
  13. Baker, H. N., Gotto, A. M., and Jackson, R. L., 1975, The primary structure of human plasma high density apolipoprotein Glutamine I (Apo A-I), J. Biol. Chem. 250:2725–2738.PubMedGoogle Scholar
  14. Baldassare, J. J., Rhinehart, R. B., and Silbert, D. F., 1976, Modification of membrane lipid: Physical properties in relation to fatty acid structure, Biochemistry 15:2986–2994.PubMedGoogle Scholar
  15. Bangham, A. D., 1968, Membrane models with phospholipids, Prog. Biophys. Mol. Biol. 18:29–95.Google Scholar
  16. Bangham, A. D., 1972, Membrane models with membrane molecules, FEBS (Fed. Eur. Biochem. Soc.)Proc. 8th Meet. 28:253–262.Google Scholar
  17. Barratt, M. D., Green, D. K., and Chapman, D., 1969, Chem. Phys. Lipids 3:140–144.PubMedGoogle Scholar
  18. Barratt, M. D., Bardley, R. A., Leslie, R. B., Morgan, C. G., and Radda, G. K., 1974, The interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl phosphatidylcholine, Eur. J. Biochem. 48:595–601.PubMedGoogle Scholar
  19. Barsukov, L. I., Kulikov, V. I., and Bergelson, L. D., 1976, Lipid transfer proteins as a tool in the study of membrane structure: Inside outside distribution of the phospholipids in the protoplasmic membrane of M. lysodeikticus, Biochem. Biophys. Res. Comm. 71:704–711.PubMedGoogle Scholar
  20. Bashford, C. L., Harrison, S. J., Radda, G. K., and Mehdi, Q., 1975, The relation between lipid mobility and the specific hormone binding of thyroid membranes, Biochem. J. 146:473–479.PubMedGoogle Scholar
  21. Bashford, C. L., Morgan, C. G., and Radda, G. K., 1976, Measurement and interpretation of fluorescence polarizations in phospholipid dispersions, Biochim. Biophys. Acta 426:157–172.PubMedGoogle Scholar
  22. Bell, R. L., and Capaldi, R. A., 1976, The polypeptide composition of ubiquinone-cytochrome c reductase (Complex III) from beef heart mitochondria, Biochemistry 15:996–1001.PubMedGoogle Scholar
  23. Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737–741.PubMedGoogle Scholar
  24. Bloj, B., Morero, R. D., and Farias, R. N., 1973a, Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rat erythrocytes, FEBS Lett. 38:101–105.PubMedGoogle Scholar
  25. Bloj, B., Morero, R. D., Farias, R. N., and Trucco, R. E., 1973b, Membrane lipid fatty acids and regulation of membrane-bound enzymes: Allosteric behaviour of erythrocyte Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets, Biochim. Biophys. Acta 311:67–69.PubMedGoogle Scholar
  26. Blok, M. C., Van Der Neut-Kok, E. D. M., Van Deenen, L. L. M., and De Gier, J., 1975, The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes, Biochim. Biophys. Acta 406:187–196.PubMedGoogle Scholar
  27. Blok, M. C., Van Deenen, L. L. M., and De Gier, J., 1976, Effect of the gel to liquid crystalline phase transition on the osmotic behavior of phosphatidylcholine liposomes, Biochim. Biophys. Acta 433:1–12.PubMedGoogle Scholar
  28. Blumenthal, R., and Shamoo, A. E., 1974, Ionophoric material derived from eel membrane preparations. II. Electrical characteristics, J. Membrane Biol. 19:141–162.Google Scholar
  29. Boggs, J. M., Vail, W. J., and Moscarello, M. A., 1976, Preparation and properties of vesicles of a purified myelin hydrophobic protein and phospholipid: A spin label study, Biochim. Biophys. Acta 448:517–530.PubMedGoogle Scholar
  30. Brierley, G. P., Merola, A., and Fleischer, S., 1962, Studies of the electron-transfer system. XLIX. Sites of phospholipid involvement in the electron transfer chains, Biochim. Biophys. Acta 64:218–228.PubMedGoogle Scholar
  31. Brivio-Haugland, R. P., Louis, S. L., Musch, K., Waldeck, N., and Williams, M. A., 1976, Liver plasma membranes from essential fatty acid-deficient rats: Isolation, fatty acid composition, and activities of 5′-nucleotidase, ATPase and adenylate cyclase, Biochim. Biophys. Acta 433:150–163.PubMedGoogle Scholar
  32. Broughall, J. M., Lindop, C. R., Griffiths, D. E., and Beechey, R. B., 1972, The effect of extraction with diethyl ether on the sensitivity to inhibitors of mitochondrial ATPase activity, Biochem. Soc. Trans. 1:90–92.Google Scholar
  33. Brown, P. K., 1972, Rhodopsin rotates in the visual receptor membrane, Nature (London) New Biol. 236:35–38.Google Scholar
  34. Brown, W. V., Levy, R. I., and Fredrickson, D. S., 1970, Further characterization of apolipoproteins from the human plasma very low density lipoproteins, J. Biol. Chem. 245:6588–6594.PubMedGoogle Scholar
  35. Bruni, A., and Bigon, L., 1974, Diphosphatidylglycerol-induced changes in the organization of mitochondrial ATPase, Biochim. Biophys. Acta 359:333–343.Google Scholar
  36. Bruni, A., Van Dijck, P. W. M., and De Gier, J., 1975, The role of phospholipid acyl chains in the activation of mitochondrial ATPase complex, Biochim. Biophys. Acta 406:315–328.PubMedGoogle Scholar
  37. Butler, K. W., Tattrie, N. H., and Smith, I. C. P., 1974, The location of spin probes in two phase mixed lipid systems, Biochim. Biophys. Acta 363:351–360.PubMedGoogle Scholar
  38. Cadenhead, D. A., 1970, Monolayers of synthetic phospholipids, in: Recent Progress in Surface Science (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), Vol. 3, pp. 169–192, Academic Press, New York.Google Scholar
  39. Capaldi, R. A., and Vanderkooi, G., 1972, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 69:930–932.PubMedGoogle Scholar
  40. Carraway, K. L., 1975, Covalent labeling of membranes, Biochim. Biophys. Acta 415:379–410.PubMedGoogle Scholar
  41. Carreira, J., and Muñoz, E., 1975, Membrane-bound and soluble ATPase of E. coli K 12: Kinetic properties of the basal and trypsin-stimulated activities, Mol. Cell. Biochem. 9:85–95.PubMedGoogle Scholar
  42. Casu, A., Nanni, G., Marinari, U. M., Pala, V., and Monacelli, R., 1969, Structure of membranes. Note V. Sphingomyelin detection by immune reaction on the surface of sheep erythrocytes, Ital. J. Biochem. 18:154–165.PubMedGoogle Scholar
  43. Changeux, J. P., Kasai, M., and Lee, C. Y., 1970, Use of snake venom toxin to characterize the cholinergic receptor protein, Proc. Natl. Acad. Sci. U.S.A. 67:1241–1247.PubMedGoogle Scholar
  44. Chapman, D., 1969, Physical studies of lipid—lipid and lipid-protein interactions, Lipids 4:251–260.PubMedGoogle Scholar
  45. Chapman, D., 1973a, Some recent studies of lipids, lipid-cholesterol and membrane systems, in: Biological Membranes, Vol. 2 (D. Chapman and D. F. A. Wallach, eds.), pp. 91–144, Academic Press, London.Google Scholar
  46. Chapman, D., 1973b, Physical chemistry of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 117–142, Elsevier, Amsterdam.Google Scholar
  47. Chapman, D., and Dodd, G., 1971, Physicochemical probes of membrane structure, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 13–81, Academic Press, New York.Google Scholar
  48. Chapman, D., Urbina, J., and Keough, K. M., 1974, Biomembrane phase transitions: Studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512–2521.PubMedGoogle Scholar
  49. Charnock, J. S., and Bashford, C. L., 1975, A fluorescent probe study of the lipid mobility of membranes containing (Na+ + K+)-dependent ATPase, Mol. Pharmacol. 11:766–774.PubMedGoogle Scholar
  50. Charnock, J. S., Doty, D. M., and Russel, J. C., 1971, The effect of temperature on the activity of (Na+ + K+)-ATPase, Arch. Biochem. Biophys. 142:633–637.PubMedGoogle Scholar
  51. Charnock, J. S., Almeida, A. F., and To, R., 1975, Temperature-activity relationships and ouabain inhibition of (Na+ + K+)-ATPase, Arch. Biochem. Biophys. 167:480–487.PubMedGoogle Scholar
  52. Chen, L. F., Lund, D. B., and Richardson, T., 1971, Essential fatty acids and glucose permeability of lecithin membranes, Biochim. Biophys. Acta 225:89–95.PubMedGoogle Scholar
  53. Cherry, R. J., 1975, Protein mobility in membranes, FEBS Lett. 55:1–17.PubMedGoogle Scholar
  54. Cherry, R. J., 1976, Protein and lipid mobility in biological and model membranes, in: Biological Membranes, Vol. 3 (D. Chapman and D. F. H. Wallach, eds.), pp. 47–102, Academic Press, London.Google Scholar
  55. Cho, I. C., and Swaisgood, H., 1974, Surface-bound lactate dehydrogenase: Preparation and study of the effect of matrix microenvironment on kinetic and structural properties, Biochim. Biophys. Acta 334:243–256.Google Scholar
  56. Ciani, S. M., Eisenman, G., and Szabo, G., 1969, A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes, J. Membrane Biol. 1:1–36.Google Scholar
  57. Cogan, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521–527.PubMedGoogle Scholar
  58. Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature (London) New Biol. 236:39–43.Google Scholar
  59. Cori, C. F., Garland, R. C., and Chang, H. F. W., 1973, Purification of particulate glucose-6-phosphatase, Biochemistry 12:3126–3130.PubMedGoogle Scholar
  60. Craven, P. A., and Basford, R. E., 1972, Properties of the glucose-6-phosphate-solubilized brain hexokinase: Evidence for a lipoprotein complex, Biochim. Biophys. Acta 255:620–630.PubMedGoogle Scholar
  61. Cremel, G., Rebel, G., Warter, J. M., Rendon, A., and Waksman, A., 1976, Reversible intramitochondrial release of protein related to unsaturated fatty acids of membranes, Arch. Biochem. Biophys. 173:255–263.PubMedGoogle Scholar
  62. Cuatrecasas, P., 1974, Membrane receptors, Annu. Rev. Biochem. 43:169–214.PubMedGoogle Scholar
  63. Cunningham, C. C., and Hager, L. P., 1971a, Crystalline pyruvate oxidase from E. coli: Activation by phospholipids, J. Biol. Chem. 246:1575–1582.PubMedGoogle Scholar
  64. Cunningham, C. C., and Hager, L. P., 1971b, Crystalline pyruvate oxidase from E. coli: Phospholipid as an allosteric effector for the enzyme, J. Biol. Chem. 246:1583–1589.PubMedGoogle Scholar
  65. Dabbeni-Sala, F., Furlan, R., Pitotti, A., and Bruni, A., 1974, The activation of mitochondrial particulate ATPase by liposomes of diacylphospholipids, Biochim. Biophys. Acta 347:77–86.PubMedGoogle Scholar
  66. Daemen, F. J. M., 1973, Vertebrate rod outer segment membranes, Biochim. Biophys. Acta 300:255–288.PubMedGoogle Scholar
  67. Dales, S., 1973, Early events in cell-animal virus interactions, Bacteriol. Rev. 37:103–135.PubMedGoogle Scholar
  68. Danielli, J. F., and Davson, H. A., 1935, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508.Google Scholar
  69. Das, M. L., and Crane, F. L., 1964, Proteolipids. I. Formation of phospholipid cytochrome c complexes, Biochemistry 3:696–700.PubMedGoogle Scholar
  70. Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane, Biochemistry 15:1271–1276.PubMedGoogle Scholar
  71. Dawson, R. M. C., 1968, The nature of the interaction between protein and lipid during the formation of lipoprotein membranes, in: Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 203–323, Academic Press, London.Google Scholar
  72. Dawson, R. M. C., 1973a, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 97–116, Elsevier, Amsterdam.Google Scholar
  73. Dawson, R. M. C., 1973b, The exchange of phospholipids between cell membranes, Subcell. Biochem. 2:69–89.PubMedGoogle Scholar
  74. De Gier, J., Mandersloot, J. G., and Van Deenen, L. L. M., 1968, Lipid composition and permeability of liposomes, Biochim. Biophys. Acta 150:666–675.PubMedGoogle Scholar
  75. Dehlinger, P. J., Jost, P. C., and Griffith, D. H., 1974, Lipid binding to the amphipathic membrane protein cytochrome b 5, Proc. Natl. Acad. Sci. U.S.A. 71:2280–2284.PubMedGoogle Scholar
  76. De Kruyff, B., Demel, R. A., and Van Deenen, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact A. laidlawii cell membranes, Biochim. Biophys. Acta 255:331–347.PubMedGoogle Scholar
  77. De Kruyff, B., De Greef, W. J., Van Eyck, R. V. W., Demel, R. A., and Van Deenen, L. L. M., 1973, The effect of different fatty acid and sterol composition on the erythritol flux through the cell membrane of A. laidlawii, Biochim. Biophys. Acta 298:479–499.PubMedGoogle Scholar
  78. De Kruyff, B., Van Dijck, P. W. M., Demel, R. A., Schuijff, A., Brants, F., and Van Deenen, L. L. M., 1974, Non random distribution of cholesterol in phosphatidylcholine bilayers, Biochim. Biophys. Acta 356:1–7.PubMedGoogle Scholar
