Skip to main content

The Role of Lipids in the Structure and Function of Membranes

  • Chapter
Subcellular Biochemistry

Abstract

The increased knowledge of the properties of membrane lipids (Ansell et al., 1973) and of lipid-protein interactions (Singer, 1971; Lenaz, 1973, 1977; Vanderkooi, G., 1974) allows a better understanding of the role of lipids in membrane structure and functions. Nevertheless, a unifying picture of such a role is lacking, and it is often tacitly assumed that lipids have different roles; this is indeed the main conclusion emerging from analysis of the literature. In fact, lipids in membranes have different functions, affecting enzymic activity positively or negatively, being determinants of permeability properties and transport and being involved in the action of membrane binding sites and receptors. Moreover, they are determinants of membrane phenomena involving fusion processes (e.g., cell movement, pinocytosis, cell division, cell adhesion, secretion). In such functions, lipids may be specific or not. The physical state of a lipid, besides the specific chemical nature of certain groups, appears to be very important in its functions. It seems therefore appropriate to assign to lipids many different roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

(ANS):

1-anilinonaphthalene 8-sulfonate

(BDH):

β-hydroxybutyrate dehydrogenase

(cAMP):

cyclic 3′,5′-AMP

(CD):

circular dichroism

(cyt):

cytochrome

(DML):

dimyristoyl lecithin

(DOL):

dioleyl lecithin

(DPL):

dipalmitoyl lecithin

(DSC):

differential scanning calorimetry

(EFA):

essential fatty acid(s)

(EM):

electron microscopy

(ESR):

electron spin resonance

(excimer):

excited dimer

(GH):

growth hormone

(HDL):

highdensity lipoproteins

(NMR):

nuclear magnetic resonance

(PC):

phosphatidylcholine (lecithin)

(PE):

phosphatidylethanolamine

(PG):

prostaglandin

(PS):

phosphatidylserine

(TEMPO):

2,2,-6,6-tetramethyl piperidine-1-oxyl

References

  • Aizono, Y., Roberts, J. E., Sonenberg, M., and Swislocki, N. J., 1974, Effects of growth hormone on ATPase and fluorescence of isolated liver membranes utilizing the fluorescent substrate 1-N-6-etheno-ATP, Arch. Biochem. Biophys. 163:634–643.

    PubMed  CAS  Google Scholar 

  • Andrews, A. L., Atkinson, D., Barrat, M. D., Finer, Z. G., Hauser, H., Henry, H., Leslie, R. B., Owens, N. L., Phillips, M. C., and Robertson, R. N., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithin, Eur. J. Biochem. 64:549–563.

    PubMed  CAS  Google Scholar 

  • Ansell, G. B., Dawson, R. M. C., and Hawthorne, J. N. (eds.), 1973, Form and Function of Phospholipids, 2nd ed., Elsevier, Amsterdam.

    Google Scholar 

  • Archakov, A. I., Karyakin, A. V., and Skulachev, V. P., 1975, A hypothesis on membranous proteins specialized in lateral transport, FEBS Lett. 60:244–246.

    PubMed  CAS  Google Scholar 

  • Arion, W. J., Ballas, L. M., Lange, A. J., and Wallin, B. R., 1976, Microsomal membrane permeability and the hepatic glucose-6-phosphatase system, J. Biol. Chem. 251:4901–4907.

    CAS  Google Scholar 

  • Assmann, G., and Brewer, H. B., 1974, Lipid-protein interactions in high density lipoproteins, Proc. Natl. Acad. Sci. U.S.A. 71:989–993.

    PubMed  CAS  Google Scholar 

  • Atkinson, D., Smith, H. M., Dickson, J., and Austin, J. P., 1976, Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithins, Eur. J. Biochem. 64:541–547.

    PubMed  CAS  Google Scholar 

  • Awasthi, Y. C., Ruzicka, F. J., and Crane, F. L., 1970, The relation between phospholipase action and release of NADH dehydrogenase from mitochondrial membrane, Biochim. Biophys. Acta 203:233–248.

    PubMed  CAS  Google Scholar 

  • Azzi, A., Montecucco, C., and Santato, M., 1974, The interaction of site specific spin labels (nitroxide-cytochrome c and nitroxide carbodiimide) with the mitochondrial membrane, in: Membrane Proteins in Transport and Phosphorylation (C. F. Azzone, M. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 205–210, North-Holland, Amsterdam.

    Google Scholar 

  • Bach, D., and Miller, I. R., 1973, Interaction of bilayers with basic polypeptides, J. Membrane Biol. 11:237–254.

    CAS  Google Scholar 

  • Bach, D., and Miller, I. R., 1976, Influence of basic polypeptides on the phase transition of phospholipid liposomes, Biochim. Biophys. Acta 433:13–19.

    PubMed  CAS  Google Scholar 

  • Bach, D., Rosenheck, K., and Miller, I. R., 1975, Interaction of basic polypeptides with phospholipid vesicles: Conformational study, Eur. J. Biochem. 53:265–269.

    CAS  Google Scholar 

  • Baker, H. N., Gotto, A. M., and Jackson, R. L., 1975, The primary structure of human plasma high density apolipoprotein Glutamine I (Apo A-I), J. Biol. Chem. 250:2725–2738.

    PubMed  CAS  Google Scholar 

  • Baldassare, J. J., Rhinehart, R. B., and Silbert, D. F., 1976, Modification of membrane lipid: Physical properties in relation to fatty acid structure, Biochemistry 15:2986–2994.

    PubMed  CAS  Google Scholar 

  • Bangham, A. D., 1968, Membrane models with phospholipids, Prog. Biophys. Mol. Biol. 18:29–95.

    CAS  Google Scholar 

  • Bangham, A. D., 1972, Membrane models with membrane molecules, FEBS (Fed. Eur. Biochem. Soc.)Proc. 8th Meet. 28:253–262.

    Google Scholar 

  • Barratt, M. D., Green, D. K., and Chapman, D., 1969, Chem. Phys. Lipids 3:140–144.

    PubMed  CAS  Google Scholar 

  • Barratt, M. D., Bardley, R. A., Leslie, R. B., Morgan, C. G., and Radda, G. K., 1974, The interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl phosphatidylcholine, Eur. J. Biochem. 48:595–601.

    PubMed  CAS  Google Scholar 

  • Barsukov, L. I., Kulikov, V. I., and Bergelson, L. D., 1976, Lipid transfer proteins as a tool in the study of membrane structure: Inside outside distribution of the phospholipids in the protoplasmic membrane of M. lysodeikticus, Biochem. Biophys. Res. Comm. 71:704–711.

    PubMed  CAS  Google Scholar 

  • Bashford, C. L., Harrison, S. J., Radda, G. K., and Mehdi, Q., 1975, The relation between lipid mobility and the specific hormone binding of thyroid membranes, Biochem. J. 146:473–479.

    PubMed  CAS  Google Scholar 

  • Bashford, C. L., Morgan, C. G., and Radda, G. K., 1976, Measurement and interpretation of fluorescence polarizations in phospholipid dispersions, Biochim. Biophys. Acta 426:157–172.

    PubMed  CAS  Google Scholar 

  • Bell, R. L., and Capaldi, R. A., 1976, The polypeptide composition of ubiquinone-cytochrome c reductase (Complex III) from beef heart mitochondria, Biochemistry 15:996–1001.

    PubMed  CAS  Google Scholar 

  • Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737–741.

    PubMed  CAS  Google Scholar 

  • Bloj, B., Morero, R. D., and Farias, R. N., 1973a, Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rat erythrocytes, FEBS Lett. 38:101–105.

    PubMed  CAS  Google Scholar 

  • Bloj, B., Morero, R. D., Farias, R. N., and Trucco, R. E., 1973b, Membrane lipid fatty acids and regulation of membrane-bound enzymes: Allosteric behaviour of erythrocyte Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets, Biochim. Biophys. Acta 311:67–69.

    PubMed  CAS  Google Scholar 

  • Blok, M. C., Van Der Neut-Kok, E. D. M., Van Deenen, L. L. M., and De Gier, J., 1975, The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes, Biochim. Biophys. Acta 406:187–196.

    PubMed  CAS  Google Scholar 

  • Blok, M. C., Van Deenen, L. L. M., and De Gier, J., 1976, Effect of the gel to liquid crystalline phase transition on the osmotic behavior of phosphatidylcholine liposomes, Biochim. Biophys. Acta 433:1–12.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., and Shamoo, A. E., 1974, Ionophoric material derived from eel membrane preparations. II. Electrical characteristics, J. Membrane Biol. 19:141–162.

    CAS  Google Scholar 

  • Boggs, J. M., Vail, W. J., and Moscarello, M. A., 1976, Preparation and properties of vesicles of a purified myelin hydrophobic protein and phospholipid: A spin label study, Biochim. Biophys. Acta 448:517–530.

    PubMed  CAS  Google Scholar 

  • Brierley, G. P., Merola, A., and Fleischer, S., 1962, Studies of the electron-transfer system. XLIX. Sites of phospholipid involvement in the electron transfer chains, Biochim. Biophys. Acta 64:218–228.

    PubMed  CAS  Google Scholar 

  • Brivio-Haugland, R. P., Louis, S. L., Musch, K., Waldeck, N., and Williams, M. A., 1976, Liver plasma membranes from essential fatty acid-deficient rats: Isolation, fatty acid composition, and activities of 5′-nucleotidase, ATPase and adenylate cyclase, Biochim. Biophys. Acta 433:150–163.

    PubMed  CAS  Google Scholar 

  • Broughall, J. M., Lindop, C. R., Griffiths, D. E., and Beechey, R. B., 1972, The effect of extraction with diethyl ether on the sensitivity to inhibitors of mitochondrial ATPase activity, Biochem. Soc. Trans. 1:90–92.

    Google Scholar 

  • Brown, P. K., 1972, Rhodopsin rotates in the visual receptor membrane, Nature (London) New Biol. 236:35–38.

    CAS  Google Scholar 

  • Brown, W. V., Levy, R. I., and Fredrickson, D. S., 1970, Further characterization of apolipoproteins from the human plasma very low density lipoproteins, J. Biol. Chem. 245:6588–6594.

    PubMed  CAS  Google Scholar 

  • Bruni, A., and Bigon, L., 1974, Diphosphatidylglycerol-induced changes in the organization of mitochondrial ATPase, Biochim. Biophys. Acta 359:333–343.

    Google Scholar 

  • Bruni, A., Van Dijck, P. W. M., and De Gier, J., 1975, The role of phospholipid acyl chains in the activation of mitochondrial ATPase complex, Biochim. Biophys. Acta 406:315–328.

    PubMed  CAS  Google Scholar 

  • Butler, K. W., Tattrie, N. H., and Smith, I. C. P., 1974, The location of spin probes in two phase mixed lipid systems, Biochim. Biophys. Acta 363:351–360.

    PubMed  CAS  Google Scholar 

  • Cadenhead, D. A., 1970, Monolayers of synthetic phospholipids, in: Recent Progress in Surface Science (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), Vol. 3, pp. 169–192, Academic Press, New York.

    Google Scholar 

  • Capaldi, R. A., and Vanderkooi, G., 1972, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 69:930–932.

    PubMed  CAS  Google Scholar 

  • Carraway, K. L., 1975, Covalent labeling of membranes, Biochim. Biophys. Acta 415:379–410.

    PubMed  Google Scholar 

  • Carreira, J., and Muñoz, E., 1975, Membrane-bound and soluble ATPase of E. coli K 12: Kinetic properties of the basal and trypsin-stimulated activities, Mol. Cell. Biochem. 9:85–95.

    PubMed  CAS  Google Scholar 

  • Casu, A., Nanni, G., Marinari, U. M., Pala, V., and Monacelli, R., 1969, Structure of membranes. Note V. Sphingomyelin detection by immune reaction on the surface of sheep erythrocytes, Ital. J. Biochem. 18:154–165.

    PubMed  CAS  Google Scholar 

  • Changeux, J. P., Kasai, M., and Lee, C. Y., 1970, Use of snake venom toxin to characterize the cholinergic receptor protein, Proc. Natl. Acad. Sci. U.S.A. 67:1241–1247.

    PubMed  CAS  Google Scholar 

  • Chapman, D., 1969, Physical studies of lipid—lipid and lipid-protein interactions, Lipids 4:251–260.

    PubMed  CAS  Google Scholar 

  • Chapman, D., 1973a, Some recent studies of lipids, lipid-cholesterol and membrane systems, in: Biological Membranes, Vol. 2 (D. Chapman and D. F. A. Wallach, eds.), pp. 91–144, Academic Press, London.

    Google Scholar 

  • Chapman, D., 1973b, Physical chemistry of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 117–142, Elsevier, Amsterdam.

    Google Scholar 

  • Chapman, D., and Dodd, G., 1971, Physicochemical probes of membrane structure, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 13–81, Academic Press, New York.

    Google Scholar 

  • Chapman, D., Urbina, J., and Keough, K. M., 1974, Biomembrane phase transitions: Studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512–2521.

    PubMed  CAS  Google Scholar 

  • Charnock, J. S., and Bashford, C. L., 1975, A fluorescent probe study of the lipid mobility of membranes containing (Na+ + K+)-dependent ATPase, Mol. Pharmacol. 11:766–774.

    PubMed  CAS  Google Scholar 

  • Charnock, J. S., Doty, D. M., and Russel, J. C., 1971, The effect of temperature on the activity of (Na+ + K+)-ATPase, Arch. Biochem. Biophys. 142:633–637.

    PubMed  CAS  Google Scholar 

  • Charnock, J. S., Almeida, A. F., and To, R., 1975, Temperature-activity relationships and ouabain inhibition of (Na+ + K+)-ATPase, Arch. Biochem. Biophys. 167:480–487.

    PubMed  CAS  Google Scholar 

  • Chen, L. F., Lund, D. B., and Richardson, T., 1971, Essential fatty acids and glucose permeability of lecithin membranes, Biochim. Biophys. Acta 225:89–95.

    PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1975, Protein mobility in membranes, FEBS Lett. 55:1–17.