  79. Demel, R. A., and De Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109–132.PubMedGoogle Scholar
  80. Demel, R. A., Geurts van Kessel, V. J. M., and Van Deenen, L. L. M., 1972, The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol, Biochim. Biophys. Acta 266:26–40.Google Scholar
  81. Demel, R. A., London, Y., Geurts van Kessel, W. S. M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The specific interaction of myelin basic protein with lipids at the air-water surface, Biochim. Biophys. Acta 311:507–519.PubMedGoogle Scholar
  82. De Meyts, P., Bianco, A. R., and Roth, J., 1976, Site-site interactions among insulin receptors: Characterization of the negative cooperativity, J. Biol. Chem. 251:1877–1888.Google Scholar
  83. De Pierre, J. W., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum, Biochim. Biophys. Acta 415:411–472.Google Scholar
  84. Deuticke, B., and Ruska, C., 1976, Changes of nonelectrolyte permeability in cholesterol-loaded erythrocytes, Biochim. Biophys. Acta 433:638–653.PubMedGoogle Scholar
  85. Dodd, G., 1973, The interaction of glutamate dehydrogenase and malate dehydrogenase with phospholipid membranes, Eur. J. Biochem. 33:418–427.PubMedGoogle Scholar
  86. Dufourck, J., Faucon, J. F., Lussan, C., and Bernon, R., 1975, Study of lipid protein interactions in membrane models: Instrinsic fluorescence of cytochrome b 5-phospholipid complex, FEBS Lett. 57:112–116.Google Scholar
  87. Duppel, W., and Dahl, G., 1976, Effect of phase transition on the distribution of membrane-associated particles in microsomes, Biochim. Biophys. Acta 426:408–417.PubMedGoogle Scholar
  88. Duppel, W., and Ullrich, V., 1976, Membrane effects on drug monooxygenation activity in hepatic microsomes, Biochim. Biophys. Acta 426:399–407.PubMedGoogle Scholar
  89. Duttera, S. M., Byrne, W. L., and Ganoza, M. C., 1968, Studies on the phospholipid requirement of glucose-6-phosphatase, J. Biol. Chem. 243:2216–2228.PubMedGoogle Scholar
  90. Dutton, A., Lees, E. D., and Singer, S. J., 1976, An experiment eliminating the rotating carrier mechanism for the active transport of Ca2+ ion in sarcoplasmic reticulum membranes, Proc. Natl. Acad. Sci. U.S.A. 73:1532–1536.PubMedGoogle Scholar
  91. Edidin, M., and Fambrough, D., 1973, Fluidity of the surface of cultured muscle fibers: Rapid lateral diffusion of marked surface antigens, J. Cell Biol. 57:27–37.PubMedGoogle Scholar
  92. Edidin, M., Zagyanski, Y., and Lardner T. J., 1976, Measurement of membrane protein lateral diffusion in single cells, Science 191:466–468.PubMedGoogle Scholar
  93. Eisenmann, G., Szabo, G., McLaughlin, S. G. A., and Ciani, S. M., 1973, Molecular basis of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes, in: Membrane Structure and Mechanisms of Biological Energy Transduction (J. Avery, ed.), pp. 295–350, Plenum Press, London.Google Scholar
  94. Ekstedt, B., Olivecrona, T., and Oreland, Z., 1975, Binding of cardiolipin-lecithin and monoamine oxidase to lipid-depleted mitochondrial membrane structure, Arch. Biochem. Biophys. 171:170–175.PubMedGoogle Scholar
  95. Eletr, S., Zakim, D., and Vessey, D. A., 1973, A spin-label study of the role of phospholipids in the regulation of membrane-bound microsomal enzymes, J. Mol. Biol. 78:351–362.PubMedGoogle Scholar
  96. Eletr, S., Williams, M. A., Watkins, T., and Keith, A. D., 1974, Perturbation of the dynamics of lipid alkyl chains in membrane systems: Effect on the activity of membrane-bound enzymes, Biochim. Biophys. Acta 339:190–201.Google Scholar
  97. Elgsaeter, A., Shotton, D. M., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts: The influence of spectrin aggregation, Biochim. Biophys. Acta 426:101–122.PubMedGoogle Scholar
  98. Enoch, M. G., Català, A., and Strittmatter, P., 1976, Mechanism of rat liver microsomal stearyl CoA desaturase: Studies of the substrate specificity, enzyme-substrate interactions and the function of lipid, J. Biol. Chem. 251:5095–5103.PubMedGoogle Scholar
  99. Erecinska, M., Vanderkooi, J. M., and Wilson, D. F., 1975, Cytochrome c interactions with membranes: A photoaffinity-labelled cytochrome c, Arch. Biochem. Biophys. 171:108–116.PubMedGoogle Scholar
  100. Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T., and Wakil, S. J., 1971, The molecular organization of lipids in the membrane of E. coli: Phase transitions, Proc. Natl. Acad. Sci. U.S.A. 68:3180–3184.PubMedGoogle Scholar
  101. Estrada, S., Carabez, A. T., and Cabeza, A. G., 1966, Effect of phospholipids in induced enzyme release from mitochondria, Biochemistry 5:3432–3440.Google Scholar
  102. Eylar, E. H., 1972, The structure and immunological properties of basic proteins of myelin, Ann. N. Y. Acad. Sci. 195:481–491.PubMedGoogle Scholar
  103. Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., and Burnett, P., 1971, Basic A1 protein of the myelin membrane, J. Biol. Chem. 246:5770–5884.PubMedGoogle Scholar
  104. Eytan, G. D., and Schatz, G., 1975, Cytochrome c oxidase from baker’s yeast. V. Arrangement of the subunits in the isolated and membrane bound enzyme. J. Biol. Chem. 250:767–774.PubMedGoogle Scholar
  105. Eytan, G. D., Carroll, R. C., Schatz, G., and Racker, E., 1975, Arrangement of the subunits in solubilized and membrane-bound cytochrome c oxidase from bovine heart. J. Biol. Chem. 250:8598–8603.PubMedGoogle Scholar
  106. Farias, R. N., Goldenberg, A. L., and Trucco, R. E., 1970, The effect of fat deprivation on the allosteric inhibition by fluoride of the Mg2+-ATPase and (Na+ + K+)-ATPase from rat erythrocytes, Arch. Biochem. Biophys. 139:38–44.PubMedGoogle Scholar
  107. Farias, R. N., Bloj, B., Morero, R. D., Siñeriz, F., and Trucco, R. E., 1975, Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim. Biophys. Acta 415:231–251.PubMedGoogle Scholar
  108. Fasman, G. D., 1967, Factors responsible for conformational stability, in: Poly α-Amino Acids (G. D. Fasman, ed.), pp. 499–604, Marcel Dekker, New York.Google Scholar
  109. Faucon, J. F., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence, Biochim. Biophys. Acta 307:459–466.PubMedGoogle Scholar
  110. Feinstein, M. B., Fernandez, S. M., and Sha’afi R. I., 1975, Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions: Effects of local anesthetics, cholesterol and protein, Biochim. Biophys. Acta 413:354–370.PubMedGoogle Scholar
  111. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E., 1976, Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase, J. Biol. Chem. 251:1104–1115.PubMedGoogle Scholar
  112. Fisher, K. A., 1976, Analysis of membrane halves: Cholesterol, Proc. Natl. Acad. Sci. U.S.A. 73:173–177.PubMedGoogle Scholar
  113. Fleischer, B., Casu, A., and Fleischer, S., 1966, Release of β-hydroxybutyric apodehydrogenase from beef heart mitochondria by the action of phospholipase A, Biochem. Biophys. Res. Commun. 24:189–194.PubMedGoogle Scholar
  114. Fleischer, S., and Fleischer, B., 1967, Removal and binding of polar lipids in mitochondria and other membrane systems, Methods Enzymol. 10:406–433.Google Scholar
  115. Fleischer, S., Brierley, G. P., Klouwen, H., and Slautterback, D. B., 1962, Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer, J. Biol. Chem. 237:3264–3272.PubMedGoogle Scholar
  116. Fleischer, S., Fleischer, B., and Stoeckenius, W., 1967, Fine structure of lipid-depleted mitochondria, J. Cell Biol. 32:193–208.PubMedGoogle Scholar
  117. Folch, J., and Lees, M., 1951, Proteolipids, a new type of tissue lipoproteins: Their isolation from brain, J. Biol. Chem. 191:807–817.PubMedGoogle Scholar
  118. Folch-Pi, J., and Stoffyn, P. J., 1972, Proteolipids from membrane systems, Ann. N. Y. Acad. Sci. 195:86–107.PubMedGoogle Scholar
  119. Fourcans, B., and Jain, K. M., 1974, Role of phospholipids in transport and enzymic reactions, Adv. Lipid Res. 12:147–226.PubMedGoogle Scholar
  120. Fox, C. F., and Tsukagoshi, N., 1972, The influence of lipid phase transitions on membrane function and assembly, in: Membrane Research (C. F. Fox, ed.), pp. 145–174, Academic Press, New York.Google Scholar
  121. Franklin, M. R., and Estabrook, R. W., 1971, On the inhibitory action of mersalyl on microsomal drug oxidation: A rigid organization of the electron transport chain, Arch. Biochem. Biophys. 143:318–329.PubMedGoogle Scholar
  122. Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319–335.PubMedGoogle Scholar
  123. Galla, H. J., and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes, Biochim. Biophys. Acta 339:103–115.PubMedGoogle Scholar
  124. Galo, M. G., Bloj, B., and Farias, R. N., 1975, Kinetic changes of the erythrocyte (Mg2+ + Ca2+)-ATPase of rats fed different fat-supplemented diets, J. Biol. Chem. 250:6204–6207.PubMedGoogle Scholar
  125. Gaudemer, Y., and Latruffe, N., 1975, Evidence for penetrant and nonpenetrant thiol reagents and their use in the location of rat liver mitochondrial D(−)β-hydroxybutyrate dehydrogenase, FEBS Lett. 54:30–34.PubMedGoogle Scholar
  126. Gazitt, Y., Ohad, I., and Loyter, A., 1975, Changes in phospholipid susceptibility toward phospholipases induced by ATP depletion in avian and amphibian erythrocyte membranes, Biochim. Biophys. Acta 382:65–72.PubMedGoogle Scholar
  127. Gazzotti, P., Bock, H.G., and Fleischer, S., 1974, Role of lecithin in d-β-hydroxybutyrate dehydrogenase function, Biochem. Biophys. Res. Commun. 58:309–315.PubMedGoogle Scholar
  128. Gazzotti, P., Bock, H. G., and Fleischer, S., 1975, Interaction of d-β-hydroxybutyrate apodehydrogenase with phospholipids, J. Biol. Chem. 250:5782–5790.PubMedGoogle Scholar
  129. Gennis, R. B., and Strominger, J. L., 1976a, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. I. Activation by phospholipids and fatty acids, J. Biol. Chem. 251:1266–1269.Google Scholar
  130. Gennis, R. B., and Strominger, J. L., 1976b, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. III. Activation by detergents, J. Biol. Chem. 251:1277–1282.PubMedGoogle Scholar
  131. Gennis, R. B., Sinesky, M., and Strominger, J. L., 1976, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. II. Biophysical studies, J. Biol. Chem. 251:1270–1276.PubMedGoogle Scholar
  132. Glaser, M., and Singer, S. J., 1971, Circular dichroism and the conformations of membrane proteins: Studies with red blood cell membranes, Biochemistry 10:1780–1787.PubMedGoogle Scholar
  133. Glomset, J. A., and Norum, K. R., 1973, The metabolic role of lecithin: cholesterol acyltransferase: Perspectives from pathology, Adv. Lipid Res. 11:1–65.Google Scholar
  134. Gold, G., and Widnell, C. C., 1976, Relationship between microsomal membrane permeability and the inhibition of hepatic glucose-6-phosphatase by pyridoxal phosphate, J. Biol. Chem. 251:1035–1041.PubMedGoogle Scholar
  135. Goldman, R., and Katchalski, E., 1971, Kinetic behavior of a two enzymes membrane carrying out a consecutive set of reaction, J. Theor. Biol. 32:243–257.PubMedGoogle Scholar
  136. Goldman, S. S., and Albers, R. W., 1973, Sodium-potassium-activated ATPase. IX. The role of phospholipids, J. Biol. Chem. 246:867–874.Google Scholar
  137. Goodall, M. C., 1973, Action of two classes of channel-forming synthetic peptides on lipid bilayers, Arch. Biochem. Biophys. 157:514–519.PubMedGoogle Scholar
  138. Goodall, M. C., and Urry, D. W., 1973, A synthetic transmembrane channel, Biochim. Biophys. Acta 292:317–320.Google Scholar
  139. Goodall, M. C., Bradley, R. J., Saccomani, G., and Romine, W. O., 1974, Quantum conductance changes in lipid bilayer membranes associated with incorporation of acetylcholine receptor, Nature (London) 250:68–71.Google Scholar
  140. Gordesky, S. E., Marinetti, G. V., and Love, R., 1975, The reaction of chemical probes with erythrocyte membrane, J. Membrane Biol. 20:111–132.Google Scholar