    PubMed  CAS  Google Scholar 

  • Cherry, R. J., 1976, Protein and lipid mobility in biological and model membranes, in: Biological Membranes, Vol. 3 (D. Chapman and D. F. H. Wallach, eds.), pp. 47–102, Academic Press, London.

    Google Scholar 

  • Cho, I. C., and Swaisgood, H., 1974, Surface-bound lactate dehydrogenase: Preparation and study of the effect of matrix microenvironment on kinetic and structural properties, Biochim. Biophys. Acta 334:243–256.

    CAS  Google Scholar 

  • Ciani, S. M., Eisenman, G., and Szabo, G., 1969, A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes, J. Membrane Biol. 1:1–36.

    CAS  Google Scholar 

  • Cogan, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521–527.

    PubMed  CAS  Google Scholar 

  • Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature (London) New Biol. 236:39–43.

    CAS  Google Scholar 

  • Cori, C. F., Garland, R. C., and Chang, H. F. W., 1973, Purification of particulate glucose-6-phosphatase, Biochemistry 12:3126–3130.

    PubMed  CAS  Google Scholar 

  • Craven, P. A., and Basford, R. E., 1972, Properties of the glucose-6-phosphate-solubilized brain hexokinase: Evidence for a lipoprotein complex, Biochim. Biophys. Acta 255:620–630.

    PubMed  CAS  Google Scholar 

  • Cremel, G., Rebel, G., Warter, J. M., Rendon, A., and Waksman, A., 1976, Reversible intramitochondrial release of protein related to unsaturated fatty acids of membranes, Arch. Biochem. Biophys. 173:255–263.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., 1974, Membrane receptors, Annu. Rev. Biochem. 43:169–214.

    PubMed  CAS  Google Scholar 

  • Cunningham, C. C., and Hager, L. P., 1971a, Crystalline pyruvate oxidase from E. coli: Activation by phospholipids, J. Biol. Chem. 246:1575–1582.

    PubMed  CAS  Google Scholar 

  • Cunningham, C. C., and Hager, L. P., 1971b, Crystalline pyruvate oxidase from E. coli: Phospholipid as an allosteric effector for the enzyme, J. Biol. Chem. 246:1583–1589.

    PubMed  CAS  Google Scholar 

  • Dabbeni-Sala, F., Furlan, R., Pitotti, A., and Bruni, A., 1974, The activation of mitochondrial particulate ATPase by liposomes of diacylphospholipids, Biochim. Biophys. Acta 347:77–86.

    PubMed  CAS  Google Scholar 

  • Daemen, F. J. M., 1973, Vertebrate rod outer segment membranes, Biochim. Biophys. Acta 300:255–288.

    PubMed  CAS  Google Scholar 

  • Dales, S., 1973, Early events in cell-animal virus interactions, Bacteriol. Rev. 37:103–135.

    PubMed  CAS  Google Scholar 

  • Danielli, J. F., and Davson, H. A., 1935, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508.

    CAS  Google Scholar 

  • Das, M. L., and Crane, F. L., 1964, Proteolipids. I. Formation of phospholipid cytochrome c complexes, Biochemistry 3:696–700.

    PubMed  CAS  Google Scholar 

  • Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane, Biochemistry 15:1271–1276.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., 1968, The nature of the interaction between protein and lipid during the formation of lipoprotein membranes, in: Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 203–323, Academic Press, London.

    Google Scholar 

  • Dawson, R. M. C., 1973a, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 97–116, Elsevier, Amsterdam.

    Google Scholar 

  • Dawson, R. M. C., 1973b, The exchange of phospholipids between cell membranes, Subcell. Biochem. 2:69–89.

    PubMed  CAS  Google Scholar 

  • De Gier, J., Mandersloot, J. G., and Van Deenen, L. L. M., 1968, Lipid composition and permeability of liposomes, Biochim. Biophys. Acta 150:666–675.

    PubMed  Google Scholar 

  • Dehlinger, P. J., Jost, P. C., and Griffith, D. H., 1974, Lipid binding to the amphipathic membrane protein cytochrome b 5, Proc. Natl. Acad. Sci. U.S.A. 71:2280–2284.

    PubMed  CAS  Google Scholar 

  • De Kruyff, B., Demel, R. A., and Van Deenen, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact A. laidlawii cell membranes, Biochim. Biophys. Acta 255:331–347.

    PubMed  Google Scholar 

  • De Kruyff, B., De Greef, W. J., Van Eyck, R. V. W., Demel, R. A., and Van Deenen, L. L. M., 1973, The effect of different fatty acid and sterol composition on the erythritol flux through the cell membrane of A. laidlawii, Biochim. Biophys. Acta 298:479–499.

    PubMed  Google Scholar 

  • De Kruyff, B., Van Dijck, P. W. M., Demel, R. A., Schuijff, A., Brants, F., and Van Deenen, L. L. M., 1974, Non random distribution of cholesterol in phosphatidylcholine bilayers, Biochim. Biophys. Acta 356:1–7.

    PubMed  Google Scholar 

  • Demel, R. A., and De Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109–132.

    PubMed  CAS  Google Scholar 

  • Demel, R. A., Geurts van Kessel, V. J. M., and Van Deenen, L. L. M., 1972, The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol, Biochim. Biophys. Acta 266:26–40.

    CAS  Google Scholar 

  • Demel, R. A., London, Y., Geurts van Kessel, W. S. M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The specific interaction of myelin basic protein with lipids at the air-water surface, Biochim. Biophys. Acta 311:507–519.

    PubMed  CAS  Google Scholar 

  • De Meyts, P., Bianco, A. R., and Roth, J., 1976, Site-site interactions among insulin receptors: Characterization of the negative cooperativity, J. Biol. Chem. 251:1877–1888.

    Google Scholar 

  • De Pierre, J. W., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum, Biochim. Biophys. Acta 415:411–472.

    Google Scholar 

  • Deuticke, B., and Ruska, C., 1976, Changes of nonelectrolyte permeability in cholesterol-loaded erythrocytes, Biochim. Biophys. Acta 433:638–653.

    PubMed  CAS  Google Scholar 

  • Dodd, G., 1973, The interaction of glutamate dehydrogenase and malate dehydrogenase with phospholipid membranes, Eur. J. Biochem. 33:418–427.

    PubMed  CAS  Google Scholar 

  • Dufourck, J., Faucon, J. F., Lussan, C., and Bernon, R., 1975, Study of lipid protein interactions in membrane models: Instrinsic fluorescence of cytochrome b 5-phospholipid complex, FEBS Lett. 57:112–116.

    Google Scholar 

  • Duppel, W., and Dahl, G., 1976, Effect of phase transition on the distribution of membrane-associated particles in microsomes, Biochim. Biophys. Acta 426:408–417.

    PubMed  CAS  Google Scholar 

  • Duppel, W., and Ullrich, V., 1976, Membrane effects on drug monooxygenation activity in hepatic microsomes, Biochim. Biophys. Acta 426:399–407.

    PubMed  CAS  Google Scholar 

  • Duttera, S. M., Byrne, W. L., and Ganoza, M. C., 1968, Studies on the phospholipid requirement of glucose-6-phosphatase, J. Biol. Chem. 243:2216–2228.

    PubMed  CAS  Google Scholar 

  • Dutton, A., Lees, E. D., and Singer, S. J., 1976, An experiment eliminating the rotating carrier mechanism for the active transport of Ca2+ ion in sarcoplasmic reticulum membranes, Proc. Natl. Acad. Sci. U.S.A. 73:1532–1536.

    PubMed  CAS  Google Scholar 

  • Edidin, M., and Fambrough, D., 1973, Fluidity of the surface of cultured muscle fibers: Rapid lateral diffusion of marked surface antigens, J. Cell Biol. 57:27–37.

    PubMed  CAS  Google Scholar 

  • Edidin, M., Zagyanski, Y., and Lardner T. J., 1976, Measurement of membrane protein lateral diffusion in single cells, Science 191:466–468.

    PubMed  CAS  Google Scholar 

  • Eisenmann, G., Szabo, G., McLaughlin, S. G. A., and Ciani, S. M., 1973, Molecular basis of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes, in: Membrane Structure and Mechanisms of Biological Energy Transduction (J. Avery, ed.), pp. 295–350, Plenum Press, London.

    Google Scholar 

  • Ekstedt, B., Olivecrona, T., and Oreland, Z., 1975, Binding of cardiolipin-lecithin and monoamine oxidase to lipid-depleted mitochondrial membrane structure, Arch. Biochem. Biophys. 171:170–175.

    PubMed  CAS  Google Scholar 

  • Eletr, S., Zakim, D., and Vessey, D. A., 1973, A spin-label study of the role of phospholipids in the regulation of membrane-bound microsomal enzymes, J. Mol. Biol. 78:351–362.

    PubMed  CAS  Google Scholar 

  • Eletr, S., Williams, M. A., Watkins, T., and Keith, A. D., 1974, Perturbation of the dynamics of lipid alkyl chains in membrane systems: Effect on the activity of membrane-bound enzymes, Biochim. Biophys. Acta 339:190–201.

    CAS  Google Scholar 

  • Elgsaeter, A., Shotton, D. M., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts: The influence of spectrin aggregation, Biochim. Biophys. Acta 426:101–122.

    PubMed  CAS  Google Scholar 

  • Enoch, M. G., Català, A., and Strittmatter, P., 1976, Mechanism of rat liver microsomal stearyl CoA desaturase: Studies of the substrate specificity, enzyme-substrate interactions and the function of lipid, J. Biol. Chem. 251:5095–5103.

    PubMed  CAS  Google Scholar 

  • Erecinska, M., Vanderkooi, J. M., and Wilson, D. F., 1975, Cytochrome c interactions with membranes: A photoaffinity-labelled cytochrome c, Arch. Biochem. Biophys. 171:108–116.

    PubMed  CAS  Google Scholar 

  • Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T., and Wakil, S. J., 1971, The molecular organization of lipids in the membrane of E. coli: Phase transitions, Proc. Natl. Acad. Sci. U.S.A. 68:3180–3184.

    PubMed  CAS  Google Scholar 

  • Estrada, S., Carabez, A. T., and Cabeza, A. G., 1966, Effect of phospholipids in induced enzyme release from mitochondria, Biochemistry 5:3432–3440.

    Google Scholar 

  • Eylar, E. H., 1972, The structure and immunological properties of basic proteins of myelin, Ann. N. Y. Acad. Sci. 195:481–491.

    PubMed  CAS  Google Scholar 

  • Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., and Burnett, P., 1971, Basic A1 protein of the myelin membrane, J. Biol. Chem. 246:5770–5884.

    PubMed  CAS  Google Scholar 

  • Eytan, G. D., and Schatz, G., 1975, Cytochrome c oxidase from baker’s yeast. V. Arrangement of the subunits in the isolated and membrane bound enzyme. J. Biol. Chem. 250:767–774.

    PubMed  CAS  Google Scholar 

  • Eytan, G. D., Carroll, R. C., Schatz, G., and Racker, E., 1975, Arrangement of the subunits in solubilized and membrane-bound cytochrome c oxidase from bovine heart. J. Biol. Chem. 250:8598–8603.

    PubMed  CAS  Google Scholar 

  • Farias, R. N., Goldenberg, A. L., and Trucco, R. E., 1970, The effect of fat deprivation on the allosteric inhibition by fluoride of the Mg2+-ATPase and (Na+ + K+)-ATPase from rat erythrocytes, Arch. Biochem. Biophys. 139:38–44.

    PubMed  CAS  Google Scholar 

  • Farias, R. N., Bloj, B., Morero, R. D., Siñeriz, F., and Trucco, R. E., 1975, Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim. Biophys. Acta 415:231–251.

    PubMed  CAS  Google Scholar 

  • Fasman, G. D., 1967, Factors responsible for conformational stability, in: Poly α-Amino Acids (G. D. Fasman, ed.), pp. 499–604, Marcel Dekker, New York.

    Google Scholar 

  • Faucon, J. F., and Lussan, C., 1973, Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence, Biochim. Biophys. Acta 307:459–466.

    PubMed  CAS  Google Scholar 

  • Feinstein, M. B., Fernandez, S. M., and Sha’afi R. I., 1975, Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions: Effects of local anesthetics, cholesterol and protein, Biochim. Biophys. Acta 413:354–370.

    PubMed  CAS  Google Scholar 

  • Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E., 1976, Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase, J. Biol. Chem. 251:1104–1115.

    PubMed  CAS  Google Scholar 

  • Fisher, K. A., 1976, Analysis of membrane halves: Cholesterol, Proc. Natl. Acad. Sci. U.S.A. 73:173–177.

    PubMed  CAS  Google Scholar 

  • Fleischer, B., Casu, A., and Fleischer, S., 1966, Release of β-hydroxybutyric apodehydrogenase from beef heart mitochondria by the action of phospholipase A, Biochem. Biophys. Res. Commun. 24:189–194.

    PubMed  CAS  Google Scholar 

  • Fleischer, S., and Fleischer, B., 1967, Removal and binding of polar lipids in mitochondria and other membrane systems, Methods Enzymol. 10:406–433.

    CAS  Google Scholar 

  • Fleischer, S., Brierley, G. P., Klouwen, H., and Slautterback, D. B., 1962, Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer, J. Biol. Chem. 237:3264–3272.

    PubMed  CAS  Google Scholar 

  • Fleischer, S., Fleischer, B., and Stoeckenius, W., 1967, Fine structure of lipid-depleted mitochondria, J. Cell Biol. 32:193–208.

    PubMed  CAS  Google Scholar 

  • Folch, J., and Lees, M., 1951, Proteolipids, a new type of tissue lipoproteins: Their isolation from brain, J. Biol. Chem. 191:807–817.

    PubMed  CAS  Google Scholar 

  • Folch-Pi, J., and Stoffyn, P. J., 1972, Proteolipids from membrane systems, Ann. N. Y. Acad. Sci. 195:86–107.

    PubMed  CAS  Google Scholar 

  • Fourcans, B., and Jain, K. M., 1974, Role of phospholipids in transport and enzymic reactions, Adv. Lipid Res. 12:147–226.

    PubMed  CAS  Google Scholar 

  • Fox, C. F., and Tsukagoshi, N., 1972, The influence of lipid phase transitions on membrane function and assembly, in: Membrane Research (C. F. Fox, ed.), pp. 145–174, Academic Press, New York.

    Google Scholar 

  • Franklin, M. R., and Estabrook, R. W., 1971, On the inhibitory action of mersalyl on microsomal drug oxidation: A rigid organization of the electron transport chain, Arch. Biochem. Biophys. 143:318–329.

    PubMed  CAS  Google Scholar 

  • Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319–335.

    PubMed  CAS  Google Scholar 

  • Galla, H. J., and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes, Biochim. Biophys. Acta 339:103–115.

    PubMed  CAS  Google Scholar 

  • Galo, M. G., Bloj, B., and Farias, R. N., 1975, Kinetic changes of the erythrocyte (Mg2+ + Ca2+)-ATPase of rats fed different fat-supplemented diets, J. Biol. Chem. 250:6204–6207.

    PubMed  CAS  Google Scholar 

  • Gaudemer, Y., and Latruffe, N., 1975, Evidence for penetrant and nonpenetrant thiol reagents and their use in the location of rat liver mitochondrial D(−)β-hydroxybutyrate dehydrogenase, FEBS Lett. 54:30–34.

    PubMed  CAS  Google Scholar 

  • Gazitt, Y., Ohad, I., and Loyter, A., 1975, Changes in phospholipid susceptibility toward phospholipases induced by ATP depletion in avian and amphibian erythrocyte membranes, Biochim. Biophys. Acta 382:65–72.

    PubMed  CAS  Google Scholar 

  • Gazzotti, P., Bock, H.G., and Fleischer, S., 1974, Role of lecithin in d-β-hydroxybutyrate dehydrogenase function, Biochem. Biophys. Res. Commun. 58:309–315.

    PubMed  CAS  Google Scholar 

  • Gazzotti, P., Bock, H. G., and Fleischer, S., 1975, Interaction of d-β-hydroxybutyrate apodehydrogenase with phospholipids, J. Biol. Chem. 250:5782–5790.

    PubMed  CAS  Google Scholar 

  • Gennis, R. B., and Strominger, J. L., 1976a, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. I. Activation by phospholipids and fatty acids, J. Biol. Chem. 251:1266–1269.

    Google Scholar 

  • Gennis, R. B., and Strominger, J. L., 1976b, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. III. Activation by detergents, J. Biol. Chem. 251:1277–1282.

    PubMed  CAS  Google Scholar 

  • Gennis, R. B., Sinesky, M., and Strominger, J. L., 1976, Activation of C55-isoprenoid alcohol phosphokinase from S. aureus. II. Biophysical studies, J. Biol. Chem. 251:1270–1276.

    PubMed  CAS  Google Scholar 

  • Glaser, M., and Singer, S. J., 1971, Circular dichroism and the conformations of membrane proteins: Studies with red blood cell membranes, Biochemistry 10:1780–1787.

    PubMed  CAS  Google Scholar 

  • Glomset, J. A., and Norum, K. R., 1973, The metabolic role of lecithin: cholesterol acyltransferase: Perspectives from pathology, Adv. Lipid Res. 11:1–65.

    CAS  Google Scholar 

  • Gold, G., and Widnell, C. C., 1976, Relationship between microsomal membrane permeability and the inhibition of hepatic glucose-6-phosphatase by pyridoxal phosphate, J. Biol. Chem. 251:1035–1041.

    PubMed  CAS  Google Scholar 

  • Goldman, R., and Katchalski, E., 1971, Kinetic behavior of a two enzymes membrane carrying out a consecutive set of reaction, J. Theor. Biol. 32:243–257.

    PubMed  CAS  Google Scholar 

  • Goldman, S. S., and Albers, R. W., 1973, Sodium-potassium-activated ATPase. IX. The role of phospholipids, J. Biol. Chem. 246:867–874.

    Google Scholar 

  • Goodall, M. C., 1973, Action of two classes of channel-forming synthetic peptides on lipid bilayers, Arch. Biochem. Biophys. 157:514–519.

    PubMed  CAS  Google Scholar 

  • Goodall, M. C., and Urry, D. W., 1973, A synthetic transmembrane channel, Biochim. Biophys. Acta 292:317–320.

    Google Scholar 

  • Goodall, M. C., Bradley, R. J., Saccomani, G., and Romine, W. O., 1974, Quantum conductance changes in lipid bilayer membranes associated with incorporation of acetylcholine receptor, Nature (London) 250:68–71.

    CAS  Google Scholar 

  • Gordesky, S. E., Marinetti, G. V., and Love, R., 1975, The reaction of chemical probes with erythrocyte membrane, J. Membrane Biol. 20:111–132.

    CAS  Google Scholar 

  • Gordon, A. S., Wallach, D. F. H., and Straus, J. H., 1969, The optical activity of plasma membranes and its modification by lysolecithin, phospholipase A and phospholipase C, Biochim. Biophys. Acta 183:405–416.

    PubMed  CAS  Google Scholar 

  • Gordon, L. G. M., and Haydon, D. A., 1976, Kinetics and stability of alamethycin conducting channels in lipid bilayers, Biochim. Biophys. Acta 436:541–556.

    PubMed  CAS  Google Scholar 

  • Gotterer, G. S., 1967, Rat liver d-β-hydroxybutyrate dehydrogenase. II. Lipid requirement, Biochemistry 6:2147–2152.

    PubMed  CAS  Google Scholar 

  • Gotto, A. M., and Shore, B., 1969, Conformation of human serum high density lipoprotein and its peptide components, Nature (London) 224:69–70.

    CAS  Google Scholar 

  • Green, D. E., 1966, The mitochondrial electron transfer system, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), pp. 309–326, Elsevier, Amsterdam.

    Google Scholar 

  • Green, D. E., 1972, Membrane proteins: A perspective, Ann. N. Y. Acad. Sci. 195:150–172.

    PubMed  CAS  Google Scholar 

  • Green, D. E., and Silman, I., 1967, Structure of the mitochondrial electron transfer chain, Annu. Rev. Plant Physiol. 18:147–178.

    Google Scholar 

  • Green, D. E., and Tzagoloff, A., 1966a, Role of lipids in the structure and function of biological membranes, J. Lipid Res. 7:587–602.

    PubMed  CAS  Google Scholar 

  • Green, D. E., and Tzagoloff, A., 1966b, The mitochondrial electron transfer chain, Arch. Biochem. Biophys. 116:293–304.

    PubMed  CAS  Google Scholar 

  • Green, D. E., Murer, E., Hultin, H. O., Richardson, S. H., Salmon, P., Brierley, G. P., and Baum, H., 1965, Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast, Arch. Biochem. Biophys. 112:635–647.

    PubMed  CAS  Google Scholar 

  • Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8:4108–4116.

    PubMed  CAS  Google Scholar 

  • Grell, E., and Funck, T., 1973, Dynamic properties and membrane activity of ion specific antibiotics, J. Supramol. Struct. 1:307–335.

    PubMed  CAS  Google Scholar 

  • Griffiths, D. E., 1976, Studies of energy-linked reactions: Net synthesis of ATP by isolated ATP synthetase preparations: A role for lipoic acid and unsaturated fatty acids, Biochem. J. 160:809–812.

    PubMed  CAS  Google Scholar 

  • Grisham, C. I., and Barnett, R. J., 1973, On the role of lipid phase transition in the regulation of the (Na+ + K+)-ATPase, Biochemistry 12:2635–2637.

    PubMed  CAS  Google Scholar 

  • Grover, A. K., Slotboom, A. J., de Haas, G. H., and Hammes, G. G., 1975, Lipid specificity of β-hydroxybutyrate dehydrogenase activation, J. Biol. Chem. 250:31–38.

    PubMed  CAS  Google Scholar 

  • Gruener, N., and Avi-Dor, Y., 1966, Temperature dependence of activation and inhibition of rat brain ATPase activated by Na+ and K+, Biochem. J. 100:762–767.

    PubMed  CAS  Google Scholar 

  • Grunze, M., and Deuticke, B., 1974, Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes, Biochim. Biophys. Acta 356:125–130.

    PubMed  CAS  Google Scholar 

  • Guenguerich, F. P., and Coon, M. J., 1975, Role of phospholipid in reconstituted liver microsomal enzyme system containing highly purified cytochrome P-450, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:622.

    Google Scholar 

  • Gulik-Krzywicki, T., Shechter, E., Luzzati, V., and Faure, M., 1969, Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases, Nature (London) 233:1116–1121.

    Google Scholar 

  • Gunderson, H. M., and Nordlie, R. P., 1975, Carbamyl phosphate: Glucose phosphotransferase and glucose-6-phosphate phosphohydrolase of nuclear membrane: Interrelationships between membrane integrity, enzymic latency and catalytic behavior, J. Biol. Chem. 250:3552–3559.

    PubMed  CAS  Google Scholar 

  • Guthrow, C. E., Allen, J. E., and Rasmussen, H., 1972, Phosphorylation of an endogenous membrane protein by an endogenous membrane associated cAMP-dependent protein kinase in human erythrocyte ghosts, J. Biol. Chem. 247:8145–8153.

    PubMed  CAS  Google Scholar 

  • Gwynne, J., Brewer, H. B., and Edelhoch, H., 1975, The molecular behavior of Apo-A-1 in human high-density lipoproteins, J. Biol. Chem. 250:2269–2274.

    PubMed  CAS  Google Scholar 

  • Hackenbrock, C. R., Höchli, M., and Chan, R. M., 1976, Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translation motion of intramembrane particles in mitochondrial membranes, Biochim. Biophys. Acta 455:466–484.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., and Deuticke, B., 1975, Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane: Dependence on glycolytic metabolism, Biochim. Biophys. Acta 401:468–480.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., and Deuticke, B., 1976, Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane, Biochim. Biophys. Acta 436:353–365.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., De Gier, J., Van Es, G. A., Verkleij, A. J., and Van Deenen, L. L. M., 1972, Fragility of the permeability barrier of E. coli, Biochim. Biophys. Acta 288:43–53.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., Verkleij, A. J., De Gier, J., Scheek, R., Ververgaert, P. H. J., and Van Deenen, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356:17–26.

    PubMed  CAS  Google Scholar 

  • Hammes, G. G., and Schullery, S. E., 1970, Structure of macromolecular aggregates. II. Construction of model membranes from phospholipids and polypeptides, Biochemistry 9:2555–2567.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., 1973, The erythrocyte membrane variability and membrane enzyme activity, Biochim. Biophys. Acta 300:319–340.

    PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., 1976, The binding of lipid to the lipid-free ATPase protein of sarcoplasmic reticulum, Eur. J. Biochem. 62:431–438.

    PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., and Green, M. N., 1974, The effect of delipidation on the ATPase of sarcoplasmic reticulum, Eur. J. Biochem. 42:183–193.

    PubMed  CAS  Google Scholar 

  • Hatefi, Y., 1963, Coenzyme Q (ubiquinone), Adv. Enzymol. 25:275–328.

    PubMed  Google Scholar 

  • Haydon, D. A., and Hladky, S. B., 1972, Ion transport across thin lipid membranes: A critical discussion of mechansism in selected systems, Q. Rev. Biophys. 5:187–282.

    PubMed  CAS  Google Scholar 

  • Hegner, D., Schummer, U., and Schnepel, G. H., 1973, The effect of calcium on temperature-induced phase changes in liquid-crystalline cardiolipin structure, Biochim. Biophys. Acta 307:452–458.

    PubMed  CAS  Google Scholar 

  • Hegyvary, C., 1973, Effects of some organic solvents on the reactivity of (Na+ + K+) transport ATPase, Biochim. Biophys. Acta 311:272–291.

    PubMed  CAS  Google Scholar 

  • Hendriks, T., Klampmaken, A. A., Daemen, F. J. M., and Bonting, S. L., 1976, Biochemical aspects of the visual process. XXXII. Movement of Na+ through bilayers composed of retinal and rod outer segment lipids, Biochim. Biophys. Acta 433:271–281.

    CAS  Google Scholar 

  • Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, R. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a Ca2+-transport protein complexed with dipalmitoyl-lecithin, Biochemistry 15:4145–4151.

    PubMed  CAS  Google Scholar 

  • Hidalgo, C., Ikemoto, N., and Gergely, J., 1976, Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum, J. Biol. Chem. 250:4224–4232.

    Google Scholar 

  • Hill, M. W., 1974, The effect of anaesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyl lecithin. I. The normal alcohols up to C-9 and three inhalation anaesthetics, Biochim. Biophys. Acta 356:117–124.

    PubMed  CAS  Google Scholar 

  • Hinkle, P. C., Kim, J. I., and Racker, E., 1972, Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids, J. Biol. Chem. 247:1338–1342.

    PubMed  CAS  Google Scholar 

  • Hirz, R., and Scanu, A. M., 1970, Reassembly in vitro of a serum high-density lipoprotein, Biochim. Biophys. Acta 207:364–367.

    PubMed  CAS  Google Scholar 

  • Hladky, S. B., Gordon, L. G. M., and Haydon, D. A., 1974, Molecular mechanisms of ion transport in lipid membranes, Annu. Rev. Phys. Chem. 25:11–38.

    CAS  Google Scholar 

  • Höchli, M., and Hackenbrock, C. R., 1976, Fluidity in mitochondrial membranes: Thermotropic lateral translation motion of intramembrane particles, Proc. Natl. Acad. Sci. U.S.A. 73:1636–1640.

    PubMed  Google Scholar 

  • Holzwarth, G., 1972, Ultraviolet spectroscopy of biological membranes, in: Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp. 228–286, Sinauer Associates, Stamford.

    Google Scholar 

  • Horwitz, A. F., Hatten, M.E., and Burger, M. M., 1974, Membrane fatty acid replacements and their effect on growth and lectin-induced agglutinability, Proc. Natl. Acad. Sci. U.S.A. 71:3115–3119.