  141. Gordon, A. S., Wallach, D. F. H., and Straus, J. H., 1969, The optical activity of plasma membranes and its modification by lysolecithin, phospholipase A and phospholipase C, Biochim. Biophys. Acta 183:405–416.PubMedGoogle Scholar
  142. Gordon, L. G. M., and Haydon, D. A., 1976, Kinetics and stability of alamethycin conducting channels in lipid bilayers, Biochim. Biophys. Acta 436:541–556.PubMedGoogle Scholar
  143. Gotterer, G. S., 1967, Rat liver d-β-hydroxybutyrate dehydrogenase. II. Lipid requirement, Biochemistry 6:2147–2152.PubMedGoogle Scholar
  144. Gotto, A. M., and Shore, B., 1969, Conformation of human serum high density lipoprotein and its peptide components, Nature (London) 224:69–70.Google Scholar
  145. Green, D. E., 1966, The mitochondrial electron transfer system, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), pp. 309–326, Elsevier, Amsterdam.Google Scholar
  146. Green, D. E., 1972, Membrane proteins: A perspective, Ann. N. Y. Acad. Sci. 195:150–172.PubMedGoogle Scholar
  147. Green, D. E., and Silman, I., 1967, Structure of the mitochondrial electron transfer chain, Annu. Rev. Plant Physiol. 18:147–178.Google Scholar
  148. Green, D. E., and Tzagoloff, A., 1966a, Role of lipids in the structure and function of biological membranes, J. Lipid Res. 7:587–602.PubMedGoogle Scholar
  149. Green, D. E., and Tzagoloff, A., 1966b, The mitochondrial electron transfer chain, Arch. Biochem. Biophys. 116:293–304.PubMedGoogle Scholar
  150. Green, D. E., Murer, E., Hultin, H. O., Richardson, S. H., Salmon, P., Brierley, G. P., and Baum, H., 1965, Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast, Arch. Biochem. Biophys. 112:635–647.PubMedGoogle Scholar
  151. Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8:4108–4116.PubMedGoogle Scholar
  152. Grell, E., and Funck, T., 1973, Dynamic properties and membrane activity of ion specific antibiotics, J. Supramol. Struct. 1:307–335.PubMedGoogle Scholar
  153. Griffiths, D. E., 1976, Studies of energy-linked reactions: Net synthesis of ATP by isolated ATP synthetase preparations: A role for lipoic acid and unsaturated fatty acids, Biochem. J. 160:809–812.PubMedGoogle Scholar
  154. Grisham, C. I., and Barnett, R. J., 1973, On the role of lipid phase transition in the regulation of the (Na+ + K+)-ATPase, Biochemistry 12:2635–2637.PubMedGoogle Scholar
  155. Grover, A. K., Slotboom, A. J., de Haas, G. H., and Hammes, G. G., 1975, Lipid specificity of β-hydroxybutyrate dehydrogenase activation, J. Biol. Chem. 250:31–38.PubMedGoogle Scholar
  156. Gruener, N., and Avi-Dor, Y., 1966, Temperature dependence of activation and inhibition of rat brain ATPase activated by Na+ and K+, Biochem. J. 100:762–767.PubMedGoogle Scholar
  157. Grunze, M., and Deuticke, B., 1974, Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes, Biochim. Biophys. Acta 356:125–130.PubMedGoogle Scholar
  158. Guenguerich, F. P., and Coon, M. J., 1975, Role of phospholipid in reconstituted liver microsomal enzyme system containing highly purified cytochrome P-450, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:622.Google Scholar
  159. Gulik-Krzywicki, T., Shechter, E., Luzzati, V., and Faure, M., 1969, Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases, Nature (London) 233:1116–1121.Google Scholar
  160. Gunderson, H. M., and Nordlie, R. P., 1975, Carbamyl phosphate: Glucose phosphotransferase and glucose-6-phosphate phosphohydrolase of nuclear membrane: Interrelationships between membrane integrity, enzymic latency and catalytic behavior, J. Biol. Chem. 250:3552–3559.PubMedGoogle Scholar
  161. Guthrow, C. E., Allen, J. E., and Rasmussen, H., 1972, Phosphorylation of an endogenous membrane protein by an endogenous membrane associated cAMP-dependent protein kinase in human erythrocyte ghosts, J. Biol. Chem. 247:8145–8153.PubMedGoogle Scholar
  162. Gwynne, J., Brewer, H. B., and Edelhoch, H., 1975, The molecular behavior of Apo-A-1 in human high-density lipoproteins, J. Biol. Chem. 250:2269–2274.PubMedGoogle Scholar
  163. Hackenbrock, C. R., Höchli, M., and Chan, R. M., 1976, Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translation motion of intramembrane particles in mitochondrial membranes, Biochim. Biophys. Acta 455:466–484.PubMedGoogle Scholar
  164. Haest, C. W. M., and Deuticke, B., 1975, Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane: Dependence on glycolytic metabolism, Biochim. Biophys. Acta 401:468–480.PubMedGoogle Scholar
  165. Haest, C. W. M., and Deuticke, B., 1976, Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane, Biochim. Biophys. Acta 436:353–365.PubMedGoogle Scholar
  166. Haest, C. W. M., De Gier, J., Van Es, G. A., Verkleij, A. J., and Van Deenen, L. L. M., 1972, Fragility of the permeability barrier of E. coli, Biochim. Biophys. Acta 288:43–53.PubMedGoogle Scholar
  167. Haest, C. W. M., Verkleij, A. J., De Gier, J., Scheek, R., Ververgaert, P. H. J., and Van Deenen, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356:17–26.PubMedGoogle Scholar
  168. Hammes, G. G., and Schullery, S. E., 1970, Structure of macromolecular aggregates. II. Construction of model membranes from phospholipids and polypeptides, Biochemistry 9:2555–2567.PubMedGoogle Scholar
  169. Hanahan, D. J., 1973, The erythrocyte membrane variability and membrane enzyme activity, Biochim. Biophys. Acta 300:319–340.PubMedGoogle Scholar
  170. Hardwicke, P. M. D., 1976, The binding of lipid to the lipid-free ATPase protein of sarcoplasmic reticulum, Eur. J. Biochem. 62:431–438.PubMedGoogle Scholar
  171. Hardwicke, P. M. D., and Green, M. N., 1974, The effect of delipidation on the ATPase of sarcoplasmic reticulum, Eur. J. Biochem. 42:183–193.PubMedGoogle Scholar
  172. Hatefi, Y., 1963, Coenzyme Q (ubiquinone), Adv. Enzymol. 25:275–328.PubMedGoogle Scholar
  173. Haydon, D. A., and Hladky, S. B., 1972, Ion transport across thin lipid membranes: A critical discussion of mechansism in selected systems, Q. Rev. Biophys. 5:187–282.PubMedGoogle Scholar
  174. Hegner, D., Schummer, U., and Schnepel, G. H., 1973, The effect of calcium on temperature-induced phase changes in liquid-crystalline cardiolipin structure, Biochim. Biophys. Acta 307:452–458.PubMedGoogle Scholar
  175. Hegyvary, C., 1973, Effects of some organic solvents on the reactivity of (Na+ + K+) transport ATPase, Biochim. Biophys. Acta 311:272–291.PubMedGoogle Scholar
  176. Hendriks, T., Klampmaken, A. A., Daemen, F. J. M., and Bonting, S. L., 1976, Biochemical aspects of the visual process. XXXII. Movement of Na+ through bilayers composed of retinal and rod outer segment lipids, Biochim. Biophys. Acta 433:271–281.Google Scholar
  177. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, R. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a Ca2+-transport protein complexed with dipalmitoyl-lecithin, Biochemistry 15:4145–4151.PubMedGoogle Scholar
  178. Hidalgo, C., Ikemoto, N., and Gergely, J., 1976, Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum, J. Biol. Chem. 250:4224–4232.Google Scholar
  179. Hill, M. W., 1974, The effect of anaesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyl lecithin. I. The normal alcohols up to C-9 and three inhalation anaesthetics, Biochim. Biophys. Acta 356:117–124.PubMedGoogle Scholar
  180. Hinkle, P. C., Kim, J. I., and Racker, E., 1972, Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids, J. Biol. Chem. 247:1338–1342.PubMedGoogle Scholar
  181. Hirz, R., and Scanu, A. M., 1970, Reassembly in vitro of a serum high-density lipoprotein, Biochim. Biophys. Acta 207:364–367.PubMedGoogle Scholar
  182. Hladky, S. B., Gordon, L. G. M., and Haydon, D. A., 1974, Molecular mechanisms of ion transport in lipid membranes, Annu. Rev. Phys. Chem. 25:11–38.Google Scholar
  183. Höchli, M., and Hackenbrock, C. R., 1976, Fluidity in mitochondrial membranes: Thermotropic lateral translation motion of intramembrane particles, Proc. Natl. Acad. Sci. U.S.A. 73:1636–1640.PubMedGoogle Scholar
  184. Holzwarth, G., 1972, Ultraviolet spectroscopy of biological membranes, in: Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp. 228–286, Sinauer Associates, Stamford.Google Scholar
  185. Horwitz, A. F., Hatten, M.E., and Burger, M. M., 1974, Membrane fatty acid replacements and their effect on growth and lectin-induced agglutinability, Proc. Natl. Acad. Sci. U.S.A. 71:3115–3119.PubMedGoogle Scholar
  186. Houslay, M. D., Warren, G. B., Birdsall, N. J. M., and Metcalfe, J. C., 1975, Lipid phase transitions control β-hydroxybutyrate dehydrogenase activity in defined lipid protein complexes, FEBS Lett 51:146–151.PubMedGoogle Scholar
  187. Houslay, M. D., Hesketh, T. R., Smith, G. A., Warren, G. B., and Metcalfe, J. C., 1976, The lipid environment of the glucagon receptor regulates adenylate cyclase activity, Biochim. Biophys. Acta 436:495–504.PubMedGoogle Scholar
  188. Huang, C. H., 1969, Studies on phosphatidycholine vesicles: Formation and physical characteristics, Biochemistry 8:344–352.PubMedGoogle Scholar
  189. Inesi, G., Millman, M., and Eletr, S., 1973, Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes, J. Mol. Biol. 81:483–504.PubMedGoogle Scholar
  190. Inoue, K., 1974, Permeability properties of liposomes prepared from dipalmitoyl lecithin, dimyristoyl lecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin, Biochim. Biophys. Acta 339:390–402.PubMedGoogle Scholar
  191. Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922–4923.PubMedGoogle Scholar
  192. Ivanevitch, K. M., Henderson, J. J., and Kaminsky, L. S., 1973, A complex of cytochrome c and mixed mitochondrial phospholipids, Biochemistry 12:1822–1828.Google Scholar
  193. Ivanevitch, K. M., Henderson, J. J., and Kaminsky, L. S., 1974, Some properties of a cytochrome c-mixed mitochondrial phospholipid complex, Biochemistry 13:1469–1476.Google Scholar
  194. Jackson, R. L., Morrisett, J. D., Pownall, H. J., and Gotto, A. M., 1973a, Human high density lipoprotein, apolipoprotein Glutamine II: The immunochemical and lipid-binding properties of apolipoprotein Glutamine II derivatives, J. Biol. Chem. 248:5218–5224.PubMedGoogle Scholar
  195. Jackson, R. L., Gotto, A. M., Lux, S. E., John, K. M., and Fleischer, S., 1973b, Human plasma high density lipoprotein, J. Biol. Chem. 248:8449–8456.PubMedGoogle Scholar
  196. Jacobs, S., and Cuatrecasas, P., 1976, The mobile receptor hypothesis and “cooperativity” of hormone binding: Application to insulin, Biochim. Biophys. Acta 433:482–495.PubMedGoogle Scholar
  197. Jain, M. K., 1974, Studies on a reconstituted acetylcholine receptor system: Effect of agonists, Arch. Biochem. Biophys. 164:20–29.PubMedGoogle Scholar
  198. James, R., and Branton, D., 1973, Lipid-and temperature-dependent structural changes in Acholeplasma laidlawii cell membranes, Biochim. Biophys. Acta 323:378–390.PubMedGoogle Scholar
  199. Jirgensons, B., 1967, Effects of n-propyl alcohol and detergents on the ORD of β-chimotrypsinogen, β-casein, histone fraction F-1 and soybean trypsin inhibitor, J. Biol. Chem. 242:912–918.PubMedGoogle Scholar
  200. Johnson, L. W., and Zilversmit, D. B., 1975, Catalytic properties of phospholipid exchange protein from bovine heart, Biochim. Biophys. Acta 375:165–175.PubMedGoogle Scholar
  201. Jost, P. C., Waggoner, A. S., and Griffith, O. H., 1971, Spin labeling and membrane structure, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York.Google Scholar
  202. Jost, P. C., Capaldi, R. A., Vanderkooi, G., and Griffith, O. H., 1973a, Lipid-protein and lipid-lipid interactions in cytochrome oxidase model membranes, J. Supramol. Struct. 1:269–280.PubMedGoogle Scholar
  203. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973b, Identification and extent of fluid bilayer regions in membranous cytochrome oxidase, Biochim. Biophys. Acta 311:141–152.PubMedGoogle Scholar
  204. Jost, P. C., Nadakavukaren, K. K., and Griffith, O. H., 1977, Phosphatidyl choline exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes, Biochemistry 16:3110–3114.PubMedGoogle Scholar
  205. Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300:341–378.PubMedGoogle Scholar
  206. Juliano, R. L., Kimelberg, H. K., and Papahadjopoulos, D., 1971, Synergistic effects of a membrane protein (spectrin) and Ca2+ on the Na2+ permeability of phospholipid vesicles, Biochim. Biophys. Acta 241:894–905.PubMedGoogle Scholar
  207. Junge, W., and De Vault, D., 1975, Symmetry, orientation and rotational mobility of the a3 heme of cytochrome c oxidase in the inner membrane of mitochondria, Biochim. Biophys. Acta 408:200–214.PubMedGoogle Scholar
  208. Jurtshuck, P., Sekuzu, I., and Green, D. E., 1961, The interaction of d(−)β-hydroxybutyric dehydrogenase with lecithin, Biochem. Biophys. Res. Commun. 6:76–80.Google Scholar
  209. Kadenbach, B., and Hadvary, P., 1973, Demonstration of two types of proteins synthesized in isolated rat liver mitochondria, Eur. J. Biochem. 32:343–349.PubMedGoogle Scholar
  210. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-ATP exchange, J. Biol. Chem. 5477–5487.Google Scholar
  211. Katz, B., and Miledi, R., 1971, Further observations on acetylcholine “noise,” Nature (London) New Biol. 232:124–126.Google Scholar
  212. Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14:1–63.PubMedGoogle Scholar
  213. Keith, A. D., Sharnoff, M., and Cohn, G. E., 1973, A summary and evaluation of spin labels used as probes for biological membrane structure, Biochim. Biophys. Acta 300:379–419.PubMedGoogle Scholar
  214. Keith, A. D., Aloja, R. C., Lyons, J., Snipes, W., and Pengelley, E. T., 1975, Spin label evidence for the role of lysoglycerophospholipids in cellular membranes of hibernating mammals, Biochim. Biophys. Acta 394:204–210.PubMedGoogle Scholar
  215. Kemp, A., Groot, C. S. P., and Reitsma, H. J., 1969, Oxidative phosphorylation as a function of temperature, Biochim. Biophys. Acta 180:28–34.PubMedGoogle Scholar
  216. Kimelberg, H. K., 1975, Alterations in phospholipid-dependent (Na+ + K+)-ATPase activity due to lipid fluidity: Effects of cholesterol an Mg2+, Biochim. Biophys. Acta 413:143–156.PubMedGoogle Scholar
  217. Kimelberg, H. K., and Lee, C. P., 1969, Binding and electron transfer to cytochrome c in artificial phospholipid membranes, Biochem. Biophys. Res. Commun. 34:784–790.PubMedGoogle Scholar
  218. Kimelberg, H. K., and Papahadjopoulos, D., 1971a, Interactions of basic proteins with phospholipid membranes, J. Biol. Chem. 246:1142–1148.PubMedGoogle Scholar
  219. Kimelberg, H. K., and Papahadjopoulos, D., 1971b, Phospholipid-protein interactions: Membrane permeability correlated with monolayer “penetration,” Biochim. Biophys. Acta 233:805–809.PubMedGoogle Scholar
  220. Kimelberg, H. K., and Papahadjopoulos, D., 1974, Effects of phospholipid acyl chain fluidity, phase transitions and cholesterol on (Na+ + K+)-stimulated ATPase, J. Biol. Chem. 249:1071–1080.PubMedGoogle Scholar
  221. Kimelberg, H. K., Lee, C. P., Claude, A., and Mrena, L., 1970, Interactions of cytochrome c with phospholipid membranes, J. Membrane Biol. 2:235–251.Google Scholar
  222. Kleemann, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipids in bilayer membranes, Biochim. Biophys. Acta 419:206–222.PubMedGoogle Scholar
  223. Knowles, A. F., Eytan, E., and Racker, E., 1976, Phospholipid protein interactions in the Ca-ATPase of sarcoplasmic reticulum, J. Biol. Chem. 251:5161–5165.PubMedGoogle Scholar
  224. Knuell, H. R., Taylor, W. F., and Wells, W. W., 1973, Effects of energy metabolism on in vivo distribution of hexokinase in brain, J. Biol. Chem. 248:5414–5417.Google Scholar
  225. Kornberg, R. D., and McConnell, H. M., 1971, Inside-outside transitions of phospholipids in vesicles and membranes, Biochemistry 10:1111–1120.PubMedGoogle Scholar
  226. Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin, Science 174:412–415.PubMedGoogle Scholar
  227. Kröger, A., and Klingenberg, M., 1967, On the role of ubiquinone, in: Current Topics in Bioenergetics, Vol. II (D. R. Sanadi, ed.), pp. 152–190, Academic Press, New York.Google Scholar
  228. Kröger, A., and Klingenberg, M., 1970, Quinones and nicotinamide nucleotides associated with electron transfer, Vitam. Horm. (N.Y.) 28:533–574.Google Scholar
  229. Kumamoto, J., Raison, J. K., and Lyons, J. M., 1971, Temperature “breaks” in Arrhenius plots: A thermodynamic consequence of a phase change, J. Theor. Biol. 31:47–51.PubMedGoogle Scholar
  230. Kury, P. G., and McConnell, H. M., 1975, Regulation of membrane flexibility in human erythrocytes, Biochemistry 14:2798–2803.PubMedGoogle Scholar
  231. Kury, P. G., Ramwell, P. W., and McConnell, H. M., 1974, The effect of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels, Biochem. Biophys. Res. Commun. 56:478–483.PubMedGoogle Scholar
  232. Laggner, P., 1975, A highly α-helical structure protein in sarcoplasmic reticulum membranes, Nature (London) 255:427–428.Google Scholar
  233. Laggner, P., and Barratt, M. D., 1975, The interaction of a proteolipid from sarcoplasmic reticulum membranes with phospholipids: A spin label study, Arch. Biochem. Biophys. 170:92–101.PubMedGoogle Scholar
  234. Landi, L., Olivo, G., Parenti-Castelli, G., Sechi, A. M., and Lenaz, G., 1976, Lipid protein interactions and the kinetics of mitochondrial ATPase, Bull. Mol. Biol. Med. 1:29–36.Google Scholar
  235. Lasch, J., Bessmertnaya, L., Rozla, L. V., and Antonov, V. R., 1976, Thermal stability of immobilized enzymes: Circular dichroism, fluorescence and kinetic measurements of α-chymotrypsin attached to soluble carriers, Eur. J. Biochem. 63:591–598.PubMedGoogle Scholar
  236. Lea, E. J. A., Rich, G. T., and Segrest, J. P., 1975, The effects of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein on the permeability of model lipid membranes, Biochim. Biophys. Acta 383:41–50.Google Scholar
  237. Lecocq, D., Hervagault, J. F., Broun, G., Joly, G., Kernezev, J. P., and Thomas, D., 1975, The kinetic behavior of an artificial bienzyme membrane, J. Biol. Chem. 250:5496–5500.Google Scholar
  238. Lee, A. G., 1976, Interactions between phospholipids and barbiturates, Biochim. Biophys. Acta 455:102–108.PubMedGoogle Scholar
  239. Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699–3705.PubMedGoogle Scholar
  240. Lee, C. P., Huang, C. H., and Cierkosz, B. I. T., 1974, Effects of cardiolipin micelles on submitochondrial membranes, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 161–170, North-Holland, Amsterdam.Google Scholar
  241. Lee, M. P., and Gear, A. R. L., 1974, The effect of temperature on mitochondrial membrane-linked reactions, J. Biol. Chem. 249:7541–7549.PubMedGoogle Scholar
  242. Lenard, J., and Singer, S. J., 1968, Structure of membranes: Reaction of red blood cell membranes with phospholipase C., Science 159:738–739.PubMedGoogle Scholar
  243. Lenaz, G., 1973, The role of lipids in the regulation of membrane-associated activities, Acta Vitaminol. Enzymol. (Milan) 24:62–95.Google Scholar
  244. Lenaz, G., 1974, Lipid-protein interactions in the structure of biological membranes, Subcell. Biochem. 3:167–248.PubMedGoogle Scholar
  245. Lenaz, G., 1977, Lipid properties and lipid-protein interactions, in: Membrane Proteins and Their Interactions with Lipids (R. A. Capaldi, ed.), pp. 47–149, Marcel Dekker, New York.Google Scholar
  246. Lenaz, G., and Sechi, A. M., 1976, Architecture and asymmetry of biomembranes, Ital. J. Biochem. 25:427–510.PubMedGoogle Scholar
  247. Lenaz, G., Sechi, A. M., Masotti, L., and Parenti-Castelli, G., 1970a, Lipid protein interactions in mitochondria. I. Conditions affecting binding of phospholipids to lipid-depleted mitochondria, Arch. Biochem. Biophys. 141:79–88.PubMedGoogle Scholar
  248. Lenaz, G., Sechi, A. M., Parenti-Castelli, G., and Masotti, L., 1970b, Lipid-protein interactions in mitochondria. II. On the nature and biochemical significance of the interaction between phospholipids and lipid-depleted mitochondria, Arch. Biochem. Biophys. 141:89–97.PubMedGoogle Scholar
  249. Lenaz, G., Sechi, A. M., Parenti-Castelli, G., Landi, L., and Bertoli, E., 1972, Activation energies of different mitochondrial enzymes: Breaks in Arrhenius plots of membrane-bound enzymes occur at different temperatures, Biochem. Biophys. Res. Comm. 49:536–542.PubMedGoogle Scholar
  250. Lenaz, G., Parenti-Castelli, G., Sechi, A. M., Bertoli, E., and Griffiths, D. E., 1974, Perturbation of mitochondrial membranes by organic solvents: An enzymatic and spin label study, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 23–28, North-Holland, Amsterdam.Google Scholar
  251. Lenaz, G., Curatola, G., and Masotti, L., 1975a, Perturbation of membrane fluidity, J. Bioenerg. 7:223–299.Google Scholar
  252. Lenaz, G., Parenti-Castelli, G., and Sechi, A. M., 1975b, Lipid protein interactions in mitochondria: Changes in mitochondrial ATPase activity induced by n-butyl alcohol, Arch. Biochem. Biophys. 167:72–79.PubMedGoogle Scholar
  253. Lenaz, G., Bertoli, E., Curatola, G., Mazzanti, L., and Bigi, A., 1976, Lipid protein interactions in mitochondria: Spin and fluorescence probe studies on the effect of n-alkanols on phospholipid vesicles and mitochondrial membranes, Arch. Biochem. Biophys. 172:278–288.PubMedGoogle Scholar
  254. Lenaz, G., Curatola, G., Mazzanti, L., Parenti-Castelli, G., and Bertoli, E., 1978, Effects of general anesthetics on lipid-protein interactions and ATPase activity in mitochondria, Biochem. Pharmacol. (in press).Google Scholar
  255. Lenaz, G., Mascarello, S., Landi, L., Cabrini, L., Pasquali, P., Parenti-Castelli, G., Sechi, A. M., and Bertoli, E., 1977, Interactions of ubiquinone in the inner mitochondrial membrane, in: Membrane Bioenergetics (L. Packer, ed.), pp. 189–198, Elsevier, Amsterdam.Google Scholar
  256. Letellier, L., and Shechter, E., 1973, Correlations between structure and spectroscopic properties in membrane model systems, Eur. J. Biochem. 40:507–512.PubMedGoogle Scholar
  257. Leung, K. H., and Hinkle, P. C., 1975, Reconstitution of ion transport and respiratory control in vesicles formed from reduced CoQ-cytochrome c reductase and phospholipids, J. Biol. Chem. 250:8467–8471.PubMedGoogle Scholar
  258. Levey, G. S., 1971, Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidyl inositol, J. Biol. Chem. 246:7405–7407.PubMedGoogle Scholar
  259. Levey, G. S., 1973, The role of phospholipids in hormonal activation of adenylate cyclase, Recent Prog. Horm. Res. 29:361–386.PubMedGoogle Scholar
  260. Li, J. R. R., Williams, R. E., and Fox, C. F., 1975, Effects of temperature and host lipid composition on the infection of cells by Newcastle disease virus, Biochem. Biophys. Res. Commun. 62:470–477.PubMedGoogle Scholar
  261. Liebman, P., and Entine, G., 1974, Lateral diffusion of visual pigment in photoreceptor disk membranes, Science 185:457–459.PubMedGoogle Scholar
  262. Linden, C. D., Wright, R. L., McConnell, H. M., and Fox, C. F., 1973, Lateral phase separations in membrane lipids and the mechanism of sugar transport in E. coli, Proc. Natl. Acad. Sci. U.S.A. 70:2271–2275.PubMedGoogle Scholar
  263. Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Annu. Rev. Biochem. 42:541–574.PubMedGoogle Scholar
  264. Litman, B. J., 1974, Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles, Biochemistry 13:2814–2848.Google Scholar
  265. Litman, B. J., 1975, Surface distribution of the fatty acid side chains of phosphatidylethanolamine in mixed phospholipid vesicles, Biochim. Biophys. Acta 413:157–162.PubMedGoogle Scholar
  266. London, Y., and Vossenberg, F. G. A., 1973, Specific interaction of central nervous system myelin basic protein with lipids: Specific regions of the protein sequence protected from the proteolytic action of trypsin, Biochim. Biophys. Acta 478:478–490.Google Scholar
  267. Lonson, Y., Demel, R. A., Geurts van Kessel, W. S.M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The protection of a myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids at the air water interface, Biochim. Biophys. Acta 311:520–530.Google Scholar