    PubMed  CAS  Google Scholar 

  • Houslay, M. D., Warren, G. B., Birdsall, N. J. M., and Metcalfe, J. C., 1975, Lipid phase transitions control β-hydroxybutyrate dehydrogenase activity in defined lipid protein complexes, FEBS Lett 51:146–151.

    PubMed  CAS  Google Scholar 

  • Houslay, M. D., Hesketh, T. R., Smith, G. A., Warren, G. B., and Metcalfe, J. C., 1976, The lipid environment of the glucagon receptor regulates adenylate cyclase activity, Biochim. Biophys. Acta 436:495–504.

    PubMed  CAS  Google Scholar 

  • Huang, C. H., 1969, Studies on phosphatidycholine vesicles: Formation and physical characteristics, Biochemistry 8:344–352.

    PubMed  CAS  Google Scholar 

  • Inesi, G., Millman, M., and Eletr, S., 1973, Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes, J. Mol. Biol. 81:483–504.

    PubMed  CAS  Google Scholar 

  • Inoue, K., 1974, Permeability properties of liposomes prepared from dipalmitoyl lecithin, dimyristoyl lecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin, Biochim. Biophys. Acta 339:390–402.

    PubMed  CAS  Google Scholar 

  • Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922–4923.

    PubMed  CAS  Google Scholar 

  • Ivanevitch, K. M., Henderson, J. J., and Kaminsky, L. S., 1973, A complex of cytochrome c and mixed mitochondrial phospholipids, Biochemistry 12:1822–1828.

    Google Scholar 

  • Ivanevitch, K. M., Henderson, J. J., and Kaminsky, L. S., 1974, Some properties of a cytochrome c-mixed mitochondrial phospholipid complex, Biochemistry 13:1469–1476.

    Google Scholar 

  • Jackson, R. L., Morrisett, J. D., Pownall, H. J., and Gotto, A. M., 1973a, Human high density lipoprotein, apolipoprotein Glutamine II: The immunochemical and lipid-binding properties of apolipoprotein Glutamine II derivatives, J. Biol. Chem. 248:5218–5224.

    PubMed  CAS  Google Scholar 

  • Jackson, R. L., Gotto, A. M., Lux, S. E., John, K. M., and Fleischer, S., 1973b, Human plasma high density lipoprotein, J. Biol. Chem. 248:8449–8456.

    PubMed  CAS  Google Scholar 

  • Jacobs, S., and Cuatrecasas, P., 1976, The mobile receptor hypothesis and “cooperativity” of hormone binding: Application to insulin, Biochim. Biophys. Acta 433:482–495.

    PubMed  CAS  Google Scholar 

  • Jain, M. K., 1974, Studies on a reconstituted acetylcholine receptor system: Effect of agonists, Arch. Biochem. Biophys. 164:20–29.

    PubMed  CAS  Google Scholar 

  • James, R., and Branton, D., 1973, Lipid-and temperature-dependent structural changes in Acholeplasma laidlawii cell membranes, Biochim. Biophys. Acta 323:378–390.

    PubMed  CAS  Google Scholar 

  • Jirgensons, B., 1967, Effects of n-propyl alcohol and detergents on the ORD of β-chimotrypsinogen, β-casein, histone fraction F-1 and soybean trypsin inhibitor, J. Biol. Chem. 242:912–918.

    PubMed  CAS  Google Scholar 

  • Johnson, L. W., and Zilversmit, D. B., 1975, Catalytic properties of phospholipid exchange protein from bovine heart, Biochim. Biophys. Acta 375:165–175.

    PubMed  CAS  Google Scholar 

  • Jost, P. C., Waggoner, A. S., and Griffith, O. H., 1971, Spin labeling and membrane structure, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York.

    Google Scholar 

  • Jost, P. C., Capaldi, R. A., Vanderkooi, G., and Griffith, O. H., 1973a, Lipid-protein and lipid-lipid interactions in cytochrome oxidase model membranes, J. Supramol. Struct. 1:269–280.

    PubMed  CAS  Google Scholar 

  • Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973b, Identification and extent of fluid bilayer regions in membranous cytochrome oxidase, Biochim. Biophys. Acta 311:141–152.

    PubMed  CAS  Google Scholar 

  • Jost, P. C., Nadakavukaren, K. K., and Griffith, O. H., 1977, Phosphatidyl choline exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes, Biochemistry 16:3110–3114.

    PubMed  CAS  Google Scholar 

  • Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300:341–378.

    PubMed  CAS  Google Scholar 

  • Juliano, R. L., Kimelberg, H. K., and Papahadjopoulos, D., 1971, Synergistic effects of a membrane protein (spectrin) and Ca2+ on the Na2+ permeability of phospholipid vesicles, Biochim. Biophys. Acta 241:894–905.

    PubMed  CAS  Google Scholar 

  • Junge, W., and De Vault, D., 1975, Symmetry, orientation and rotational mobility of the a3 heme of cytochrome c oxidase in the inner membrane of mitochondria, Biochim. Biophys. Acta 408:200–214.

    PubMed  CAS  Google Scholar 

  • Jurtshuck, P., Sekuzu, I., and Green, D. E., 1961, The interaction of d(−)β-hydroxybutyric dehydrogenase with lecithin, Biochem. Biophys. Res. Commun. 6:76–80.

    Google Scholar 

  • Kadenbach, B., and Hadvary, P., 1973, Demonstration of two types of proteins synthesized in isolated rat liver mitochondria, Eur. J. Biochem. 32:343–349.

    PubMed  CAS  Google Scholar 

  • Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-ATP exchange, J. Biol. Chem. 5477–5487.

    Google Scholar 

  • Katz, B., and Miledi, R., 1971, Further observations on acetylcholine “noise,” Nature (London) New Biol. 232:124–126.

    CAS  Google Scholar 

  • Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14:1–63.

    PubMed  CAS  Google Scholar 

  • Keith, A. D., Sharnoff, M., and Cohn, G. E., 1973, A summary and evaluation of spin labels used as probes for biological membrane structure, Biochim. Biophys. Acta 300:379–419.

    PubMed  CAS  Google Scholar 

  • Keith, A. D., Aloja, R. C., Lyons, J., Snipes, W., and Pengelley, E. T., 1975, Spin label evidence for the role of lysoglycerophospholipids in cellular membranes of hibernating mammals, Biochim. Biophys. Acta 394:204–210.

    PubMed  CAS  Google Scholar 

  • Kemp, A., Groot, C. S. P., and Reitsma, H. J., 1969, Oxidative phosphorylation as a function of temperature, Biochim. Biophys. Acta 180:28–34.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., 1975, Alterations in phospholipid-dependent (Na+ + K+)-ATPase activity due to lipid fluidity: Effects of cholesterol an Mg2+, Biochim. Biophys. Acta 413:143–156.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Lee, C. P., 1969, Binding and electron transfer to cytochrome c in artificial phospholipid membranes, Biochem. Biophys. Res. Commun. 34:784–790.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Papahadjopoulos, D., 1971a, Interactions of basic proteins with phospholipid membranes, J. Biol. Chem. 246:1142–1148.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Papahadjopoulos, D., 1971b, Phospholipid-protein interactions: Membrane permeability correlated with monolayer “penetration,” Biochim. Biophys. Acta 233:805–809.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., and Papahadjopoulos, D., 1974, Effects of phospholipid acyl chain fluidity, phase transitions and cholesterol on (Na+ + K+)-stimulated ATPase, J. Biol. Chem. 249:1071–1080.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., Lee, C. P., Claude, A., and Mrena, L., 1970, Interactions of cytochrome c with phospholipid membranes, J. Membrane Biol. 2:235–251.

    Google Scholar 

  • Kleemann, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipids in bilayer membranes, Biochim. Biophys. Acta 419:206–222.

    PubMed  CAS  Google Scholar 

  • Knowles, A. F., Eytan, E., and Racker, E., 1976, Phospholipid protein interactions in the Ca-ATPase of sarcoplasmic reticulum, J. Biol. Chem. 251:5161–5165.

    PubMed  CAS  Google Scholar 

  • Knuell, H. R., Taylor, W. F., and Wells, W. W., 1973, Effects of energy metabolism on in vivo distribution of hexokinase in brain, J. Biol. Chem. 248:5414–5417.

    Google Scholar 

  • Kornberg, R. D., and McConnell, H. M., 1971, Inside-outside transitions of phospholipids in vesicles and membranes, Biochemistry 10:1111–1120.

    PubMed  CAS  Google Scholar 

  • Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin, Science 174:412–415.

    PubMed  CAS  Google Scholar 

  • Kröger, A., and Klingenberg, M., 1967, On the role of ubiquinone, in: Current Topics in Bioenergetics, Vol. II (D. R. Sanadi, ed.), pp. 152–190, Academic Press, New York.

    Google Scholar 

  • Kröger, A., and Klingenberg, M., 1970, Quinones and nicotinamide nucleotides associated with electron transfer, Vitam. Horm. (N.Y.) 28:533–574.

    Google Scholar 

  • Kumamoto, J., Raison, J. K., and Lyons, J. M., 1971, Temperature “breaks” in Arrhenius plots: A thermodynamic consequence of a phase change, J. Theor. Biol. 31:47–51.

    PubMed  CAS  Google Scholar 

  • Kury, P. G., and McConnell, H. M., 1975, Regulation of membrane flexibility in human erythrocytes, Biochemistry 14:2798–2803.

    PubMed  CAS  Google Scholar 

  • Kury, P. G., Ramwell, P. W., and McConnell, H. M., 1974, The effect of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels, Biochem. Biophys. Res. Commun. 56:478–483.

    PubMed  CAS  Google Scholar 

  • Laggner, P., 1975, A highly α-helical structure protein in sarcoplasmic reticulum membranes, Nature (London) 255:427–428.

    CAS  Google Scholar 

  • Laggner, P., and Barratt, M. D., 1975, The interaction of a proteolipid from sarcoplasmic reticulum membranes with phospholipids: A spin label study, Arch. Biochem. Biophys. 170:92–101.

    PubMed  CAS  Google Scholar 

  • Landi, L., Olivo, G., Parenti-Castelli, G., Sechi, A. M., and Lenaz, G., 1976, Lipid protein interactions and the kinetics of mitochondrial ATPase, Bull. Mol. Biol. Med. 1:29–36.

    CAS  Google Scholar 

  • Lasch, J., Bessmertnaya, L., Rozla, L. V., and Antonov, V. R., 1976, Thermal stability of immobilized enzymes: Circular dichroism, fluorescence and kinetic measurements of α-chymotrypsin attached to soluble carriers, Eur. J. Biochem. 63:591–598.

    PubMed  CAS  Google Scholar 

  • Lea, E. J. A., Rich, G. T., and Segrest, J. P., 1975, The effects of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein on the permeability of model lipid membranes, Biochim. Biophys. Acta 383:41–50.

    Google Scholar 

  • Lecocq, D., Hervagault, J. F., Broun, G., Joly, G., Kernezev, J. P., and Thomas, D., 1975, The kinetic behavior of an artificial bienzyme membrane, J. Biol. Chem. 250:5496–5500.

    Google Scholar 

  • Lee, A. G., 1976, Interactions between phospholipids and barbiturates, Biochim. Biophys. Acta 455:102–108.

    PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes, Biochemistry 13:3699–3705.

    PubMed  CAS  Google Scholar 

  • Lee, C. P., Huang, C. H., and Cierkosz, B. I. T., 1974, Effects of cardiolipin micelles on submitochondrial membranes, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 161–170, North-Holland, Amsterdam.

    Google Scholar 

  • Lee, M. P., and Gear, A. R. L., 1974, The effect of temperature on mitochondrial membrane-linked reactions, J. Biol. Chem. 249:7541–7549.

    PubMed  CAS  Google Scholar 

  • Lenard, J., and Singer, S. J., 1968, Structure of membranes: Reaction of red blood cell membranes with phospholipase C., Science 159:738–739.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., 1973, The role of lipids in the regulation of membrane-associated activities, Acta Vitaminol. Enzymol. (Milan) 24:62–95.

    Google Scholar 

  • Lenaz, G., 1974, Lipid-protein interactions in the structure of biological membranes, Subcell. Biochem. 3:167–248.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., 1977, Lipid properties and lipid-protein interactions, in: Membrane Proteins and Their Interactions with Lipids (R. A. Capaldi, ed.), pp. 47–149, Marcel Dekker, New York.

    Google Scholar 

  • Lenaz, G., and Sechi, A. M., 1976, Architecture and asymmetry of biomembranes, Ital. J. Biochem. 25:427–510.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Sechi, A. M., Masotti, L., and Parenti-Castelli, G., 1970a, Lipid protein interactions in mitochondria. I. Conditions affecting binding of phospholipids to lipid-depleted mitochondria, Arch. Biochem. Biophys. 141:79–88.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Sechi, A. M., Parenti-Castelli, G., and Masotti, L., 1970b, Lipid-protein interactions in mitochondria. II. On the nature and biochemical significance of the interaction between phospholipids and lipid-depleted mitochondria, Arch. Biochem. Biophys. 141:89–97.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Sechi, A. M., Parenti-Castelli, G., Landi, L., and Bertoli, E., 1972, Activation energies of different mitochondrial enzymes: Breaks in Arrhenius plots of membrane-bound enzymes occur at different temperatures, Biochem. Biophys. Res. Comm. 49:536–542.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Parenti-Castelli, G., Sechi, A. M., Bertoli, E., and Griffiths, D. E., 1974, Perturbation of mitochondrial membranes by organic solvents: An enzymatic and spin label study, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 23–28, North-Holland, Amsterdam.

    Google Scholar 

  • Lenaz, G., Curatola, G., and Masotti, L., 1975a, Perturbation of membrane fluidity, J. Bioenerg. 7:223–299.

    CAS  Google Scholar 

  • Lenaz, G., Parenti-Castelli, G., and Sechi, A. M., 1975b, Lipid protein interactions in mitochondria: Changes in mitochondrial ATPase activity induced by n-butyl alcohol, Arch. Biochem. Biophys. 167:72–79.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Bertoli, E., Curatola, G., Mazzanti, L., and Bigi, A., 1976, Lipid protein interactions in mitochondria: Spin and fluorescence probe studies on the effect of n-alkanols on phospholipid vesicles and mitochondrial membranes, Arch. Biochem. Biophys. 172:278–288.