  268. London, Y., Demel, R. A., Geurts van Kessel, W. S. M., Zahler, P., and Van Deenen, L. L. M., 1974, The interaction of the “Folch-Lees” protein with lipids at the air-water interface, Biochim. Biophys. Acta 332:69–84.Google Scholar
  269. Lossen, O., Brennecke, R., and Schubert, D., 1973, Electrical properties of black membranes from oxidized cholesterol and a strongly bound protein fraction of human erythrocyte membranes, Biochim. Biophys. Acta 330:132–140.PubMedGoogle Scholar
  270. Lucy, J. A., 1969, Lysosomal membranes, in: Lysosomes in Biology and Pathology Vol. 2 (J. T. Dingle and H. B. Fell, eds.), pp. 313–341, North-Holland, Amsterdam.Google Scholar
  271. Lucy, J. A., 1970, The fusion of biological membranes, Nature (London) 227:815–817.Google Scholar
  272. Lutz, W. R., Wipt, H. K., and Simon, W., 1970, Alkalin Kationenspezifität und Träger-Eigenschaften der Antibiotica Nigericin und Monactin, Helv. Chim. Acta 53:1741–1746.PubMedGoogle Scholar
  273. Lux, S. E., Hirz, R., Shranger, R. L, and Gotto, A. M., 1972, The influence of lipid on the conformation of human plasma high density apolipoproteins, J. Biol. Chem. 249:2598–2606.Google Scholar
  274. Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems, in: Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 71–123, Academic Press, London.Google Scholar
  275. Lyons, J. M., 1973, Chilling injury in plants, Annu. Rev. Plant, Physiol. 24:445–466.Google Scholar
  276. Lyons, J. M., and Raison, J. K., 1970, A temperature-induced transition in mitochondrial oxidation: Contrasts between cold and warm-blooded animals, Comp. Biochem. Physiol. 37:405–411.Google Scholar
  277. MacLennan, D. H., and Yip, C. C., 1973, Isolation of sarcoplasmic reticulum proteins, Cold Spring Harbor Symp. Quant. Biol. 37:469–477.Google Scholar
  278. MacLennan, D. H., Lenaz, G., and Szarkowska, L., 1966, Studies on the mechanism of oxidative phosphorylation. IX. Effect of cytochrome c on energy-linked processes, J. Biol. Chem. 241:5251–5259.PubMedGoogle Scholar
  279. Marcelja, S., 1976, Lipid-mediated protein interaction in membranes, Biochem. Biophys. Acta 455:1–7.PubMedGoogle Scholar
  280. Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., 1970, Physical and chemical properties of a protein isolated from red cell membranes, Biochemistry 9:50–56.PubMedGoogle Scholar
  281. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 69:613–620.Google Scholar
  282. Martonosi, A., 1969, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem. 244:613–620.PubMedGoogle Scholar
  283. Martonosi, A., 1972, Biochemical and clinical aspects of sarcoplasmic reticulum function, in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 3, pp. 83–197, Academic Press, New York.Google Scholar
  284. Martonosi, A., 1974, Thermal analysis of sarcoplasmic reticulum membranes, FEBS Lett. 47:327–329.PubMedGoogle Scholar
  285. Martonosi, A., Donley, J. R., Purcell, A. G., and Halpin, R. A., 1971, Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144:529–540.PubMedGoogle Scholar
  286. Masotti, L., Lenaz, G., Spisni, A., and Urry, D. W., 1974, Effect of phospholipids on the protein conformation in the inner mitochondrial membranes, Biochem. Biophys. Res. Commun. 56:892–897.PubMedGoogle Scholar
  287. Massa, E. M., Morero, R. D., Bloj, B., and Farias, R. N., 1975, Hormone action and membrane fluidity: Effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane-bound acetylcolinesterase and (Na+ + K+)-ATPase, Biochem. Biophys. Res. Commun. 66:115–122.PubMedGoogle Scholar
  288. Massey, V., Curti, B., and Ganther, H., 1966, A temperature-dependent conformational charge in d-aminoacid oxidase and its effect on catalysis, J. Biol. Chem. 241:2347–2357.PubMedGoogle Scholar
  289. Matlib, M. A., and O’Brien, P. J., 1975, Compartmentation of enzymes in the rat liver mitochondrial matrix, Arch. Biochem. Biophys. 167:193–202.PubMedGoogle Scholar
  290. Mavis, R. D., and Vagelos, P. R., 1972, The effect of phospholipid fatty acid composition on membranous enzymes in E. coli, J. Biol. Chem. 247:652–659.PubMedGoogle Scholar
  291. McIntyre, J. A., Gibula, N. B., and Karnowsky, M. J., 1974, Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes, J. Cell Biol. 60:192–203.PubMedGoogle Scholar
  292. McMurchie, E. J., Raison, J. K., and Cairncross, K. D., 1973, Temperature-induced phase changes in membranes of heart: A contrast between the thermal response of poikilotherms and homeotherms, Comp. Biochem. Physiol. 44:1017–1027.Google Scholar
  293. Meissner, G., and Fleischer, S., 1972, The role of phospholipid in Ca2+-stimulated ATPase activity of sarcoplasmic reticulum, Biochim. Biophys. Acta 255:19–33.PubMedGoogle Scholar
  294. Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G., 1972, 13C-NMR spectra of Acholeplasma membranes containing 13C-labelled phospholipids, FEBS Lett 21:335–340.PubMedGoogle Scholar
  295. Meyers, M. B., and Swislocki, N. I., 1974, Conformational changes in erythrocyte membranes by prostaglandins as measured by circular dichroism, Arch. Biochem. Biophys. 164:544–550.PubMedGoogle Scholar
  296. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles, Biochemistry 12:2637–2645.PubMedGoogle Scholar
  297. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1974, Head group modulation of membrane fluidity in sonicated phospholipid dispersions, Biochemistry 13:2605–2612.PubMedGoogle Scholar
  298. Miller, I. R., and Bach, D., 1974, Interaction of basic polypeptides with phospholipid monolayers, Chem. Phys. Lipids 13:453–465.PubMedGoogle Scholar
  299. Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, England.Google Scholar
  300. Mitchell, P., 1974, A chemiosmotic molecular mechanism for proton-translocating ATPases, FEBS Lett. 43:189–194.PubMedGoogle Scholar
  301. Mitchell, P., 1975, Proton-motive function of cytochrome systems in electron transfer and oxidative phosphorylation, in: Electron Transfer and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), pp. 305–316, North-Holland, Amsterdam.Google Scholar
  302. Morrisett, J. D., David, J. S. K., Pownall, H. J., and Gotto, A. M., 1973, Interaction of an apoliprotein (Apo Lp-alanine) with phosphatidylcholine, Biochemistry 12:1290–1299.PubMedGoogle Scholar
  303. Morrisett, J. D., Pownall, H. J., Plumlee, R. T., Smith, L. C., Zehner, Z. E., Esfahani, M., and Wakil, S. J., 1975, Multiple thermotropic phase transitions in E. coli membranes and membrane lipids: A comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence, and enzyme activity measurements, J. Biol. Chem. 250:6969–6976.PubMedGoogle Scholar
  304. Mueller, P., and Rudin, D. O., 1968, Action potential induced in bimolecular lipid membranes, Nature (London) 217:713–719.Google Scholar
  305. Naftalin, R. J., 1970, A model for sugar transport across red cell membranes without carriers, Biochim. Biophys. Acta 211:65–78.PubMedGoogle Scholar
  306. Nakamura, H., Jilka, R. L., Boland, R., and Martonosi, A. N., 1976, Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids, J. Biol. Chem. 251:5414–5423.PubMedGoogle Scholar
  307. Nemethy, G., 1967, Hydrophobic interactions, Angew. Chem. Int. Ed. Engl. 6:195–206.PubMedGoogle Scholar
  308. Nicholls, S. P., and Miller, N., 1974, Chloride diffusion from liposomes, Biochim. Biophys. Acta 356:184–198.PubMedGoogle Scholar
  309. Nicolson, G. L., 1973a, Temperature dependent mobility of concanavalin A sites on tumor cell surface, Nature (London) New Biol. 243:218–220.Google Scholar
  310. Nicolson, G. L., 1973b, Cis- and trans-membrane control of cell surface topography, J. Supramol. Struct. 1:410–416.PubMedGoogle Scholar
  311. Nicolson, G. L., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457:57–108.PubMedGoogle Scholar
  312. Nobel, P. S., 1974, Temperature dependence of the permeability of chloroplasts from chilling-sensitive and chilling-resistant plants, Plants (Berlin) 115:369–372.Google Scholar
  313. Nordlie, R. C., 1971, Glucose 6-phosphatase, hydrolytic and synthetic activities, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 4, pp. 543–610, Academic Press, New York.Google Scholar
  314. Ohnishi, M., and Urry, D. W., 1970, Solution conformation of valinomycin-K+ complex, Science 168:1091–1092.PubMedGoogle Scholar
  315. Oldfield, E., Keough, K. M., and Chapman, D., 1972, The study of hydrocarbon chain mobility in membrane systems using spin-label probes, FEBS Lett. 20:344–346.PubMedGoogle Scholar
  316. Omura, T., and Sato, R., 1962, A new cytochrome in liver microsomes, J. Biol. Chem. 237:PC1375–1376.Google Scholar
  317. Ovchinnikov, Y. A., 1974, Membrane active complexones: Chemistry and biological function, FEBS Lett. 44:1–21.PubMedGoogle Scholar
  318. Packer, L., Mehard, C. W., Meissner, G., Zahler, W. L., and Fleischer, S., 1974, The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: Freeze-fracture electron microscopy studies, Biochim. Biophys. Acta 363:159–181.PubMedGoogle Scholar
  319. Papa, S., 1976, Proton translocation reactions in the respiratory chains, Biochim. Biophys. Acta 456:39–84.PubMedGoogle Scholar
  320. Papahadjopoulos, D., 1973, Phospholipids as model membranes: Monolayers, bilayers and vesicles, in: Form and Function of Phospholipids, 2nd ed. (C. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 143–169, Elsevier, Amsterdam.Google Scholar
  321. Papahadjopoulos, D., Nir, S., and Ohki, A., 1971, Permeability properties of phospholipid membranes: Effect of cholesterol and temperature, Biochim. Biophys. Acta 266:561–583.Google Scholar
  322. Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330–348.PubMedGoogle Scholar
  323. Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.PubMedGoogle Scholar
  324. Papahadjopoulos, D., Moscarello, M., Eylar, E. H., and Isac, T., 1975a, Effects of proteins on thermotropic phase transitions of phospholipid membranes, Biochim. Biophys. Acta 401:317–335.PubMedGoogle Scholar
  325. Papahadjopoulos, D., Vail, W. J., and Moscarello, M., 1975b, Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability, J. Membrane Biol. 22:143–164.Google Scholar
  326. Papahadjopoulos, D., Hui, S., Vail, W. J., and Poste, G., 1976a, Studies on membrane fusion. I. Interaction of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide, Biochim. Biophys. Acta 448:245–264.Google Scholar
  327. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976b, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by Ca2+ and other divalent metals, Biochim. Biophys. Acta 448:265–283.PubMedGoogle Scholar
  328. Parenti-Castelli, G., Sechi, A. M., Landi, L., Cabrini, L., and Lenaz, G., 1978, Lipid protein interactions in mitochondria: A comparison of the effects of lipid removal and lipid perturbation on the kinetic properties of mitochondrial ATPase (submitted to Biochimica et Biophysica Acta).Google Scholar
  329. Pedersen, P. L., 1975, Mitochondrial ATPase, J. Bioenerg. 6:243–275.Google Scholar
  330. Pedersen, P. L., 1976, ATP dependent reactions catalysed by inner membrane vesicles of rat liver mitochondria: Kinetics, J. Biol. Chem. 251:934–940.PubMedGoogle Scholar
  331. Peter, H. W., and Ahlers, J., 1975, Phospholipid requirements of ATPase of Escherichia coli, Arch. Biochem. Biophys. 170:169–178.PubMedGoogle Scholar
  332. Peters, R., Peters, J., Tews, R., and Bähr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367:282–294.PubMedGoogle Scholar
  333. Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T., and Estabrook, R. W., 1976, Temperature dependence of cytochrome P450 reduction: A model for NADPH-cytochrome P450 reductase: cytochrome P450 interaction, J. Biol. Chem. 251:4010–4016.PubMedGoogle Scholar
  334. Petit, V. A., and Edidin, M., 1974, Lateral phase separation of lipids in plasma membrane: Effect of temperature on the mobility of membrane antigens, Science 184:1183–1185.PubMedGoogle Scholar
  335. Pfeiffer, D. R., and Lardy, H. A., 1976, Ionophore A-23187: The effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A-23187, Biochemistry 15:935–943.PubMedGoogle Scholar