    PubMed  CAS  Google Scholar 

  • Lenaz, G., Curatola, G., Mazzanti, L., Parenti-Castelli, G., and Bertoli, E., 1978, Effects of general anesthetics on lipid-protein interactions and ATPase activity in mitochondria, Biochem. Pharmacol. (in press).

    Google Scholar 

  • Lenaz, G., Mascarello, S., Landi, L., Cabrini, L., Pasquali, P., Parenti-Castelli, G., Sechi, A. M., and Bertoli, E., 1977, Interactions of ubiquinone in the inner mitochondrial membrane, in: Membrane Bioenergetics (L. Packer, ed.), pp. 189–198, Elsevier, Amsterdam.

    Google Scholar 

  • Letellier, L., and Shechter, E., 1973, Correlations between structure and spectroscopic properties in membrane model systems, Eur. J. Biochem. 40:507–512.

    PubMed  CAS  Google Scholar 

  • Leung, K. H., and Hinkle, P. C., 1975, Reconstitution of ion transport and respiratory control in vesicles formed from reduced CoQ-cytochrome c reductase and phospholipids, J. Biol. Chem. 250:8467–8471.

    PubMed  CAS  Google Scholar 

  • Levey, G. S., 1971, Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidyl inositol, J. Biol. Chem. 246:7405–7407.

    PubMed  CAS  Google Scholar 

  • Levey, G. S., 1973, The role of phospholipids in hormonal activation of adenylate cyclase, Recent Prog. Horm. Res. 29:361–386.

    PubMed  CAS  Google Scholar 

  • Li, J. R. R., Williams, R. E., and Fox, C. F., 1975, Effects of temperature and host lipid composition on the infection of cells by Newcastle disease virus, Biochem. Biophys. Res. Commun. 62:470–477.

    PubMed  CAS  Google Scholar 

  • Liebman, P., and Entine, G., 1974, Lateral diffusion of visual pigment in photoreceptor disk membranes, Science 185:457–459.

    PubMed  CAS  Google Scholar 

  • Linden, C. D., Wright, R. L., McConnell, H. M., and Fox, C. F., 1973, Lateral phase separations in membrane lipids and the mechanism of sugar transport in E. coli, Proc. Natl. Acad. Sci. U.S.A. 70:2271–2275.

    PubMed  CAS  Google Scholar 

  • Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Annu. Rev. Biochem. 42:541–574.

    PubMed  CAS  Google Scholar 

  • Litman, B. J., 1974, Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles, Biochemistry 13:2814–2848.

    Google Scholar 

  • Litman, B. J., 1975, Surface distribution of the fatty acid side chains of phosphatidylethanolamine in mixed phospholipid vesicles, Biochim. Biophys. Acta 413:157–162.

    PubMed  CAS  Google Scholar 

  • London, Y., and Vossenberg, F. G. A., 1973, Specific interaction of central nervous system myelin basic protein with lipids: Specific regions of the protein sequence protected from the proteolytic action of trypsin, Biochim. Biophys. Acta 478:478–490.

    Google Scholar 

  • Lonson, Y., Demel, R. A., Geurts van Kessel, W. S.M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The protection of a myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids at the air water interface, Biochim. Biophys. Acta 311:520–530.

    Google Scholar 

  • London, Y., Demel, R. A., Geurts van Kessel, W. S. M., Zahler, P., and Van Deenen, L. L. M., 1974, The interaction of the “Folch-Lees” protein with lipids at the air-water interface, Biochim. Biophys. Acta 332:69–84.

    CAS  Google Scholar 

  • Lossen, O., Brennecke, R., and Schubert, D., 1973, Electrical properties of black membranes from oxidized cholesterol and a strongly bound protein fraction of human erythrocyte membranes, Biochim. Biophys. Acta 330:132–140.

    PubMed  CAS  Google Scholar 

  • Lucy, J. A., 1969, Lysosomal membranes, in: Lysosomes in Biology and Pathology Vol. 2 (J. T. Dingle and H. B. Fell, eds.), pp. 313–341, North-Holland, Amsterdam.

    Google Scholar 

  • Lucy, J. A., 1970, The fusion of biological membranes, Nature (London) 227:815–817.

    CAS  Google Scholar 

  • Lutz, W. R., Wipt, H. K., and Simon, W., 1970, Alkalin Kationenspezifität und Träger-Eigenschaften der Antibiotica Nigericin und Monactin, Helv. Chim. Acta 53:1741–1746.

    PubMed  CAS  Google Scholar 

  • Lux, S. E., Hirz, R., Shranger, R. L, and Gotto, A. M., 1972, The influence of lipid on the conformation of human plasma high density apolipoproteins, J. Biol. Chem. 249:2598–2606.

    Google Scholar 

  • Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems, in: Biological Membranes: Physical Fact and Function (D. Chapman, ed.), pp. 71–123, Academic Press, London.

    Google Scholar 

  • Lyons, J. M., 1973, Chilling injury in plants, Annu. Rev. Plant, Physiol. 24:445–466.

    CAS  Google Scholar 

  • Lyons, J. M., and Raison, J. K., 1970, A temperature-induced transition in mitochondrial oxidation: Contrasts between cold and warm-blooded animals, Comp. Biochem. Physiol. 37:405–411.

    CAS  Google Scholar 

  • MacLennan, D. H., and Yip, C. C., 1973, Isolation of sarcoplasmic reticulum proteins, Cold Spring Harbor Symp. Quant. Biol. 37:469–477.

    CAS  Google Scholar 

  • MacLennan, D. H., Lenaz, G., and Szarkowska, L., 1966, Studies on the mechanism of oxidative phosphorylation. IX. Effect of cytochrome c on energy-linked processes, J. Biol. Chem. 241:5251–5259.

    PubMed  CAS  Google Scholar 

  • Marcelja, S., 1976, Lipid-mediated protein interaction in membranes, Biochem. Biophys. Acta 455:1–7.

    PubMed  CAS  Google Scholar 

  • Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., 1970, Physical and chemical properties of a protein isolated from red cell membranes, Biochemistry 9:50–56.

    PubMed  CAS  Google Scholar 

  • Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 69:613–620.

    Google Scholar 

  • Martonosi, A., 1969, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem. 244:613–620.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., 1972, Biochemical and clinical aspects of sarcoplasmic reticulum function, in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 3, pp. 83–197, Academic Press, New York.

    Google Scholar 

  • Martonosi, A., 1974, Thermal analysis of sarcoplasmic reticulum membranes, FEBS Lett. 47:327–329.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., Donley, J. R., Purcell, A. G., and Halpin, R. A., 1971, Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144:529–540.

    PubMed  CAS  Google Scholar 

  • Masotti, L., Lenaz, G., Spisni, A., and Urry, D. W., 1974, Effect of phospholipids on the protein conformation in the inner mitochondrial membranes, Biochem. Biophys. Res. Commun. 56:892–897.

    PubMed  CAS  Google Scholar 

  • Massa, E. M., Morero, R. D., Bloj, B., and Farias, R. N., 1975, Hormone action and membrane fluidity: Effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane-bound acetylcolinesterase and (Na+ + K+)-ATPase, Biochem. Biophys. Res. Commun. 66:115–122.

    PubMed  CAS  Google Scholar 

  • Massey, V., Curti, B., and Ganther, H., 1966, A temperature-dependent conformational charge in d-aminoacid oxidase and its effect on catalysis, J. Biol. Chem. 241:2347–2357.

    PubMed  CAS  Google Scholar 

  • Matlib, M. A., and O’Brien, P. J., 1975, Compartmentation of enzymes in the rat liver mitochondrial matrix, Arch. Biochem. Biophys. 167:193–202.

    PubMed  CAS  Google Scholar 

  • Mavis, R. D., and Vagelos, P. R., 1972, The effect of phospholipid fatty acid composition on membranous enzymes in E. coli, J. Biol. Chem. 247:652–659.

    PubMed  CAS  Google Scholar 

  • McIntyre, J. A., Gibula, N. B., and Karnowsky, M. J., 1974, Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes, J. Cell Biol. 60:192–203.

    PubMed  CAS  Google Scholar 

  • McMurchie, E. J., Raison, J. K., and Cairncross, K. D., 1973, Temperature-induced phase changes in membranes of heart: A contrast between the thermal response of poikilotherms and homeotherms, Comp. Biochem. Physiol. 44:1017–1027.

    CAS  Google Scholar 

  • Meissner, G., and Fleischer, S., 1972, The role of phospholipid in Ca2+-stimulated ATPase activity of sarcoplasmic reticulum, Biochim. Biophys. Acta 255:19–33.

    PubMed  CAS  Google Scholar 

  • Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G., 1972, 13C-NMR spectra of Acholeplasma membranes containing 13C-labelled phospholipids, FEBS Lett 21:335–340.

    PubMed  CAS  Google Scholar 

  • Meyers, M. B., and Swislocki, N. I., 1974, Conformational changes in erythrocyte membranes by prostaglandins as measured by circular dichroism, Arch. Biochem. Biophys. 164:544–550.

    PubMed  CAS  Google Scholar 

  • Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles, Biochemistry 12:2637–2645.

    PubMed  CAS  Google Scholar 

  • Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1974, Head group modulation of membrane fluidity in sonicated phospholipid dispersions, Biochemistry 13:2605–2612.

    PubMed  CAS  Google Scholar 

  • Miller, I. R., and Bach, D., 1974, Interaction of basic polypeptides with phospholipid monolayers, Chem. Phys. Lipids 13:453–465.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, England.

    Google Scholar 

  • Mitchell, P., 1974, A chemiosmotic molecular mechanism for proton-translocating ATPases, FEBS Lett. 43:189–194.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1975, Proton-motive function of cytochrome systems in electron transfer and oxidative phosphorylation, in: Electron Transfer and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), pp. 305–316, North-Holland, Amsterdam.

    Google Scholar 

  • Morrisett, J. D., David, J. S. K., Pownall, H. J., and Gotto, A. M., 1973, Interaction of an apoliprotein (Apo Lp-alanine) with phosphatidylcholine, Biochemistry 12:1290–1299.

    PubMed  CAS  Google Scholar 

  • Morrisett, J. D., Pownall, H. J., Plumlee, R. T., Smith, L. C., Zehner, Z. E., Esfahani, M., and Wakil, S. J., 1975, Multiple thermotropic phase transitions in E. coli membranes and membrane lipids: A comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence, and enzyme activity measurements, J. Biol. Chem. 250:6969–6976.

    PubMed  CAS  Google Scholar 

  • Mueller, P., and Rudin, D. O., 1968, Action potential induced in bimolecular lipid membranes, Nature (London) 217:713–719.

    CAS  Google Scholar 

  • Naftalin, R. J., 1970, A model for sugar transport across red cell membranes without carriers, Biochim. Biophys. Acta 211:65–78.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., Jilka, R. L., Boland, R., and Martonosi, A. N., 1976, Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids, J. Biol. Chem. 251:5414–5423.

    PubMed  CAS  Google Scholar 

  • Nemethy, G., 1967, Hydrophobic interactions, Angew. Chem. Int. Ed. Engl. 6:195–206.

    PubMed  CAS  Google Scholar 

  • Nicholls, S. P., and Miller, N., 1974, Chloride diffusion from liposomes, Biochim. Biophys. Acta 356:184–198.

    PubMed  CAS  Google Scholar 

  • Nicolson, G. L., 1973a, Temperature dependent mobility of concanavalin A sites on tumor cell surface, Nature (London) New Biol. 243:218–220.

    CAS  Google Scholar 

  • Nicolson, G. L., 1973b, Cis- and trans-membrane control of cell surface topography, J. Supramol. Struct. 1:410–416.

    PubMed  CAS  Google Scholar 

  • Nicolson, G. L., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457:57–108.

    PubMed  CAS  Google Scholar 

  • Nobel, P. S., 1974, Temperature dependence of the permeability of chloroplasts from chilling-sensitive and chilling-resistant plants, Plants (Berlin) 115:369–372.

    CAS  Google Scholar 

  • Nordlie, R. C., 1971, Glucose 6-phosphatase, hydrolytic and synthetic activities, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 4, pp. 543–610, Academic Press, New York.

    Google Scholar 

  • Ohnishi, M., and Urry, D. W., 1970, Solution conformation of valinomycin-K+ complex, Science 168:1091–1092.

    PubMed  CAS  Google Scholar 

  • Oldfield, E., Keough, K. M., and Chapman, D., 1972, The study of hydrocarbon chain mobility in membrane systems using spin-label probes, FEBS Lett. 20:344–346.

    PubMed  CAS  Google Scholar 

  • Omura, T., and Sato, R., 1962, A new cytochrome in liver microsomes, J. Biol. Chem. 237:PC1375–1376.

    Google Scholar 

  • Ovchinnikov, Y. A., 1974, Membrane active complexones: Chemistry and biological function, FEBS Lett. 44:1–21.

    PubMed  CAS  Google Scholar 

  • Packer, L., Mehard, C. W., Meissner, G., Zahler, W. L., and Fleischer, S., 1974, The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: Freeze-fracture electron microscopy studies, Biochim. Biophys. Acta 363:159–181.

    PubMed  CAS  Google Scholar 

  • Papa, S., 1976, Proton translocation reactions in the respiratory chains, Biochim. Biophys. Acta 456:39–84.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., 1973, Phospholipids as model membranes: Monolayers, bilayers and vesicles, in: Form and Function of Phospholipids, 2nd ed. (C. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 143–169, Elsevier, Amsterdam.

    Google Scholar 

  • Papahadjopoulos, D., Nir, S., and Ohki, A., 1971, Permeability properties of phospholipid membranes: Effect of cholesterol and temperature, Biochim. Biophys. Acta 266:561–583.

    Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330–348.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Moscarello, M., Eylar, E. H., and Isac, T., 1975a, Effects of proteins on thermotropic phase transitions of phospholipid membranes, Biochim. Biophys. Acta 401:317–335.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., and Moscarello, M., 1975b, Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability, J. Membrane Biol. 22:143–164.

    CAS  Google Scholar 

  • Papahadjopoulos, D., Hui, S., Vail, W. J., and Poste, G., 1976a, Studies on membrane fusion. I. Interaction of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide, Biochim. Biophys. Acta 448:245–264.

    CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976b, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by Ca2+ and other divalent metals, Biochim. Biophys. Acta 448:265–283.

    PubMed  CAS  Google Scholar 

  • Parenti-Castelli, G., Sechi, A. M., Landi, L., Cabrini, L., and Lenaz, G., 1978, Lipid protein interactions in mitochondria: A comparison of the effects of lipid removal and lipid perturbation on the kinetic properties of mitochondrial ATPase (submitted to Biochimica et Biophysica Acta).

    Google Scholar 

  • Pedersen, P. L., 1975, Mitochondrial ATPase, J. Bioenerg. 6:243–275.

    CAS  Google Scholar 

  • Pedersen, P. L., 1976, ATP dependent reactions catalysed by inner membrane vesicles of rat liver mitochondria: Kinetics, J. Biol. Chem. 251:934–940.

    PubMed  CAS  Google Scholar 

  • Peter, H. W., and Ahlers, J., 1975, Phospholipid requirements of ATPase of Escherichia coli, Arch. Biochem. Biophys. 170:169–178.

    PubMed  CAS  Google Scholar 

  • Peters, R., Peters, J., Tews, R., and Bähr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367:282–294.

    PubMed  CAS  Google Scholar 

  • Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T., and Estabrook, R. W., 1976, Temperature dependence of cytochrome P450 reduction: A model for NADPH-cytochrome P450 reductase: cytochrome P450 interaction, J. Biol. Chem. 251:4010–4016.

    PubMed  CAS  Google Scholar 

  • Petit, V. A., and Edidin, M., 1974, Lateral phase separation of lipids in plasma membrane: Effect of temperature on the mobility of membrane antigens, Science 184:1183–1185.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, D. R., and Lardy, H. A., 1976, Ionophore A-23187: The effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A-23187, Biochemistry 15:935–943.

    PubMed  CAS  Google Scholar 

  • Phan, S. H., and Mahler, H. R., 1976a, Studies on cytochrome oxidase: Partial resolution of enzymes containing 7 or 6 subunits from yeast and beef heart respectively, J. Biol. Chem. 251:257–269.

    PubMed  CAS  Google Scholar 

  • Phan, S. H., and Mahler, H. R., 1976b, Studies on cytochrome oxidase: Preliminary characterization of an enzyme containing only 4 subunits, J. Biol. Chem. 251:270–276.

    PubMed  CAS  Google Scholar 

  • Pieterson, W. A., Vidal, J. C., Volwerk, J. J., and de Haas, G. H., 1974, Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2, Biochemistry 13:1455–1460.

    PubMed  CAS  Google Scholar 

  • Pinto da Silva, P., 1973, Membrane intercalated particles in human erythrocyte ghosts: Sites of preferred passage of water molecules at low temperature, Proc. Natl. Acad. Sci. U.S.A. 70:1339–1343.

    PubMed  CAS  Google Scholar 

  • Pinto da Silva, P., and Branton, D., 1972, Membrane intercalated particles: The plasma membrane as a planar fluid domain, Chem. Phys. Lipids 8:265–270.

    PubMed  CAS  Google Scholar 

  • Poo, M., and Cone, R. A., 1974, Lateral diffusion of rhodopsin in the photoreceptor membrane, Nature (London) 247:438–441.

    CAS  Google Scholar 

  • Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochim. Biophys. Acta 300:421–465.

    PubMed  CAS  Google Scholar 

  • Postel-Vinay, M. C., Sonenberg, M., and Swislocki, N. I., 1974, Effect of bovine growth hormone on rat liver plasma membranes as studied by circular dichroism and fluorescence using the extrinsic probe 7,12-dimethylbenzanthracene, Biochim. Biophys. Acta 332:156–165.

    CAS  Google Scholar 

  • Poyton, R. O., and Schatz, G., 1975a, Cytochrome c oxidase from baker’s yeast. III. Physical characterization of isolated subunits and chemical evidence for two different classes of polypeptides, J. Biol. Chem. 250:752–761.

    PubMed  CAS  Google Scholar 

  • Poyton, R. O., and Schatz, G., 1975b, Cytochrome c oxidase from baker’s yeast. IV. Immunological evidence for the participation of a mitochondrially synthesized subunit in enzymatic activity, J. Biol. Chem. 250:762–766.

    PubMed  CAS  Google Scholar 

  • Prestipino, G., Ceccarelli, D., Conti, F., and Carafoli, E., 1974, Interactions of a mitochondrial Ca2+-binding glycoprotein with lipid bilayer membranes, FEBS Lett 45:99–103.

    PubMed  CAS  Google Scholar 

  • Pullman, M. E., and Monroy, G. C., 1963, A naturally occurring inhibitor of mitochondrial ATPase, J. Biol. Chem. 238:3762–3769.

    PubMed  CAS  Google Scholar 

  • Racker, E., 1967, Resolution and reconstitution of the inner mitochondrial membrane, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26:1335–1340.

    CAS  Google Scholar 

  • Racker, E., 1970, Function and structure of the inner membrane of mitochondria and chloroplasts, in: Membranes of Mitochondria and Chloroplasts (E. Racker, ed.), pp. 127–171, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Racker, E., 1972, Reconstitution of oxidative phosphorylation and vesicles with respiratory control, in: Membrane Research (C. F. Fox, ed.), pp. 97–114, Academic Press, New York.

    Google Scholar 

  • Racker, E., and Hinkle, P. C., 1974, Effect of temperature on the function of a proton pump, J. Membrane Biol. 17:181–188.

    CAS  Google Scholar 

  • Racker, E., and Kandrach, A., 1971, Reconstitution of the third site of oxidative phosphorylation, J. Biol. Chem. 246:7069–7071.

    PubMed  CAS  Google Scholar 

  • Racker, E., and Kandrach, A., 1973, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation, J. Biol. Chem. 248:5841–5847.

    PubMed  CAS  Google Scholar 

  • Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalysing light-driven proton uptake and ATP formation, J. Biol. Chem. 249:662–663.

    PubMed  CAS  Google Scholar 

  • Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes?, Biochim. Biophys. Acta 265:509–549.

    CAS  Google Scholar 

  • Ragan, C. I., and Hinkle, P. C., 1975, Ion transport and respiratory control in vesicles formed from NADH-Coenzyme Q reductase and phospholipids, J. Biol. Chem. 250:8472–8476.

    PubMed  CAS  Google Scholar 

  • Ragan, C. I., and Racker, E., 1973a, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXVIII. The reconstitution of the first site of energy conservation, J. Biol. Chem. 248:2563–2569.

    PubMed  CAS  Google Scholar 

  • Ragan, C. I., and Racker, E., 1973b, Resolution and reconstitution of the mitochondrial electron transport system. IV. The reconstitution of rotenone-sensitive NADH-ubiquinone reductase from NADH dehydrogenase and phospholipids, J. Biol. Chem. 248:6876–6884.

    PubMed  CAS  Google Scholar 

  • Raison, J. K., 1973, The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems, in: Membrane Structure and Mechanisms of Biological Energy Transduction (J. Avery, ed.), pp. 559–583, Plenum Press, London.

    Google Scholar 

  • Raison, J. K., and Lyons, J. M., 1970, The influence of mitochondrial concentration and storage on the respiratory control of isolated plant mitochondria, Plant Physiol. 45:382–385.

    PubMed  CAS  Google Scholar 

  • Raison, J. K., and McMurchie, E. J., 1974, Two temperature-induced changes in mitochondrial membranes detected by spin labelling and enzyme kinetics, Biochim. Biophys. Acta 363:135–140.

    PubMed  CAS  Google Scholar 

  • Raison, J. K., Lyons, J. M., Mehlhorn, R. J., and Keith, A. D., 1971, Temperature-induced phase changes in mitochondrial membranes detected by spin-labeling, J. Biol. Chem. 246:4036–4040.

    PubMed  CAS  Google Scholar 

  • Razin, S., Tourtellotte, M. E., McElhaney, R. N., and Pollack, J. D., 1966, Influence of lipid components of Mycoplasma laidlawii membranes on osmotic fragility of cells, J. Bacteriol. 91:609–616.

    PubMed  CAS  Google Scholar 

  • Razi-Naqvi, K., Gonzales-Rodriguez, J., Cherry, R. J., and Chapman, D., 1973, Spectroscopic technique for studying protein rotation in membranes, Nature (London) New Biol. 245:249–251.

    CAS  Google Scholar 

  • Read, B. D., and McElhaney, E. N., 1976, Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes, Biochim. Biophys. Acta 419:331–341.

    PubMed  CAS  Google Scholar 

  • Reader, T. A., and De Robertis, E., 1974, The response of artificial lipid membranes containing a cholinergic hydrophobic protein from Electrophorus electroplax, Biochim. Biophys. Acta 352:192–201.

    PubMed  CAS  Google Scholar 

  • Redwood, W. R., Gibbes, D. C., and Thompson, T. E., 1973, Interaction of a solubilized membrane ATPase with lipid bilayer membrane, Biochim. Biophys. Acta 318:10–22.

    PubMed  CAS  Google Scholar 

  • Reed, C. F., 1968, Phospholipids exchange between plasma and erythrocytes in man and in the dog, J. Clin. Invest. 47:749–760.

    PubMed  CAS  Google Scholar 

  • Reed, P. W., and Lardy, H. A., 1972, A-23187-A divalent cation ionophore, J. Biol. Chem. 247:6970–6977.

    PubMed  CAS  Google Scholar 

  • Reinert, J., and Steim, J. M., 1970, Calorimetric detection of a membrane lipid phase transition in living cells, Science 168:1580–1582.

    PubMed  CAS  Google Scholar 

  • Renooj, J. W., Van Golde, L. M. G., Zwaal, R. F. A., and Van Deenen, L. L. M., 1976, Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes, Eur. J. Biochem. 61:53–58.

    Google Scholar 

  • Robson, B., and Pain, R. H., 1972, Directional information transfer in protein helices, Nature (London) New Biol. 238:107–108.

    CAS  Google Scholar 

  • Rogers, M. J., and Strittmatter, P., 1973, Lipid protein interactions in the reconstitution of the microsomal NADH-cytochrome b 5 reductase system, J. Biol. Chem. 248:800–806.

    PubMed  CAS  Google Scholar 

  • Rogers, M. J., and Strittmatter, P., 1974a, Evidence for random distribution and translocational movement of cytochrome b 5 in endoplasmic reticulum, J. Biol. Chem. 249:895–900.

    PubMed  CAS  Google Scholar 

  • Rogers, M. J., and Strittmatter, P., 1974b, The binding of NADH-cytochrome b 5 reductase to hepatic microsomes, J. Biol. Chem. 249:5565–5569.

    PubMed  CAS  Google Scholar 

  • Roisin, M. P., and Kepes, A., 1973, The membrane ATPase of Escherichia coli. II. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase, Biochim. Biophys. Acta 305:249–259.

    PubMed  CAS  Google Scholar 

  • Romeo, D., Girard, A., and Rothfield, L. L, 1970a, Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid, J. Mol. Biol. 53:475–490.

    PubMed  CAS  Google Scholar 

  • Romeo, D., Hinckley, A., and Rothfield, L. I., 1970b, Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme, J. Mol. Biol. 53:491–501.

    PubMed  CAS  Google Scholar 

  • Romine, W. O., Goodall, M. C., Peterson, J., and Bradley, R. J., 1974, The acetylcholine receptor: Isolation of a brain nicotinic receptor and its preliminary characterization in lipid bilayer membranes, Biochim. Biophys. Acta 316:316–325.

    Google Scholar 

  • Rothfield, L. I., and Hinckley, A., 1974, The in vitro interaction of bacterial membrane lipids and proteins, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 102–112, North-Holland, Amsterdam.

    Google Scholar 

  • Rothfield, L. I., and Romeo, D., 1971, Enzyme reactions in biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 251–284, Academic Press, New York.

    Google Scholar 

  • Rothman, J. E., Tsai, D. K., Dawidovicz, E. A., and Lenard, J., 1976, Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus, Biochemistry 15:2361–2370.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., Cabantchik, Z. I., Ealshin, M., and Juliano, R., 1975, Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes, Biochim. Biophys. Res. Commun. 64:144–150.

    CAS  Google Scholar 

  • Rottem, S., 1975, Heterogeneity in the physical state of the exterior and interior regions of mycoplasma membrane lipids, Biochem. Biophys. Res. Commun. 64:7–12.

    PubMed  CAS  Google Scholar 

  • Rottem, S., Cirillo, V. P., De Kruyff, B., Shinitzky, M., and Razin, S., 1973, Cholesterol in Mycoplasma membranes: Correlation of enzymic and transport activities with physical state of lipids in membrane of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentration, Biochim. Biophys. Acta 323:509–519.

    PubMed  CAS  Google Scholar 

  • Rubalcava, B., and Rodbell, M., 1973, The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248:3831–3837.

    PubMed  CAS  Google Scholar 

  • Rubin, M. S., Swislocki, N. I., and Sonenberg, M., 1973, Alteration of liver plasma membrane protein conformation by bovine growth hormone in vitro, Arch. Biochem. Biophys. 157:252–259.

    PubMed  CAS  Google Scholar 

  • Sachs, G., Spenney, J. G., Saccomani, G., and Goodall, M. C., 1974, Characterization of gastric mucosal membranes, VI. The presence of channel-forming substances, Biochim. Biophys. Acta 332:233–247.

    CAS  Google Scholar 

  • Saudermann, H., 1974, The reactivation of C55-isoprenoid alcohol phosphokinase apoprotein by lipids: Evidence for lipid hydration in lipoprotein function, Eur. J. Biochem. 43:415–422.

    Google Scholar 

  • Saudermann, H., 1976, A possible correlation between lipid hydration and lipid activation of the C55-isoprenoid alcohol phosphokinase apoprotein, Eur. J. Biochem. 62:479–484.