  336. Phan, S. H., and Mahler, H. R., 1976a, Studies on cytochrome oxidase: Partial resolution of enzymes containing 7 or 6 subunits from yeast and beef heart respectively, J. Biol. Chem. 251:257–269.PubMedGoogle Scholar
  337. Phan, S. H., and Mahler, H. R., 1976b, Studies on cytochrome oxidase: Preliminary characterization of an enzyme containing only 4 subunits, J. Biol. Chem. 251:270–276.PubMedGoogle Scholar
  338. Pieterson, W. A., Vidal, J. C., Volwerk, J. J., and de Haas, G. H., 1974, Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2, Biochemistry 13:1455–1460.PubMedGoogle Scholar
  339. Pinto da Silva, P., 1973, Membrane intercalated particles in human erythrocyte ghosts: Sites of preferred passage of water molecules at low temperature, Proc. Natl. Acad. Sci. U.S.A. 70:1339–1343.PubMedGoogle Scholar
  340. Pinto da Silva, P., and Branton, D., 1972, Membrane intercalated particles: The plasma membrane as a planar fluid domain, Chem. Phys. Lipids 8:265–270.PubMedGoogle Scholar
  341. Poo, M., and Cone, R. A., 1974, Lateral diffusion of rhodopsin in the photoreceptor membrane, Nature (London) 247:438–441.Google Scholar
  342. Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochim. Biophys. Acta 300:421–465.PubMedGoogle Scholar
  343. Postel-Vinay, M. C., Sonenberg, M., and Swislocki, N. I., 1974, Effect of bovine growth hormone on rat liver plasma membranes as studied by circular dichroism and fluorescence using the extrinsic probe 7,12-dimethylbenzanthracene, Biochim. Biophys. Acta 332:156–165.Google Scholar
  344. Poyton, R. O., and Schatz, G., 1975a, Cytochrome c oxidase from baker’s yeast. III. Physical characterization of isolated subunits and chemical evidence for two different classes of polypeptides, J. Biol. Chem. 250:752–761.PubMedGoogle Scholar
  345. Poyton, R. O., and Schatz, G., 1975b, Cytochrome c oxidase from baker’s yeast. IV. Immunological evidence for the participation of a mitochondrially synthesized subunit in enzymatic activity, J. Biol. Chem. 250:762–766.PubMedGoogle Scholar
  346. Prestipino, G., Ceccarelli, D., Conti, F., and Carafoli, E., 1974, Interactions of a mitochondrial Ca2+-binding glycoprotein with lipid bilayer membranes, FEBS Lett 45:99–103.PubMedGoogle Scholar
  347. Pullman, M. E., and Monroy, G. C., 1963, A naturally occurring inhibitor of mitochondrial ATPase, J. Biol. Chem. 238:3762–3769.PubMedGoogle Scholar
  348. Racker, E., 1967, Resolution and reconstitution of the inner mitochondrial membrane, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26:1335–1340.Google Scholar
  349. Racker, E., 1970, Function and structure of the inner membrane of mitochondria and chloroplasts, in: Membranes of Mitochondria and Chloroplasts (E. Racker, ed.), pp. 127–171, Van Nostrand Reinhold, New York.Google Scholar
  350. Racker, E., 1972, Reconstitution of oxidative phosphorylation and vesicles with respiratory control, in: Membrane Research (C. F. Fox, ed.), pp. 97–114, Academic Press, New York.Google Scholar
  351. Racker, E., and Hinkle, P. C., 1974, Effect of temperature on the function of a proton pump, J. Membrane Biol. 17:181–188.Google Scholar
  352. Racker, E., and Kandrach, A., 1971, Reconstitution of the third site of oxidative phosphorylation, J. Biol. Chem. 246:7069–7071.PubMedGoogle Scholar
  353. Racker, E., and Kandrach, A., 1973, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation, J. Biol. Chem. 248:5841–5847.PubMedGoogle Scholar
  354. Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalysing light-driven proton uptake and ATP formation, J. Biol. Chem. 249:662–663.PubMedGoogle Scholar
  355. Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes?, Biochim. Biophys. Acta 265:509–549.Google Scholar
  356. Ragan, C. I., and Hinkle, P. C., 1975, Ion transport and respiratory control in vesicles formed from NADH-Coenzyme Q reductase and phospholipids, J. Biol. Chem. 250:8472–8476.PubMedGoogle Scholar
  357. Ragan, C. I., and Racker, E., 1973a, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXVIII. The reconstitution of the first site of energy conservation, J. Biol. Chem. 248:2563–2569.PubMedGoogle Scholar
  358. Ragan, C. I., and Racker, E., 1973b, Resolution and reconstitution of the mitochondrial electron transport system. IV. The reconstitution of rotenone-sensitive NADH-ubiquinone reductase from NADH dehydrogenase and phospholipids, J. Biol. Chem. 248:6876–6884.PubMedGoogle Scholar
  359. Raison, J. K., 1973, The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems, in: Membrane Structure and Mechanisms of Biological Energy Transduction (J. Avery, ed.), pp. 559–583, Plenum Press, London.Google Scholar
  360. Raison, J. K., and Lyons, J. M., 1970, The influence of mitochondrial concentration and storage on the respiratory control of isolated plant mitochondria, Plant Physiol. 45:382–385.PubMedGoogle Scholar
  361. Raison, J. K., and McMurchie, E. J., 1974, Two temperature-induced changes in mitochondrial membranes detected by spin labelling and enzyme kinetics, Biochim. Biophys. Acta 363:135–140.PubMedGoogle Scholar
  362. Raison, J. K., Lyons, J. M., Mehlhorn, R. J., and Keith, A. D., 1971, Temperature-induced phase changes in mitochondrial membranes detected by spin-labeling, J. Biol. Chem. 246:4036–4040.PubMedGoogle Scholar
  363. Razin, S., Tourtellotte, M. E., McElhaney, R. N., and Pollack, J. D., 1966, Influence of lipid components of Mycoplasma laidlawii membranes on osmotic fragility of cells, J. Bacteriol. 91:609–616.PubMedGoogle Scholar
  364. Razi-Naqvi, K., Gonzales-Rodriguez, J., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature (London) New Biol. 245:249–251.Google Scholar
  365. Read, B. D., and McElhaney, E. N., 1976, Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes, Biochim. Biophys. Acta 419:331–341.PubMedGoogle Scholar
  366. Reader, T. A., and De Robertis, E., 1974, The response of artificial lipid membranes containing a cholinergic hydrophobic protein from Electrophorus electroplax, Biochim. Biophys. Acta 352:192–201.PubMedGoogle Scholar
  367. Redwood, W. R., Gibbes, D. C., and Thompson, T. E., 1973, Interaction of a solubilized membrane ATPase with lipid bilayer membrane, Biochim. Biophys. Acta 318:10–22.PubMedGoogle Scholar
  368. Reed, C. F., 1968, Phospholipids exchange between plasma and erythrocytes in man and in the dog, J. Clin. Invest. 47:749–760.PubMedGoogle Scholar
  369. Reed, P. W., and Lardy, H. A., 1972, A-23187-A divalent cation ionophore, J. Biol. Chem. 247:6970–6977.PubMedGoogle Scholar
  370. Reinert, J., and Steim, J. M., 1970, Calorimetric detection of a membrane lipid phase transition in living cells, Science 168:1580–1582.PubMedGoogle Scholar
  371. Renooj, J. W., Van Golde, L. M. G., Zwaal, R. F. A., and Van Deenen, L. L. M., 1976, Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes, Eur. J. Biochem. 61:53–58.Google Scholar
  372. Robson, B., and Pain, R. H., 1972, Directional information transfer in protein helices, Nature (London) New Biol. 238:107–108.Google Scholar
  373. Rogers, M. J., and Strittmatter, P., 1973, Lipid protein interactions in the reconstitution of the microsomal NADH-cytochrome b 5 reductase system, J. Biol. Chem. 248:800–806.PubMedGoogle Scholar
  374. Rogers, M. J., and Strittmatter, P., 1974a, Evidence for random distribution and translocational movement of cytochrome b 5 in endoplasmic reticulum, J. Biol. Chem. 249:895–900.PubMedGoogle Scholar
  375. Rogers, M. J., and Strittmatter, P., 1974b, The binding of NADH-cytochrome b 5 reductase to hepatic microsomes, J. Biol. Chem. 249:5565–5569.PubMedGoogle Scholar
  376. Roisin, M. P., and Kepes, A., 1973, The membrane ATPase of Escherichia coli. II. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase, Biochim. Biophys. Acta 305:249–259.PubMedGoogle Scholar
  377. Romeo, D., Girard, A., and Rothfield, L. L, 1970a, Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid, J. Mol. Biol. 53:475–490.PubMedGoogle Scholar
  378. Romeo, D., Hinckley, A., and Rothfield, L. I., 1970b, Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme, J. Mol. Biol. 53:491–501.PubMedGoogle Scholar
  379. Romine, W. O., Goodall, M. C., Peterson, J., and Bradley, R. J., 1974, The acetylcholine receptor: Isolation of a brain nicotinic receptor and its preliminary characterization in lipid bilayer membranes, Biochim. Biophys. Acta 316:316–325.Google Scholar
  380. Rothfield, L. I., and Hinckley, A., 1974, The in vitro interaction of bacterial membrane lipids and proteins, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 102–112, North-Holland, Amsterdam.Google Scholar
  381. Rothfield, L. I., and Romeo, D., 1971, Enzyme reactions in biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 251–284, Academic Press, New York.Google Scholar
  382. Rothman, J. E., Tsai, D. K., Dawidovicz, E. A., and Lenard, J., 1976, Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus, Biochemistry 15:2361–2370.PubMedGoogle Scholar
  383. Rothstein, A., Cabantchik, Z. I., Ealshin, M., and Juliano, R., 1975, Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes, Biochim. Biophys. Res. Commun. 64:144–150.Google Scholar
  384. Rottem, S., 1975, Heterogeneity in the physical state of the exterior and interior regions of mycoplasma membrane lipids, Biochem. Biophys. Res. Commun. 64:7–12.PubMedGoogle Scholar
  385. Rottem, S., Cirillo, V. P., De Kruyff, B., Shinitzky, M., and Razin, S., 1973, Cholesterol in Mycoplasma membranes: Correlation of enzymic and transport activities with physical state of lipids in membrane of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentration, Biochim. Biophys. Acta 323:509–519.PubMedGoogle Scholar
  386. Rubalcava, B., and Rodbell, M., 1973, The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248:3831–3837.PubMedGoogle Scholar
  387. Rubin, M. S., Swislocki, N. I., and Sonenberg, M., 1973, Alteration of liver plasma membrane protein conformation by bovine growth hormone in vitro, Arch. Biochem. Biophys. 157:252–259.PubMedGoogle Scholar
  388. Sachs, G., Spenney, J. G., Saccomani, G., and Goodall, M. C., 1974, Characterization of gastric mucosal membranes, VI. The presence of channel-forming substances, Biochim. Biophys. Acta 332:233–247.Google Scholar
  389. Saudermann, H., 1974, The reactivation of C55-isoprenoid alcohol phosphokinase apoprotein by lipids: Evidence for lipid hydration in lipoprotein function, Eur. J. Biochem. 43:415–422.Google Scholar
  390. Saudermann, H., 1976, A possible correlation between lipid hydration and lipid activation of the C55-isoprenoid alcohol phosphokinase apoprotein, Eur. J. Biochem. 62:479–484.Google Scholar
  391. Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 69:2056–2060.PubMedGoogle Scholar
  392. Scanu, A. M., 1965, Studies on the conformation of human serum high density lipoproteins HDL2 and HDL3, Proc. Natl. Acad. Sci. U.S.A. 54:1699–1705.PubMedGoogle Scholar
  393. Scarpa, A., and DeGier, J., 1971, Cation permeability of liposomes as a function of the chemical composition of the lipid bilayer, Biochim. Biophys. Acta 241:789–797.PubMedGoogle Scholar
  394. Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Annu. Rev. Biochem. 43:51–87.Google Scholar
  395. Schneider, A. S., Schneider, M. J. J., and Rosenheck, K., 1970, Optical activity of biological membranes: Scattering effects and protein conformation, Proc. Natl. Acad. Sci. U.S.A. 66:739–798.Google Scholar
  396. Schneider, D. L., Kagawa, Y., and Racker, E., 1972, Chemical modification of the inner mitochondrial membranes, J. Biol. Chem. 247:4074–4079.PubMedGoogle Scholar
  397. Schreier-Muccillo, S., Marsh, D., and Smith, I. C. P., 1976, Monitoring the permeability profile of lipid membranes with spin probes, Arch. Biochim. Biophys. 172:1–11.Google Scholar
  398. Sechi, A. M., Bertoli, E., Landi, L., Parenti-Castelli, G., Lenaz, G., and Curatola, G., 1973, Temperature dependence of mitochondrial activities and its relation to the physical state of the lipids in the membrane, Acta Vitaminol. Enzymol. (Milan) 27:177–190.Google Scholar