    Google Scholar 

  • Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 69:2056–2060.

    PubMed  CAS  Google Scholar 

  • Scanu, A. M., 1965, Studies on the conformation of human serum high density lipoproteins HDL2 and HDL3, Proc. Natl. Acad. Sci. U.S.A. 54:1699–1705.

    PubMed  CAS  Google Scholar 

  • Scarpa, A., and DeGier, J., 1971, Cation permeability of liposomes as a function of the chemical composition of the lipid bilayer, Biochim. Biophys. Acta 241:789–797.

    PubMed  CAS  Google Scholar 

  • Schatz, G., and Mason, T. L., 1974, The biosynthesis of mitochondrial proteins, Annu. Rev. Biochem. 43:51–87.

    CAS  Google Scholar 

  • Schneider, A. S., Schneider, M. J. J., and Rosenheck, K., 1970, Optical activity of biological membranes: Scattering effects and protein conformation, Proc. Natl. Acad. Sci. U.S.A. 66:739–798.

    Google Scholar 

  • Schneider, D. L., Kagawa, Y., and Racker, E., 1972, Chemical modification of the inner mitochondrial membranes, J. Biol. Chem. 247:4074–4079.

    PubMed  CAS  Google Scholar 

  • Schreier-Muccillo, S., Marsh, D., and Smith, I. C. P., 1976, Monitoring the permeability profile of lipid membranes with spin probes, Arch. Biochim. Biophys. 172:1–11.

    CAS  Google Scholar 

  • Sechi, A. M., Bertoli, E., Landi, L., Parenti-Castelli, G., Lenaz, G., and Curatola, G., 1973, Temperature dependence of mitochondrial activities and its relation to the physical state of the lipids in the membrane, Acta Vitaminol. Enzymol. (Milan) 27:177–190.

    CAS  Google Scholar 

  • Seelig, J., 1976, Anisotropic motion in liquid-crystalline structure, in: Spin Labelling Theory and Applications, Chapt. 10, pp. 373–409, Academic Press, New York.

    Google Scholar 

  • Seelig, J., and Niederberger, W., 1974, Two pictures of a lipid bilayer: A comparison between deuterium label and spin label experiments, Biochemistry 13:1585–1588.

    PubMed  CAS  Google Scholar 

  • Seeman, P., 1972, The membrane actions of anesthetics and tranquilisers, Pharmacol. Rev. 24:583–655.

    PubMed  CAS  Google Scholar 

  • Sefton, B. M., and Gaffney, B. J., 1974, Effect of the viral proteins on the fluidity of the membrane lipids in Sindbis virus, J. Mol. Biol. 90:343–358.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., 1976, Amphipathic helixes and plasma lipoproteins: Thermodynamic and geometric considerations, Chem. Phys. Lipids 18:7–22.

    Google Scholar 

  • Segrest, J. P., 1977, The erythrocyte: Topomolecular anatomy of MN-glyco-protein, in: Mammalian Cell Membranes, Vol. 3 (G. A. Jamieson and D. M. Robson, eds.), pp. 1–26, Butterworths, London.

    Google Scholar 

  • Segrest, J. P., and Feldmann, R. J., 1975, Membrane proteins: Amino acid sequence and membrane penetration, J. Mol. Biol. 87:853–858.

    Google Scholar 

  • Segrest, J. P., and Kohn, L. D., 1973, Protein-lipid interactions of the membrane-penetrating MN-glycoprotein from the human erythrocyte in: Protides of the Biological Fluids, 21st Colloquium (H. Peeters, ed.), pp. 183–189, Pergamon Press, Oxford.

    Google Scholar 

  • Segrest, J. P., Jackson, R. I., Morrisett, J. D., and Gotto, A. M., 1974a, A molecular theory of lipid protein interactions in the plasma lipoproteins, FEBS Lett. 38:247–253.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., Gulik-Krzywicki, T., and Sardet, C., 1974b, Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles, Proc. Natl. Acad. Sci. U.S.A. 71:3294–3298.

    PubMed  CAS  Google Scholar 

  • Senior, A. E., 1973, The structure of mitochondrial ATPase, Biochim. Biophys. Acta 301:249–277.

    PubMed  CAS  Google Scholar 

  • Serrano, R., Kamner, B. I., and Racker, E., 1976, Purification and properties of the proton translocating ATPase complex of bovine heart mitochondria, J. Biol. Chem. 251:2453–2461.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Albers, R. W., 1973, Na+-selective ionophoric material derived from electric organ and kidney membranes, Proc. Natl. Acad. Sci. U.S.A. 70:1191–1194.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Eldefrawi, M. E., 1975, Carbamylcholine and acetylcholine-sensitive cation-selective ionophore as part of the purified acetylcholine receptor, J. Membrane Biol. 25:47–63.

    CAS  Google Scholar 

  • Shamoo, A. E., and MacLennan, D. H., 1974, A Ca++-dependent and selective ionophore as part of the Ca++-and Mg++-dependent ATPase of sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 71:3522–3526.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and MacLennan, D. H., 1975, Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the (Ca++ + Mg++)-ATPase of sarcoplasmic reticulum, J. Membrane Biol. 25:65–74.

    CAS  Google Scholar 

  • Shamoo, A. E., and Myers, M. M., 1974, Na+-dependent ionophore as part of the small polypeptide of the (Na+ + K+)ATPase from eel electroplax membrane, J. Membrane Biol. 19:163–178.

    CAS  Google Scholar 

  • Shamoo, A. E., Myers, M. M., Blumenthal, K., and Albers, K. W., 1974, Ionophoric material derived from eel membrane preparation. I. Chemical characteristics, J. Membrane Biol. 19:129–140.

    CAS  Google Scholar 

  • Shamoo, A. E., Regan, T. E., Stewart, P. S., and MacLennan, D. H., 1976, Localization of ionophore activity in a 20,000-dalton fragment of the ATPase of sarcoplasmic reticulum, J. Biol. Chem. 251:4147–4154.

    PubMed  CAS  Google Scholar 

  • Shechter, E., Letellier, L,, and Gulik-Krzywicki, T., 1974, Relation between structure and function in cytoplasmic membrane vesicles isolated from an E. coli fatty acid auxotroph, Eur. J. Biochem. 49:61–76.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Singer, S. J., 1974, Biological membranes as bilayer couples: A molecular mechanism of drug-erythrocyte interactions, Proc. Natl. Acad. Sci. U.S.A. 71:4457–4461.

    PubMed  CAS  Google Scholar 

  • Sherman, G., and Folch-Pi, J., 1970, Rotatory dispersion and circular dichroism of brain “proteolipid” protein, J. Neurochem. 17:597–605.

    PubMed  CAS  Google Scholar 

  • Shimshick, E. J., Kleemann, W., Hubbell, W. L., and McConnell, H., 1973, Lateral phase separations in membranes, J. Supramol. Struct. 1:285–294.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of mouse lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85:603–615.

    PubMed  CAS  Google Scholar 

  • Shipley, G. G., Atkinson, D., and Scanu, A. M., 1972, Small angle X-ray scattering of human serum high-density lipoproteins, J. Supramol. Struct. 1:98–104.

    PubMed  CAS  Google Scholar 

  • Sierra, M. F., and Tzagoloff, A., 1973, Assembly of the mitochondrial membrane system: Purification of a mitochondrial product of the ATPase, Proc. Natl. Acad. Sci. U.S.A. 70:3155–3159.

    PubMed  CAS  Google Scholar 

  • Silman, H. I., and Katchalski, E., 1966, Water-insoluble derivatives of enzymes, antigens and antibodies, Annu. Rev. Biochem. 35:873–908.

    PubMed  CAS  Google Scholar 

  • Sinensky, M., 1971, Temperature control of phospholipid biosynthesis in E. coli, J. Bacteriol. 106:449–455.

    PubMed  CAS  Google Scholar 

  • Siñeriz, F., Farias, R. N., and Trucco, R. E., 1973a, Lipid-protein interactions in membranes: Arrhenius plots and Hill plots in membrane-bound Ca2+-ATPase of E. coli, FEBS Lett. 32:30–32.

    PubMed  Google Scholar 

  • Siñeriz, F., Bloj, B., Farias, R. N., and Trucco, R. E., 1973b, Regulation by membrane fluidity of the allosteric behavior of the Ca2+-ATPase from E. coli, J. Bacteriol. 115:723–726.

    PubMed  Google Scholar 

  • Siñeriz, F., Farias, R. N., and Trucco, R. E., 1975, The convenience of the use of allosteric “probes” for the study of lipid-protein interactions in biological membranes: Thermodynamic considerations, J. Theor. Biol. 52:113–120.

    PubMed  Google Scholar 

  • Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 145–222, Academic Press, New York.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.

    PubMed  CAS  Google Scholar 

  • Slater, E. C., 1953, Mechanism of phosphorylation in the respiratory chain, Nature (London) 172:975–978.

    CAS  Google Scholar 

  • Smith, C. L., 1973, The temperature dependence of oxidative phosphorylation and of the activity of various enzyme systems in liver mitochondria from cold and warm blooded animals, Comp. Biochem. Physiol. 46:445–461.

    CAS  Google Scholar 

  • Smith, I. C. P., 1972, The spin label method, in: Biological Applications of Electron Spin Resonance (H. M. Swartz, J. R. Bolton, and D. C. Borg, eds.), pp. 483–539, Wiley Interscience, New York.

    Google Scholar 

  • Solomon, B., and Miller, I. R., 1976, Interaction of glucose oxidase with phospholipid vesicles, Biochim. Biophys. Acta 455:332–342.

    PubMed  CAS  Google Scholar 

  • Solomonson, L. P., Liepkalns, V. A., and Spector, A. A., 1976, Changes in (Na+ + K+)ATPase activity of Ehrlich ascites tumor cells produced by alteration of membrane fatty acid composition, Biochemistry 15:892–897.

    PubMed  CAS  Google Scholar 

  • Solti, M., and Friedrich, P., 1976, Partial reversible inactivation of enzymes due to binding to the human erythrocyte membrane, Mol. Cell. Biochem. 10:145–152.

    PubMed  CAS  Google Scholar 

  • Sonenberg, M., 1971, Interaction of human growth hormone and human erythrocyte membranes: Studies by intrinsic fluorescence, J. Proc. Natl. Acad. Sci. U.S.A. 68:1051–1055.

    CAS  Google Scholar 

  • Soodsma, J. F., and Nordlie, R., 1969, Effects of cetyl trimethylammonium bromide on catalytic properties of kidney microsomal glucose-6-phosphatase, inorganic pyrophosphate-glucose phosphotransferase and inorganic pyrophosphatase, Biochim. Biophys. Acta 191:636–643.

    PubMed  CAS  Google Scholar 

  • Spatz, L., and Strittmatter, P., 1971, A form of cytochrome b 5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. U.S.A. 68:1042–1046.

    PubMed  CAS  Google Scholar 

  • Spatz, L., and Strittmatter, P., 1973, A form of NADH-cytochrome b 5 reductase containing both the catalytic site and additional hydrophobic membrane-binding segment, J. Biol. Chem. 248:793–799.

    PubMed  CAS  Google Scholar 

  • Srere, P. A., 1972, Is there an organization of Krebs cycle enzymes in the mitochondrial matrix?, in: Energy Metabolism and thr Regulation of Metabolic Processes in Mitochondria (M. A. Mehlman and R. W. Hanson, eds.), pp. 79–91, Academic Press, New York.

    Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.

    PubMed  CAS  Google Scholar 

  • Steim, J. M., Tourtellotte, M. E., Reinhert, J. C., McElhaney, K. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. U.S.A. 63:104–109.

    PubMed  CAS  Google Scholar 

  • Stein, W. D., 1972, The mechanism of sugar transfer across erythrocyte membranes, Ann. N. Y. Acad. Sci. 195:412–428.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., 1960, The nature of the heme binding in microsomal cytochrome b 5, J. Biol. Chem. 235:2492–2497.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., and Rogers, M. J., 1975, Apparent dependence of interactions between cytochrome b 5 and cytochrome b 5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Natl. Acad. Sci. U.S.A. 72:2658–2661.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Rogers, M. J., and Spatz, L., 1972, The binding of cytochrome b 5 to liver microsomes, J. Biol. Chem. 247:7188–7194.

    PubMed  CAS  Google Scholar 

  • Sullivan, K. H., Jain, M. K., and Koch, A. L., 1974, Activation of the β-galactoside transport system in E. coli ML-308 by n-alkanols: Modification of lipid-protein interaction by a change in bilayer fluidity, Biochim. Biophys. Acta 352:287–297.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., and Sun, A. Y., 1974, Synaptosomal plasma membranes: Acyl group composition of phosphoglycerides and (Na + K+)ATPase activity during fatty acid deficiency, J. Neurochem. 22:15–18.

    PubMed  CAS  Google Scholar 

  • Swanljung, P., Frigeri, I., Ohlson, K., and Ernster, L., 1973, Studies on the activation of purified mitochondrial ATPase by phospholipids, Biochim. Biophys. Acta 305:519–533.

    PubMed  CAS  Google Scholar 

  • Szabo, G., 1972, Lipid bilayer membranes, in: Membrane Molecular Biology (C. F. Fox and A. Keith, eds.), pp. 146–163, Sinauer Associates, Stamford, Connecticut.

    Google Scholar 

  • Szabo, G., 1974, Dual mechanism for the action of cholesterol on membrane permeability, Nature (London) 252:47–49.

    CAS  Google Scholar 

  • Tall, A. R., Shipley, G. G., and Small, D. M., 1976, Conformational and thermodynamic properties of apo A-1 human high density lipoproteins, J. Biol. Chem. 251:3749–3755.

    PubMed  CAS  Google Scholar 

  • Tanaka, R., and Sakamoto, T., 1969, Molecular structure in phospholipid essential to activate (Na+ + K+-Mg2+)-dependent ATPase and (K+-Mg2+)-dependent phosphatase of bovine cerebral cortex, Biochim. Biophys. Acta 193:384–393.