  399. Seelig, J., 1976, Anisotropic motion in liquid-crystalline structure, in: Spin Labelling Theory and Applications, Chapt. 10, pp. 373–409, Academic Press, New York.Google Scholar
  400. Seelig, J., and Niederberger, W., 1974, Two pictures of a lipid bilayer: A comparison between deuterium label and spin label experiments, Biochemistry 13:1585–1588.PubMedGoogle Scholar
  401. Seeman, P., 1972, The membrane actions of anesthetics and tranquilisers, Pharmacol. Rev. 24:583–655.PubMedGoogle Scholar
  402. Sefton, B. M., and Gaffney, B. J., 1974, Effect of the viral proteins on the fluidity of the membrane lipids in Sindbis virus, J. Mol. Biol. 90:343–358.PubMedGoogle Scholar
  403. Segrest, J. P., 1976, Amphipathic helixes and plasma lipoproteins: Thermodynamic and geometric considerations, Chem. Phys. Lipids 18:7–22.Google Scholar
  404. Segrest, J. P., 1977, The erythrocyte: Topomolecular anatomy of MN-glyco-protein, in: Mammalian Cell Membranes, Vol. 3 (G. A. Jamieson and D. M. Robson, eds.), pp. 1–26, Butterworths, London.Google Scholar
  405. Segrest, J. P., and Feldmann, R. J., 1975, Membrane proteins: Amino acid sequence and membrane penetration, J. Mol. Biol. 87:853–858.Google Scholar
  406. Segrest, J. P., and Kohn, L. D., 1973, Protein-lipid interactions of the membrane-penetrating MN-glycoprotein from the human erythrocyte in: Protides of the Biological Fluids, 21st Colloquium (H. Peeters, ed.), pp. 183–189, Pergamon Press, Oxford.Google Scholar
  407. Segrest, J. P., Jackson, R. I., Morrisett, J. D., and Gotto, A. M., 1974a, A molecular theory of lipid protein interactions in the plasma lipoproteins, FEBS Lett. 38:247–253.PubMedGoogle Scholar
  408. Segrest, J. P., Gulik-Krzywicki, T., and Sardet, C., 1974b, Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles, Proc. Natl. Acad. Sci. U.S.A. 71:3294–3298.PubMedGoogle Scholar
  409. Senior, A. E., 1973, The structure of mitochondrial ATPase, Biochim. Biophys. Acta 301:249–277.PubMedGoogle Scholar
  410. Serrano, R., Kamner, B. I., and Racker, E., 1976, Purification and properties of the proton translocating ATPase complex of bovine heart mitochondria, J. Biol. Chem. 251:2453–2461.PubMedGoogle Scholar
  411. Shamoo, A. E., and Albers, R. W., 1973, Na+-selective ionophoric material derived from electric organ and kidney membranes, Proc. Natl. Acad. Sci. U.S.A. 70:1191–1194.PubMedGoogle Scholar
  412. Shamoo, A. E., and Eldefrawi, M. E., 1975, Carbamylcholine and acetylcholine-sensitive cation-selective ionophore as part of the purified acetylcholine receptor, J. Membrane Biol. 25:47–63.Google Scholar
  413. Shamoo, A. E., and MacLennan, D. H., 1974, A Ca++-dependent and selective ionophore as part of the Ca++-and Mg++-dependent ATPase of sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 71:3522–3526.PubMedGoogle Scholar
  414. Shamoo, A. E., and MacLennan, D. H., 1975, Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the (Ca++ + Mg++)-ATPase of sarcoplasmic reticulum, J. Membrane Biol. 25:65–74.Google Scholar
  415. Shamoo, A. E., and Myers, M. M., 1974, Na+-dependent ionophore as part of the small polypeptide of the (Na+ + K+)ATPase from eel electroplax membrane, J. Membrane Biol. 19:163–178.Google Scholar
  416. Shamoo, A. E., Myers, M. M., Blumenthal, K., and Albers, K. W., 1974, Ionophoric material derived from eel membrane preparation. I. Chemical characteristics, J. Membrane Biol. 19:129–140.Google Scholar
  417. Shamoo, A. E., Regan, T. E., Stewart, P. S., and MacLennan, D. H., 1976, Localization of ionophore activity in a 20,000-dalton fragment of the ATPase of sarcoplasmic reticulum, J. Biol. Chem. 251:4147–4154.PubMedGoogle Scholar
  418. Shechter, E., Letellier, L,, and Gulik-Krzywicki, T., 1974, Relation between structure and function in cytoplasmic membrane vesicles isolated from an E. coli fatty acid auxotroph, Eur. J. Biochem. 49:61–76.PubMedGoogle Scholar
  419. Sheetz, M. P., and Singer, S. J., 1974, Biological membranes as bilayer couples: A molecular mechanism of drug-erythrocyte interactions, Proc. Natl. Acad. Sci. U.S.A. 71:4457–4461.PubMedGoogle Scholar
  420. Sherman, G., and Folch-Pi, J., 1970, Rotatory dispersion and circular dichroism of brain “proteolipid” protein, J. Neurochem. 17:597–605.PubMedGoogle Scholar
  421. Shimshick, E. J., Kleemann, W., Hubbell, W. L., and McConnell, H., 1973, Lateral phase separations in membranes, J. Supramol. Struct. 1:285–294.PubMedGoogle Scholar
  422. Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of mouse lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85:603–615.PubMedGoogle Scholar
  423. Shipley, G. G., Atkinson, D., and Scanu, A. M., 1972, Small angle X-ray scattering of human serum high-density lipoproteins, J. Supramol. Struct. 1:98–104.PubMedGoogle Scholar
  424. Sierra, M. F., and Tzagoloff, A., 1973, Assembly of the mitochondrial membrane system: Purification of a mitochondrial product of the ATPase, Proc. Natl. Acad. Sci. U.S.A. 70:3155–3159.PubMedGoogle Scholar
  425. Silman, H. I., and Katchalski, E., 1966, Water-insoluble derivatives of enzymes, antigens and antibodies, Annu. Rev. Biochem. 35:873–908.PubMedGoogle Scholar
  426. Sinensky, M., 1971, Temperature control of phospholipid biosynthesis in E. coli, J. Bacteriol. 106:449–455.PubMedGoogle Scholar
  427. Siñeriz, F., Farias, R. N., and Trucco, R. E., 1973a, Lipid-protein interactions in membranes: Arrhenius plots and Hill plots in membrane-bound Ca2+-ATPase of E. coli, FEBS Lett. 32:30–32.PubMedGoogle Scholar
  428. Siñeriz, F., Bloj, B., Farias, R. N., and Trucco, R. E., 1973b, Regulation by membrane fluidity of the allosteric behavior of the Ca2+-ATPase from E. coli, J. Bacteriol. 115:723–726.PubMedGoogle Scholar
  429. Siñeriz, F., Farias, R. N., and Trucco, R. E., 1975, The convenience of the use of allosteric “probes” for the study of lipid-protein interactions in biological membranes: Thermodynamic considerations, J. Theor. Biol. 52:113–120.PubMedGoogle Scholar
  430. Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 145–222, Academic Press, New York.Google Scholar
  431. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedGoogle Scholar
  432. Slater, E. C., 1953, Mechanism of phosphorylation in the respiratory chain, Nature (London) 172:975–978.Google Scholar
  433. Smith, C. L., 1973, The temperature dependence of oxidative phosphorylation and of the activity of various enzyme systems in liver mitochondria from cold and warm blooded animals, Comp. Biochem. Physiol. 46:445–461.Google Scholar
  434. Smith, I. C. P., 1972, The spin label method, in: Biological Applications of Electron Spin Resonance (H. M. Swartz, J. R. Bolton, and D. C. Borg, eds.), pp. 483–539, Wiley Interscience, New York.Google Scholar
  435. Solomon, B., and Miller, I. R., 1976, Interaction of glucose oxidase with phospholipid vesicles, Biochim. Biophys. Acta 455:332–342.PubMedGoogle Scholar
  436. Solomonson, L. P., Liepkalns, V. A., and Spector, A. A., 1976, Changes in (Na+ + K+)ATPase activity of Ehrlich ascites tumor cells produced by alteration of membrane fatty acid composition, Biochemistry 15:892–897.PubMedGoogle Scholar
  437. Solti, M., and Friedrich, P., 1976, Partial reversible inactivation of enzymes due to binding to the human erythrocyte membrane, Mol. Cell. Biochem. 10:145–152.PubMedGoogle Scholar
  438. Sonenberg, M., 1971, Interaction of human growth hormone and human erythrocyte membranes: Studies by intrinsic fluorescence, J. Proc. Natl. Acad. Sci. U.S.A. 68:1051–1055.Google Scholar
  439. Soodsma, J. F., and Nordlie, R., 1969, Effects of cetyl trimethylammonium bromide on catalytic properties of kidney microsomal glucose-6-phosphatase, inorganic pyrophosphate-glucose phosphotransferase and inorganic pyrophosphatase, Biochim. Biophys. Acta 191:636–643.PubMedGoogle Scholar
  440. Spatz, L., and Strittmatter, P., 1971, A form of cytochrome b 5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. U.S.A. 68:1042–1046.PubMedGoogle Scholar
  441. Spatz, L., and Strittmatter, P., 1973, A form of NADH-cytochrome b 5 reductase containing both the catalytic site and additional hydrophobic membrane-binding segment, J. Biol. Chem. 248:793–799.PubMedGoogle Scholar
  442. Srere, P. A., 1972, Is there an organization of Krebs cycle enzymes in the mitochondrial matrix?, in: Energy Metabolism and thr Regulation of Metabolic Processes in Mitochondria (M. A. Mehlman and R. W. Hanson, eds.), pp. 79–91, Academic Press, New York.Google Scholar
  443. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.PubMedGoogle Scholar
  444. Steim, J. M., Tourtellotte, M. E., Reinhert, J. C., McElhaney, K. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. U.S.A. 63:104–109.PubMedGoogle Scholar
  445. Stein, W. D., 1972, The mechanism of sugar transfer across erythrocyte membranes, Ann. N. Y. Acad. Sci. 195:412–428.PubMedGoogle Scholar
  446. Strittmatter, P., 1960, The nature of the heme binding in microsomal cytochrome b 5, J. Biol. Chem. 235:2492–2497.PubMedGoogle Scholar
  447. Strittmatter, P., and Rogers, M. J., 1975, Apparent dependence of interactions between cytochrome b 5 and cytochrome b 5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Natl. Acad. Sci. U.S.A. 72:2658–2661.PubMedGoogle Scholar
  448. Strittmatter, P., Rogers, M. J., and Spatz, L., 1972, The binding of cytochrome b 5 to liver microsomes, J. Biol. Chem. 247:7188–7194.PubMedGoogle Scholar
  449. Sullivan, K. H., Jain, M. K., and Koch, A. L., 1974, Activation of the β-galactoside transport system in E. coli ML-308 by n-alkanols: Modification of lipid-protein interaction by a change in bilayer fluidity, Biochim. Biophys. Acta 352:287–297.PubMedGoogle Scholar
  450. Sun, G. Y., and Sun, A. Y., 1974, Synaptosomal plasma membranes: Acyl group composition of phosphoglycerides and (Na + K+)ATPase activity during fatty acid deficiency, J. Neurochem. 22:15–18.PubMedGoogle Scholar
  451. Swanljung, P., Frigeri, I., Ohlson, K., and Ernster, L., 1973, Studies on the activation of purified mitochondrial ATPase by phospholipids, Biochim. Biophys. Acta 305:519–533.PubMedGoogle Scholar
  452. Szabo, G., 1972, Lipid bilayer membranes, in: Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp. 146–163, Sinauer Associates, Stamford, Connecticut.Google Scholar
  453. Szabo, G., 1974, Dual mechanism for the action of cholesterol on membrane permeability, Nature (London) 252:47–49.Google Scholar
  454. Tall, A. R., Shipley, G. G., and Small, D. M., 1976, Conformational and thermodynamic properties of apo A-1 human high density lipoproteins, J. Biol. Chem. 251:3749–3755.PubMedGoogle Scholar
  455. Tanaka, R., and Sakamoto, T., 1969, Molecular structure in phospholipid essential to activate (Na+ + K+-Mg2+)-dependent ATPase and (K+-Mg2+)-dependent phosphatase of bovine cerebral cortex, Biochim. Biophys. Acta 193:384–393.PubMedGoogle Scholar
  456. Tanaka, R., and Teruya, A., 1973, Lipid dependence of activity temperature relationship of (Na+ + K+) activated ATPase, Biochim. Biophys. Acta 323:584–591.PubMedGoogle Scholar
  457. Tanaka, R., Sakamoto, T., and Sakamoto, Y, 1971, Mechanism of lipid activation of (Na+-K+-Mg2+)-activated ATPase and (K+-Mg2+)-activated phosphatase of bovine cerebral cortex, J. Membrane Biol. 4:42–51.Google Scholar
  458. Tanford, E. C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84:4240–4247.Google Scholar
  459. Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in E. coli, Biochemistry 15:328–334.PubMedGoogle Scholar
  460. Tinberg, H. M., Packer, L., and Keith, A. D., 1972, Role of lipids in mitochondrial energy coupling: Evidence from spin labelling and freeze-fracture electron microscopy, Biochim. Biophys. Acta 283:193–205.PubMedGoogle Scholar
  461. Tinberg, H. M., Nayudu, P. R. V., and Packer, L., 1976, Crosslinking of membranes: The effect of dimethyl suberimidate, a bifunctional alkylating agent, on mitochondrial electron transport and ATPase, Arch. Biochem. Biophys. 172:734–740.PubMedGoogle Scholar
  462. Toson, G., Contessa, A. R., and Bruni, A., 1972, Solubilization of mitochondrial ATPase by phospholipids, Biochem. Biophys. Res. Commun. 48:241–347.Google Scholar
  463. Trauble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. U.S.A. 71:214–219.PubMedGoogle Scholar
  464. Trauble, H., and Overath, P., 1973, The structure of E. coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491–512.PubMedGoogle Scholar
  465. Trauble, H., Middelhoff, G., and Brown, V. W., 1974, Interaction of a serum apolipoprotein with ordered and fluid lipid bilayers: Correlation between lipid and protein structure, FEBS Lett. 49:269–275.PubMedGoogle Scholar
  466. Triggle, D. J., 1970, Some aspects of the role of lipids in lipid-protein interactions and cell membrane structure and function, in: Recent Progress in Surface Science (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), Vol. 3, pp. 169–192, Academic Press, New York.Google Scholar
  467. Tsong, T. Y., 1975, Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures, Biochemistry 25:5409–5414.Google Scholar
  468. Tsukagoshi, N., and Fox, C. F., 1973, Transport system assembly and the mobility of membrane lipids in E. coli, Biochemistry 12:2822–2829.PubMedGoogle Scholar
  469. Tyson, C. A., Vande Zande, H., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251:1326–1332.PubMedGoogle Scholar
  470. Tzagoloff, A., Rubin, M. S., and Sierra, M. F., 1973, Biosynthesis of mitochondrial enzymes, Biochim. Biophys. Acta 301:71–104.PubMedGoogle Scholar
  471. Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed π(l,d) helix, Proc. Natl. Acad. Sci. U.S.A. 68:672–676.PubMedGoogle Scholar
  472. Urry, D. W., 1972, Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions, Biochim. Biophys. Acta 265:116–168.Google Scholar
  473. Urry, D. W., 1974, Corrections for optical-rotation data on biomembranes, in: Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 32, pp. 220–233, Academic Press, New York.Google Scholar
  474. Urry, D. W., 1975, Molecular mechanisms of ion permeation of membranes, Int. J. Quantum Chem. 2:221–235.Google Scholar
  475. Urry, D. W., and Ji, T. H., 1968, Distortions in circular dichroism patterns of particulate (or membranous) systems, Arch. Biochem. Biophys. 128:802–807.PubMedGoogle Scholar
  476. Urry, D. W., and Long, M. M., 1975, Circular dichroism and absorption studies on biomembranes, in: Methods in Membrane Biology, Vol. I, (E. D. Korn, ed.), pp. 105–141, Plenum Press, New York.Google Scholar
  477. Urry, D. W., and Long, M. M., 1978, Ultraviolet absorption, circular dichroism, and optical rotatory dispersion in biomembrane studies, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 107–124, Plenum Medical, New York.Google Scholar
  478. Urry, D. W., Hinners, J. H., and Masotti, L., 1970, Calculation of distorted circular dichroism curves for poly-glutamic acid suspensions, Arch. Biochem. Biophys. 137:214–221.PubMedGoogle Scholar
  479. Urry, D. W., Goodall, M. C., Glickson, J. D., and Mayers, D. F., 1971a, The gramicidin A transmembrane channel: Characteristics of head to head dimerized π(l,d) helices, Proc. Natl. Acad. Sci. U.S.A. 68:1907–1911.PubMedGoogle Scholar
  480. Urry, D. W., Masotti, L., and Krivacic, J. R., 1971b, Circular dichroism of biological membranes. I. Mitochondria and red blood cell ghosts, Biochim. Biophys. Acta 241:600–612.PubMedGoogle Scholar
  481. Van, S. P., and Griffith, O. H., 1975, Bilayer structure in phospholipid-cytochrome c model membranes, J. Membrane Biol. 20:155–170.Google Scholar
  482. Vanderkooi, G., 1974, Organization of proteins in membranes with special reference to the cytochrome oxidase system, Biochim. Biophys. Acta 344:307–345.PubMedGoogle Scholar
  483. Vanderkooi, G., and Green, D. E., 1970, Biological membrane structure. I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S.A. 66:615–621.PubMedGoogle Scholar
  484. Vanderkooi, J. M., and Callis, J. B., 1974, Pyrene: A probe of lateral diffusion in the hydrophobic region of membranes, Biochemistry 13:4000–4006.PubMedGoogle Scholar
  485. Vanderkooi, J. M., Erecinska, M., and Chance, B., 1973, Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes, Arch. Biochem. Biophys. 154:219–229.PubMedGoogle Scholar
  486. Vanderkooi, J. M., Fischkoff, S., Chance, B., and Cooper, R. A., 1974, Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes, Biochemistry 13:1589–1595.PubMedGoogle Scholar
  487. Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L., 1975, Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A, J. Mol. Biol. 99:75–92.PubMedGoogle Scholar
  488. Verger, R., Mieras, M. C. E., and de Haas, G. H., 1973, Action of phospholipase A at interfaces, J. Biol. Chem. 248:4023–4034.PubMedGoogle Scholar
  489. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and Van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy, Biochim. Biophys. Acta 323:178–193.PubMedGoogle Scholar
  490. Verkleij, A. J., De Kruyff, B., Ververgaert, P. H. J. T., Tocanne, J. F., and Van Deenen, L. L. M., 1974, The influence of pH, Ca2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol, Biochim. Biophys. Acta 339:432–437.PubMedGoogle Scholar
  491. Verma, S. P., and Wallach, D. F. H., 1975, Evidence for constrained lipid mobility in the erythrocyte ghost: A spin label study, Biochim. Biophys. Acta 382:73–82.PubMedGoogle Scholar
  492. Walker, J. A., and Wheeler, K. P., 1975, Polar head group and acyl side chain requirements for phospholipid-dependent (Na+ + K+)-ATPase, Biochim. Biophys. Acta 394:135–144.PubMedGoogle Scholar
  493. Warren, G. B., and Metcalfe, J. C., 1976, How the structure of sarcoplasmic reticulum optimizes the accumulation of calcium, 2nd National Meeting, Italian Society of Biochemistry and Joint Colloquia, Abstracts No. 27.Google Scholar
  494. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974a, Reversible lipid titrations of the activity of pure ATPase-lipid complexes, Biochemistry 13:5501–5507.PubMedGoogle Scholar
  495. Warren, G. B., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974b, Lipid substitution: The investigation of functional complexes of single species of phospholipid and a purified calcium transport protein, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 1–12, North-Holland, Amsterdam.Google Scholar
  496. Warren G. B. Bennett J. P. Hesketh T. R. Houslay M. D. Smith G. A. and Metcalfe J. C. 1975a The lipids surrounding a calcium transport protein: Their role in calcium transport and accumulation FEBS (Fed. Eur. Biochem. Soc.) Proc. Meet. 1975 pp. 3–15Google Scholar
  497. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975b, Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature (London) 255:684–687.Google Scholar
  498. Wells, M. A., 1974, The mechanism of interfacial activation of phospholipase A2, Biochemistry 13:2248–2257.PubMedGoogle Scholar
  499. Wiley, J. S., and Cooper, R. A., 1975, Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes, Biochim. Biophys. Acta 413:425–431.PubMedGoogle Scholar
  500. Wilschut, J. C., and Scherphof, G. L., 1974, The effect of partial degradation of mitochondrial phospholipids by phospholipase A on the temperature dependence of succinate cytochrome c reductase and cytochrome c oxidase, Biochim. Biophys. Acta 356:91–99.PubMedGoogle Scholar
  501. Wilschut, J. C., Regts, J., and Scherphof, G., 1976, Reactivation of β-hydroxybutyrate dehydrogenase by phosphatidylcholine/phosphatidyl ethanolamine mixtures: Evidence for a temperature-induced phase separation, FEBS Lett. 63:328–332.PubMedGoogle Scholar
  502. Wirtz, K. W. A., 1974, Transfer of phospholipids between membranes, Biochim. Biophys. Acta 344:95–117.PubMedGoogle Scholar
  503. Wisnieski, B. J., Parkes, J. G., Huang, Y. O., and Fox, C. F., 1974, Physical and physiological evidence for two phase transitions in cytoplasmic membranes of animal cells, Proc. Natl. Acad. Sci. U.S.A. 71:4381–4385.PubMedGoogle Scholar
  504. Wodtke, E., 1976, Discontinuities in the Arrhenius plots of mitochondrial membrane-bound enzyme systems from a poikilotherm: Acclimation temperature of carp affects transition temperatures, J. Comp. Physiol. 110:145–157.Google Scholar
  505. Wrigglesworth, J. M., and Packer, L., 1968, ORD and CD studies on mitochondria: Correlation of ultrastructure and metabolic state with molecular conformational changes, Arch. Biochem. Biophys. 128:790–801.PubMedGoogle Scholar
  506. Wright, E. M., and Diamond, J. M., 1069, Patterns of non-electrolyte permeability, Proc. R. Soc. London 172:227–271.Google Scholar
  507. Wu, S. H., and McConnell, H. M., 1975, Phase separation in phospholipid membranes, Biochemistry 14:847–854.Google Scholar
  508. Wunderlich, F., Ronai, A., Speth, V., Seelig, J., and Blume, A., 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochemistry 14:3730–3735.PubMedGoogle Scholar
  509. Wynn-Williams, A. T., 1976, An explanation of apparent sudden change in the activation energy of membrane enzymes, Biochem. J. 157:279–281.PubMedGoogle Scholar
  510. Yamamoto, Y., and Nishimura, M., 1976, Characteristics of light-induced H+ transport in spinach chloroplasts at lower temperatures. I. Relationship between H+ transport and physical changes of the microenvironment in chloroplast membranes, Plant Cell Physiol. 17:11–16.Google Scholar
  511. Yeagle, P. L., Hutton, W. C., Martin, R. B., Sears, B., and Huang, C. H., 1976, Transmembrane asymmetry of vesicle lipids, J. Biol. Chem. 251:2110–2112.PubMedGoogle Scholar
  512. Yguerabide, J., 1973, Nanosecond fluorescence spectroscopy of biological macromolecules and membranes, in: Fluorescence Techniques (A. A. Thah and M. Sernutz, eds.), pp. 311–331, Springer-Verlag, New York.Google Scholar
  513. Yu, L., Yu, E., and King, T. E., 1973, The role of phospholipids in succinate-cytochrome c reductase, Biochemistry 12:540–546.PubMedGoogle Scholar
  514. Zahler, P., and Weibel, E. R., 1970, Reconstitution of membranes by recombining proteins and lipids derived from erythrocyte stroma, Biochim. Biophys. Acta 219:320–338.PubMedGoogle Scholar
  515. Zahler, W. L., and Fleischer, S., 1971, Kinetic studies of the lipid requirement of mitochondrial cytochrome c oxidase, J. Bioenerg. 2:209–216.PubMedGoogle Scholar
  516. Zahler, W. L., Puett, D., and Fleischer, S., 1972, Circular dichroism of mitochondrial membranes before and after extraction of lipids and surface proteins, Biochim. Biophys. Acta 255:365–376.PubMedGoogle Scholar
  517. Zakim, D., 1970, Regulation of microsomal enzymes by phospholipids. I. The effects of phospholipases and phospholipids on glucose-6-phosphatase, J. Biol. Chem. 245:4953–4961.PubMedGoogle Scholar
  518. Zimmer, G., Schirmer, H., and Bastian, P., 1975, Lipid protein interactions at the erythrocyte membrane: Different influence of glucose and sorbose on membrane lipid transition, Biochim. Biophys. Acta 401:244–255.PubMedGoogle Scholar
  519. Zeylemaker, W. P., Jansen, H., Veeger, C., and Slater, E. C., 1971, Studies on succinate dehydrogenase. VII. The effect of temperature on the succinate oxidation, Biochim. Biophys. Acta 242:14–22.PubMedGoogle Scholar
  520. Zwaal, R. F. A., and Van Deenen, L. L. M., 1970, Interactions between proteins and lipid from human red cell membranes, Chem. Phys. Lipids 4:311–322.PubMedGoogle Scholar
  521. Zwaal, R. F. A., and Van Deenen, L. L. M., 1971, Reconstitution in vitro of proteins and lipids from mammalian erythrocyte membranes, Biochem. J. 122:628–631.Google Scholar
  522. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and Van Deenen, L. L. M., 1975, Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases, Biochim. Biophys. Acta 406:83–96.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  1. 1.Institute of Biochemistry, Faculty of Medicine and SurgeryUniversity of AnconaAnconaItaly

Personalised recommendations