    PubMed  CAS  Google Scholar 

  • Tanaka, R., and Teruya, A., 1973, Lipid dependence of activity temperature relationship of (Na+ + K+) activated ATPase, Biochim. Biophys. Acta 323:584–591.

    PubMed  CAS  Google Scholar 

  • Tanaka, R., Sakamoto, T., and Sakamoto, Y, 1971, Mechanism of lipid activation of (Na+-K+-Mg2+)-activated ATPase and (K+-Mg2+)-activated phosphatase of bovine cerebral cortex, J. Membrane Biol. 4:42–51.

    CAS  Google Scholar 

  • Tanford, E. C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84:4240–4247.

    CAS  Google Scholar 

  • Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in E. coli, Biochemistry 15:328–334.

    PubMed  CAS  Google Scholar 

  • Tinberg, H. M., Packer, L., and Keith, A. D., 1972, Role of lipids in mitochondrial energy coupling: Evidence from spin labelling and freeze-fracture electron microscopy, Biochim. Biophys. Acta 283:193–205.

    PubMed  CAS  Google Scholar 

  • Tinberg, H. M., Nayudu, P. R. V., and Packer, L., 1976, Crosslinking of membranes: The effect of dimethyl suberimidate, a bifunctional alkylating agent, on mitochondrial electron transport and ATPase, Arch. Biochem. Biophys. 172:734–740.

    PubMed  CAS  Google Scholar 

  • Toson, G., Contessa, A. R., and Bruni, A., 1972, Solubilization of mitochondrial ATPase by phospholipids, Biochem. Biophys. Res. Commun. 48:241–347.

    Google Scholar 

  • Trauble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. U.S.A. 71:214–219.

    PubMed  CAS  Google Scholar 

  • Trauble, H., and Overath, P., 1973, The structure of E. coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491–512.

    PubMed  CAS  Google Scholar 

  • Trauble, H., Middelhoff, G., and Brown, V. W., 1974, Interaction of a serum apolipoprotein with ordered and fluid lipid bilayers: Correlation between lipid and protein structure, FEBS Lett. 49:269–275.

    PubMed  CAS  Google Scholar 

  • Triggle, D. J., 1970, Some aspects of the role of lipids in lipid-protein interactions and cell membrane structure and function, in: Recent Progress in Surface Science (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), Vol. 3, pp. 169–192, Academic Press, New York.

    Google Scholar 

  • Tsong, T. Y., 1975, Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures, Biochemistry 25:5409–5414.

    Google Scholar 

  • Tsukagoshi, N., and Fox, C. F., 1973, Transport system assembly and the mobility of membrane lipids in E. coli, Biochemistry 12:2822–2829.

    PubMed  CAS  Google Scholar 

  • Tyson, C. A., Vande Zande, H., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251:1326–1332.

    PubMed  CAS  Google Scholar 

  • Tzagoloff, A., Rubin, M. S., and Sierra, M. F., 1973, Biosynthesis of mitochondrial enzymes, Biochim. Biophys. Acta 301:71–104.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed π(l,d) helix, Proc. Natl. Acad. Sci. U.S.A. 68:672–676.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., 1972, Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions, Biochim. Biophys. Acta 265:116–168.

    Google Scholar 

  • Urry, D. W., 1974, Corrections for optical-rotation data on biomembranes, in: Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 32, pp. 220–233, Academic Press, New York.

    Google Scholar 

  • Urry, D. W., 1975, Molecular mechanisms of ion permeation of membranes, Int. J. Quantum Chem. 2:221–235.

    CAS  Google Scholar 

  • Urry, D. W., and Ji, T. H., 1968, Distortions in circular dichroism patterns of particulate (or membranous) systems, Arch. Biochem. Biophys. 128:802–807.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., and Long, M. M., 1975, Circular dichroism and absorption studies on biomembranes, in: Methods in Membrane Biology, Vol. I, (E. D. Korn, ed.), pp. 105–141, Plenum Press, New York.

    Google Scholar 

  • Urry, D. W., and Long, M. M., 1978, Ultraviolet absorption, circular dichroism, and optical rotatory dispersion in biomembrane studies, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 107–124, Plenum Medical, New York.

    Google Scholar 

  • Urry, D. W., Hinners, J. H., and Masotti, L., 1970, Calculation of distorted circular dichroism curves for poly-glutamic acid suspensions, Arch. Biochem. Biophys. 137:214–221.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., Goodall, M. C., Glickson, J. D., and Mayers, D. F., 1971a, The gramicidin A transmembrane channel: Characteristics of head to head dimerized π(l,d) helices, Proc. Natl. Acad. Sci. U.S.A. 68:1907–1911.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., Masotti, L., and Krivacic, J. R., 1971b, Circular dichroism of biological membranes. I. Mitochondria and red blood cell ghosts, Biochim. Biophys. Acta 241:600–612.

    PubMed  CAS  Google Scholar 

  • Van, S. P., and Griffith, O. H., 1975, Bilayer structure in phospholipid-cytochrome c model membranes, J. Membrane Biol. 20:155–170.

    CAS  Google Scholar 

  • Vanderkooi, G., 1974, Organization of proteins in membranes with special reference to the cytochrome oxidase system, Biochim. Biophys. Acta 344:307–345.

    PubMed  CAS  Google Scholar 

  • Vanderkooi, G., and Green, D. E., 1970, Biological membrane structure. I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S.A. 66:615–621.

    PubMed  CAS  Google Scholar 

  • Vanderkooi, J. M., and Callis, J. B., 1974, Pyrene: A probe of lateral diffusion in the hydrophobic region of membranes, Biochemistry 13:4000–4006.

    PubMed  CAS  Google Scholar 

  • Vanderkooi, J. M., Erecinska, M., and Chance, B., 1973, Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes, Arch. Biochem. Biophys. 154:219–229.

    PubMed  CAS  Google Scholar 

  • Vanderkooi, J. M., Fischkoff, S., Chance, B., and Cooper, R. A., 1974, Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes, Biochemistry 13:1589–1595.

    PubMed  CAS  Google Scholar 

  • Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L., 1975, Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A, J. Mol. Biol. 99:75–92.

    PubMed  CAS  Google Scholar 

  • Verger, R., Mieras, M. C. E., and de Haas, G. H., 1973, Action of phospholipase A at interfaces, J. Biol. Chem. 248:4023–4034.

    PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and Van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy, Biochim. Biophys. Acta 323:178–193.

    PubMed  CAS  Google Scholar 

  • Verkleij, A. J., De Kruyff, B., Ververgaert, P. H. J. T., Tocanne, J. F., and Van Deenen, L. L. M., 1974, The influence of pH, Ca2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol, Biochim. Biophys. Acta 339:432–437.

    PubMed  CAS  Google Scholar 

  • Verma, S. P., and Wallach, D. F. H., 1975, Evidence for constrained lipid mobility in the erythrocyte ghost: A spin label study, Biochim. Biophys. Acta 382:73–82.

    PubMed  CAS  Google Scholar 

  • Walker, J. A., and Wheeler, K. P., 1975, Polar head group and acyl side chain requirements for phospholipid-dependent (Na+ + K+)-ATPase, Biochim. Biophys. Acta 394:135–144.

    PubMed  CAS  Google Scholar 

  • Warren, G. B., and Metcalfe, J. C., 1976, How the structure of sarcoplasmic reticulum optimizes the accumulation of calcium, 2nd National Meeting, Italian Society of Biochemistry and Joint Colloquia, Abstracts No. 27.

    Google Scholar 

  • Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974a, Reversible lipid titrations of the activity of pure ATPase-lipid complexes, Biochemistry 13:5501–5507.

    PubMed  CAS  Google Scholar 

  • Warren, G. B., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974b, Lipid substitution: The investigation of functional complexes of single species of phospholipid and a purified calcium transport protein, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 1–12, North-Holland, Amsterdam.

    Google Scholar 

  • Warren G. B. Bennett J. P. Hesketh T. R. Houslay M. D. Smith G. A. and Metcalfe J. C. 1975a The lipids surrounding a calcium transport protein: Their role in calcium transport and accumulation FEBS (Fed. Eur. Biochem. Soc.) Proc. Meet. 1975 pp. 3–15

    Google Scholar 

  • Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975b, Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein, Nature (London) 255:684–687.

    CAS  Google Scholar 

  • Wells, M. A., 1974, The mechanism of interfacial activation of phospholipase A2, Biochemistry 13:2248–2257.

    PubMed  CAS  Google Scholar 

  • Wiley, J. S., and Cooper, R. A., 1975, Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes, Biochim. Biophys. Acta 413:425–431.

    PubMed  CAS  Google Scholar 

  • Wilschut, J. C., and Scherphof, G. L., 1974, The effect of partial degradation of mitochondrial phospholipids by phospholipase A on the temperature dependence of succinate cytochrome c reductase and cytochrome c oxidase, Biochim. Biophys. Acta 356:91–99.

    PubMed  CAS  Google Scholar 

  • Wilschut, J. C., Regts, J., and Scherphof, G., 1976, Reactivation of β-hydroxybutyrate dehydrogenase by phosphatidylcholine/phosphatidyl ethanolamine mixtures: Evidence for a temperature-induced phase separation, FEBS Lett. 63:328–332.

    PubMed  CAS  Google Scholar 

  • Wirtz, K. W. A., 1974, Transfer of phospholipids between membranes, Biochim. Biophys. Acta 344:95–117.

    PubMed  CAS  Google Scholar 

  • Wisnieski, B. J., Parkes, J. G., Huang, Y. O., and Fox, C. F., 1974, Physical and physiological evidence for two phase transitions in cytoplasmic membranes of animal cells, Proc. Natl. Acad. Sci. U.S.A. 71:4381–4385.

    PubMed  CAS  Google Scholar 

  • Wodtke, E., 1976, Discontinuities in the Arrhenius plots of mitochondrial membrane-bound enzyme systems from a poikilotherm: Acclimation temperature of carp affects transition temperatures, J. Comp. Physiol. 110:145–157.

    CAS  Google Scholar 

  • Wrigglesworth, J. M., and Packer, L., 1968, ORD and CD studies on mitochondria: Correlation of ultrastructure and metabolic state with molecular conformational changes, Arch. Biochem. Biophys. 128:790–801.

    PubMed  CAS  Google Scholar 

  • Wright, E. M., and Diamond, J. M., 1069, Patterns of non-electrolyte permeability, Proc. R. Soc. London 172:227–271.

    Google Scholar 

  • Wu, S. H., and McConnell, H. M., 1975, Phase separation in phospholipid membranes, Biochemistry 14:847–854.

    CAS  Google Scholar 

  • Wunderlich, F., Ronai, A., Speth, V., Seelig, J., and Blume, A., 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochemistry 14:3730–3735.

    PubMed  CAS  Google Scholar 

  • Wynn-Williams, A. T., 1976, An explanation of apparent sudden change in the activation energy of membrane enzymes, Biochem. J. 157:279–281.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y., and Nishimura, M., 1976, Characteristics of light-induced H+ transport in spinach chloroplasts at lower temperatures. I. Relationship between H+ transport and physical changes of the microenvironment in chloroplast membranes, Plant Cell Physiol. 17:11–16.

    CAS  Google Scholar 

  • Yeagle, P. L., Hutton, W. C., Martin, R. B., Sears, B., and Huang, C. H., 1976, Transmembrane asymmetry of vesicle lipids, J. Biol. Chem. 251:2110–2112.

    PubMed  CAS  Google Scholar 

  • Yguerabide, J., 1973, Nanosecond fluorescence spectroscopy of biological macromolecules and membranes, in: Fluorescence Techniques (A. A. Thah and M. Sernutz, eds.), pp. 311–331, Springer-Verlag, New York.

    Google Scholar 

  • Yu, L., Yu, E., and King, T. E., 1973, The role of phospholipids in succinate-cytochrome c reductase, Biochemistry 12:540–546.

    PubMed  CAS  Google Scholar 

  • Zahler, P., and Weibel, E. R., 1970, Reconstitution of membranes by recombining proteins and lipids derived from erythrocyte stroma, Biochim. Biophys. Acta 219:320–338.

    PubMed  CAS  Google Scholar 

  • Zahler, W. L., and Fleischer, S., 1971, Kinetic studies of the lipid requirement of mitochondrial cytochrome c oxidase, J. Bioenerg. 2:209–216.

    PubMed  CAS  Google Scholar 

  • Zahler, W. L., Puett, D., and Fleischer, S., 1972, Circular dichroism of mitochondrial membranes before and after extraction of lipids and surface proteins, Biochim. Biophys. Acta 255:365–376.

    PubMed  CAS  Google Scholar 

  • Zakim, D., 1970, Regulation of microsomal enzymes by phospholipids. I. The effects of phospholipases and phospholipids on glucose-6-phosphatase, J. Biol. Chem. 245:4953–4961.

    PubMed  CAS  Google Scholar 

  • Zimmer, G., Schirmer, H., and Bastian, P., 1975, Lipid protein interactions at the erythrocyte membrane: Different influence of glucose and sorbose on membrane lipid transition, Biochim. Biophys. Acta 401:244–255.

    PubMed  CAS  Google Scholar 

  • Zeylemaker, W. P., Jansen, H., Veeger, C., and Slater, E. C., 1971, Studies on succinate dehydrogenase. VII. The effect of temperature on the succinate oxidation, Biochim. Biophys. Acta 242:14–22.

    PubMed  CAS  Google Scholar 

  • Zwaal, R. F. A., and Van Deenen, L. L. M., 1970, Interactions between proteins and lipid from human red cell membranes, Chem. Phys. Lipids 4:311–322.

    PubMed  CAS  Google Scholar 

  • Zwaal, R. F. A., and Van Deenen, L. L. M., 1971, Reconstitution in vitro of proteins and lipids from mammalian erythrocyte membranes, Biochem. J. 122:628–631.

    Google Scholar 

  • Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and Van Deenen, L. L. M., 1975, Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases, Biochim. Biophys. Acta 406:83–96.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Lenaz, G. (1979). The Role of Lipids in the Structure and Function of Membranes. In: Roodyn, D.B. (eds) Subcellular Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7945-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7945-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7947-2

  • Online ISBN: 978-1-4615-7945-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics