Skip to main content

The Petite Mutation in Yeast

  • Chapter
Subcellular Biochemistry

Abstract

Bakers’ yeast, Saccharomyces cerevisiae, is one of the simplest of eukaryotic organisms. Its ability to grow on liquid or solid defined media with a short generation time renders it amenable to the powerful techniques that have been employed to elucidate the biochemistry and genetics of prokaryotes. It has consequently been used as a model eukaryote for many biochemical and genetic investigations. It has found particular favor in studies on the mechanism of mitochondrial assembly and the role of mitochondrial DNA (mtDNA), the reason being that this species of yeast is capable of surviving and growing in the absence of functional mitochondria, obtaining its ATP requirements through fermentative metabolism. Many different types of mutation affecting mitochondrial function have been studied, but one particular class of mutants stands out in terms of the contribution it has made. This class comprises the different kinds of extrachromosomal petite mutants. Such mutants have sustained gross deletions or total loss of mtDNA and are, in consequence, incapable of assembling mitochondrial ribosomes and carrying out mitochondrial protein synthesis. Petite mutants have been of particular value in investigating the role of mtDNA, establishing which mitochondrial proteins are synthesized extramitochondrially and constructing gene maps of mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, N. E., and MacQuillan, A. M., 1969, Target analysis of mitochondrial genetic units in yeast, J. Bacteriol 97:1142–1148.

    PubMed  CAS  Google Scholar 

  • Allmark, B. M., Danks, S. M., and Whittaker, P. A., 1977, Isolation and characterization of respiration-deficient mutants of Kluyveromyces lactis, a petite-negative yeast, Biochem. Soc. Trans. 5:1498–1500.

    PubMed  CAS  Google Scholar 

  • Arakatsu, Y., 1971, Action of acriflavine on growth and mutation in yeast. I. Nitrogen sources affecting mutation-induction, Mutat. Res. 12:235–248.

    PubMed  CAS  Google Scholar 

  • Arakatsu, Y., 1972, Action of acriflavine on growth and mutation in yeast. II. Kinetic study on the effect of glutamate on respiration-deficient mutation-induction, Mutat. Res. 14:165–184.

    PubMed  CAS  Google Scholar 

  • Avers, C. J., 1967a, Heterogeneous length distribution of circular DNA filaments from yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 58:620–627.

    PubMed  CAS  Google Scholar 

  • Avers, C. J., 1967b, Distribution of cytochrome c peroxidase activity in wild type and petite cells of bakers’ yeast grown aerobically and anaerobically, J. Bacteriol 94:1225–1235.

    PubMed  CAS  Google Scholar 

  • Avers, C. J., Pfeffer, C. R., and Rancourt, M. W., 1965, Acriflavine induction of different kinds of “petite” mitochondrial populations in Saccharomycyes cerevisiae, J. Bacteriol. 90:481–494.

    PubMed  CAS  Google Scholar 

  • Azzi, A., and Santato, M., 1971, Interaction of ethidium and mitochondrial membrane: Cooperative binding and energy-linked changes, Biochem. Biophys. Res. Commun. 44:211–217.

    PubMed  CAS  Google Scholar 

  • Bachofen, V., Schweyen, R. J., Wolf, K., and Kaudewitz, F., 1972, Quantitative selection of respiratory deficient mutants in yeast by triphenyltetrazolium chloride, Z. Naturforsch. 27b:252–256.

    Google Scholar 

  • Bastos, R. N., and Mahler, H. R., 1974, Molecular mechanisms of mitochondrial genetic activity: Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria, J. Biol. Chem. 249:6617–6627.

    CAS  Google Scholar 

  • Bech-Hansen, N. T., and Rank, G. H., 1973, The bivious suppressiveness of cytoplasmic petites of S. cerevisiae lacking in mitochondrial DNA, Mol. Gen. Genet. 120:115–124.

    PubMed  CAS  Google Scholar 

  • Bechmann, H., Kruger, M., Boker, E., Bandlow, W., Schweyen, R. J., and Kaudewitz, F., 1977, Formation of rho petites in yeast. 2. Effects of mutation TSM-8 on mitochondrial functions and rho factor stability in Saccharomyces cerevisiae, Mol. Gen. Genet. 155:41–51.

    PubMed  CAS  Google Scholar 

  • Benson, R. W., 1972, Characterization of yeast nuclear and mitochondrial DNA-dependent RNA polymerases, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:472.

    Google Scholar 

  • Bernardi, G., and Timasheff, G. N., 1970, Optical rotatory dispersion and circular dichroism properties of yeast mitochondrial DNA’s, J. Mol. Biol. 48:43–52.

    PubMed  CAS  Google Scholar 

  • Bernardi, G., Faures, M., Piperno, G., and Slonimski, P. P., 1970, Mitochondrial DNA’s from respiratory-sufficient and cytoplasmic respiratory-deficient mutant yeast, J. Mol. Biol. 48:23–42.

    PubMed  CAS  Google Scholar 

  • Bilinski, T., Jachymczyk, W. J., and Kotylak, Z., 1974, The dependence of cytosole protein biosynthesis-resistance to cycloheximide in yeast on changes in mitochondrial activity, Mol. Gen. Genet. 129:243–248.

    PubMed  CAS  Google Scholar 

  • Boguslawski, G., Vodkin, M. H., Finkelstein, D. B., and Fink, G. R., 1974, Histidyl-tRNAs and histidyl-tRNA synthetases in wild type and cytoplasmic petite mutants of Saccharomyces cerevisiae, Biochemistry 13:4659–4667.

    Google Scholar 

  • Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., and Slonimski, P. P., 1971, La recombinaison des mitochondries chez Saccharomyces cerevisiae, Bull. Inst. Pasteur (Paris) 69:215–239.

    Google Scholar 

  • Borst, P., 1970, Mitochondrial DNA: Structure, information content, replication and transcription, in: Control of Organelle Development (P. L. Miller, ed.), Symp. Soc. Exp. Biol. 24:201-226, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Borst, P., Van Bruggen, E. F. J., and Ruttenberg, G. J. C. M., 1968, Size and structure of mitochondrial DNA, in: Biochemical Aspects of the Biogenesis of Mitochondria (E. C. Slater, J. M. Tager, S. Papa, and E. Quagliariello, eds.), pp. 51–69, Adriatica Editrice, Bari, Italy.

    Google Scholar 

  • Bulder, C. J. A. E., 1963, On respiratory deficiency in yeast, Ph.D. thesis, Technische Hogeschool, Delft, The Netherlands.

    Google Scholar 

  • Bulder, C. J. A. E., 1964, Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts, Antonie van Leeuwenhoek J. Microbiol. Serol. 30:1–9.

    CAS  Google Scholar 

  • Carnevali, F., Morpurgo, G., and Tecce, G., 1969, Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: A hypothesis on the nature of the mutation, Science 163:1331–1333.

    PubMed  CAS  Google Scholar 

  • Carnevali, F., Falcone, C., Frontali, L., Leoni, L., Macino, G., and Palleschi, C., 1973, Informational content of mitochondrial DNA from a “low-density” petite mutant of yeast, Biochem. Biophys. Res. Commun. 51:651–658.

    PubMed  CAS  Google Scholar 

  • Carnevali, F., Sarcoe, L. E., and Whittaker, P. A., 1976, Differential effects of nalidixate on the cell growth of respiratory competent strains and cytoplasmic petite mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 146:95–100.

    PubMed  CAS  Google Scholar 

  • Casey, J., Fukuhara, H., Getz, G. S., and Rabinowitz, M., 1969, Hybridization of mitochondrial 3H-leucyl-tRNA with mitochondrial DNA of grande and petite yeast, J. Cell Biol. 43:18A.

    Google Scholar 

  • Casey, J., Cohen, M., Rabinowitz, M., Fukuhara, H., and Getz, G. S., 1972, Hybridization of mitochondrial transfer-RNAs with mitochondrial and nuclear DNA of grande (wild type) yeast, J. Mol. Biol. 63:431–440.

    PubMed  CAS  Google Scholar 

  • Casey, J., Gordon, P., and Rabinowitz, M., 1974a, Characterization of mitochondrial DNA from grande and petite yeasts by renaturation and denaturation analysis and by transfer RNA hybridization: Evidence for internal repetition or heterogeneity in mitochondrial DNA populations, Biochemistry 13:1059–1067.

    CAS  Google Scholar 

  • Casey, J., Hsu, H. U., Rabinowitz, M., Getz, G. S., and Fukuhara, H., 1974b, Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae, J. Mol. Biol. 88:717–733.

    PubMed  CAS  Google Scholar 

  • Chanet, R., and Heude, M., 1974, Variations in UV induced lethality and “petite” mutagenesis in synchronous culture of Saccharomyces cerevisiae, Mol. Gen. Genet. 131:21–26.

    PubMed  CAS  Google Scholar 

  • Chanet, R., Williamson, D. H., and Moustacchi, E., 1973, Cyclic variations in killing and “petite” mutagenesis induced by ultraviolet light in synchronized yeast strains, Biochim. Biophys. Acta 324:290–299.

    PubMed  CAS  Google Scholar 

  • Chappell, J. B., and Crofts, A. R., 1966, Ion transport and reversible volume changes of isolated mitochondria, in: Regulation of Metabolic Processes in Mitochondria (J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater, eds.), pp. 293–314, Elsevier, Amsterdam.

    Google Scholar 

  • Chen, S.-Y., Ephrussi, B., and Hottinguer, H., 1950, Nature génétique des mutants a déficience respiratoire de la souche B-II de la levure de boulangerie, Heredity 4:337–351.

    PubMed  CAS  Google Scholar 

  • Claisse, M. L., and Pajot, P. F., 1974, Presence of cytochrome c 1 in cytoplasmic petite mutants of Saccharomyces cerevisiae, Eur. J. Biochem. 49:49–59.

    PubMed  CAS  Google Scholar 

  • Clark-Walker, G. D., and Miklos, G. L., 1974, Mitochondrial genetics, circular DNA and the mechanism of the petite mutation in yeast, Genet. Res. 24:43–57.

    PubMed  CAS  Google Scholar 

  • Coen, D., Deutsch, J., Netter, P., Petrochilo, E., and Slonimski, P. P., 1970, Mitochondrial genetics. I. Methodology and phenomenology, in: Control of Organelle Development (P. L. Miller, ed.), Symp. Soc. Exp. Biol. 24:449-496, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Cohen, M., and Rabinowitz, M., 1972, Analysis of grande and petite yeast mitochondrial DNA by tRNA hybridization, Biochim. Biophys. Acta 281:192–201.

    PubMed  CAS  Google Scholar 

  • Cohen, M., Casey, J., Rabinowitz, M., and Getz, G. S., 1972, Hybridization of mitochondrial transfer RNA and mitochondrial DNA in petite mutants of yeast, J. Mol. Biol. 63:441–451.

    PubMed  CAS  Google Scholar 

  • Cooper, C. S., and Avers, C. J., 1974, Evidence of involvement of mitochondrial polysomes and messenger RNA in synthesis of organelle proteins, in: Biogenesis of Mitochondria (A. M. Kroon and C. Saccone, eds.), pp. 289–303, Academic Press, London and New York.

    Google Scholar 

  • Corneo, G., Moore, C., Sanadi, D. R., Grossman, L. I., and Marmur, J., 1966, Mitochondrial DNA in yeast and some mammalian species, Science 151:687–689.

    PubMed  CAS  Google Scholar 

  • Crandall, M., 1973, A respiratory-deficient mutant in the obligately aerobic yeast Hansenula wingei, J. Gen. Microbiol. 75:377–381.

    PubMed  CAS  Google Scholar 

  • Criddle, R. S., and Schatz, G., 1969, Promitochondria of anaerobically grown yeast. I. Isolation and biochemical properties, Biochemistry 8:322–334.

    PubMed  CAS  Google Scholar 

  • Criddle, R. S., Wheelis, L., Trembath, M. K., and Linnane, A. W., 1976, Molecular and genetic events accompanying petite induction and recovery of respiratory competence induced by ethidium bromide, Mol. Gen. Genet. 144:263–272.

    PubMed  CAS  Google Scholar 

  • Del Giudice, L., Pacchetti, G., Puglisi, P. P., and Tassi, R. F., 1974, Analisi comparativa dell’azione di bromuro di etidio, 5-fluorouracile e radiazione ultraviolette in lieviti petitenegativi e petite-positivi, G. Microbiol. 22:25–36.

    Google Scholar 

  • Delmonte, L., and Jukes, T., 1962, Folic acid antagonists in cancer therapy, Pharmacol. Rev. 14:91–135.

    PubMed  CAS  Google Scholar 

  • Douglas, M. G., and Butow, R. A., 1976, Variant forms of mitochondrial translation products in yeast: Evidence for location of determinants on mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A. 73:1083–1086.

    PubMed  CAS  Google Scholar 

  • Dujon, B., Slonimski, P. P., and Weill, L., 1974, Mitochondrial genetics, IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae, Genetics 78:415–437.

    PubMed  CAS  Google Scholar 

  • Eccleshall, T. R., and Criddle, R. S., 1974, The DNA-dependent RNA polymerases from yeast mitochondria, in: Biogenesis of Mitochondria (A. M. Kroon and C. Saccone, eds.), pp. 31–46, Academic Press, London and New York.

    Google Scholar 

  • Ehrlich, S. D., Thierry, J.-P., and Bernardi, G., 1972, The mitochondrial genome of wild-type yeast cells. III. The pyrimidine tracts of mitochondrial DNA, J. Mol. Biol. 65:207–212.

    PubMed  CAS  Google Scholar 

  • Ephrussi, B., and Grandchamp, S., 1965, Études sur la suppressivité des mutants a deficience respiratoire de la levure. I. Existence au niveau cellulaire de divers degrés de suppressivité, Heredity 20:1–7.

    Google Scholar 

  • Ephrussi, B., and Hottinguer, H., 1950, Direct demonstration of the mutagenic action of euflavine on baker’s yeast, Nature (London) 166:956.

    CAS  Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Chimenes, A.-M., 1949a, Action de l’acriflavine sur les levures. I. La mutation “petite colonie,” Ann. Inst. Pasteur (Paris) 76:351–367.

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Tavlitzki, J., 1949b, Action de l’acriflavine sur les levures. II. Étude génétique du mutant “petite colonie,” Ann. Inst. Pasteur (Paris) 76:419–450.

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Roman, H., 1955, Suppressiveness: A new factor in the genetic determination of the synthesis of respiratory enzymes in yeast, Proc. Natl. Acad. Sci. U.S.A. 41:1056–1071.

    Google Scholar 

  • Faures-Renot, M., Faye, G., Michel, F., and Fukuhara, H., 1974, In vivo transcription of mitochondrial DNA in some ρ mutants, Biochimie 56:681–691.

    PubMed  CAS  Google Scholar 

  • Faye, G., Fukuhara, H., Grandchamp, C., Lazowska, J., Michel, F., Casey, J., Getz, G. S., Locker, J., Rabinowitz, M., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., and Slonimski, P. P., 1973, Mitochondrial nucleic acids in petite colonie mutants: Deletions and repetitions of genes, Biochimie 55:779–792.

    PubMed  CAS  Google Scholar 

  • Faye, G., Kujawa, C., and Fukuhara, H., 1974, Physical and genetic organization of petite and grande yeast mitochondrial DNA and localization of 23S ribosomal RNA in petite mutants of Saccharomyces cerevisiae, J. Mol. Biol. 88:185–203.

    PubMed  CAS  Google Scholar 

  • Faye, G., Kujawa, C., Dujon, B., Bolotin-Fukuhara, M., Wolf, K., Fukuhara, H., and Slonimski, P. P. 1975, Localization of the gene coding for the 16 S ribosomal mitochondrial RNA using rho mutants of Saccharomyces cerevisiae, J. Mol. Biol. 99:203–217.

    PubMed  CAS  Google Scholar 

  • Flavell, R. B., 1971, Mitochondrion as a mutifunctional organelle, Nature (London) 230:504–506.

    CAS  Google Scholar 

  • Foury, F., and Tzagoloff, A., 1976, Localization on mitochondrial DNA of mutations leading to a loss of rutamycin-sensitive adenine triphosphatase, Eur. J. Biochem. 68:113–119.

    PubMed  CAS  Google Scholar 

  • Fukuhara, H., and Kujawa, C., 1970, Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and by acriflavine, Biochem. Biophys. Res. Commun. 41:1002–1006.

    PubMed  CAS  Google Scholar 

  • Fukuhara, H., Faures, M., and Genin, C., 1969, Comparison of RNA’s transcribed in vivo from mitochondrial DNA of cytoplasmic and chromosomal respiratory deficient mutants, Mol. Gen. Genet. 104:264–281.

    PubMed  CAS  Google Scholar 

  • Fukuhara, H., Faye, G., Michel, F., Lazowska, J., Deutsch, J., Bolotin-Fukuhara, M., and Slonimski, P. P., 1974, Physical and genetical organization of petite and grande yeast mitochondrial DNA. I. Studies by RNA-DNA hybridization, Mol. Gen. Genet. 130:215–238.

    PubMed  CAS  Google Scholar 

  • Fukuhara, H., Bolotin-Fukuhara, M., Hsu, H.-J., and Rabinowitz, M., 1976, Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants, Mol. Gen. Genet. 145:7–17.

    PubMed  CAS  Google Scholar 

  • Gillberg, B. O., and Åman, J., 1974, Petite mutants induced in yeast by optical brighteners, Mutat. Res. 13:149–154.

    Google Scholar 

  • Gillberg, B. O., Zetterberg, G., and Swanbeck, G., 1967, Petite mutants induced in yeast by dithranol (1,8,9,-trihydroxy-anthracene), an important therapeutic agent against psoriasis, Nature (London) 214:415.

    CAS  Google Scholar 

  • Gitler, C., Rubalcava, B., and Caswell, A., 1969, Fluorescence changes in ethidium bromide on binding to erythrocyte and mitochondrial membranes, Biochim. Biophys. Acta 193:479–481.

    PubMed  CAS  Google Scholar 

  • Goldring, E. S., Grossmann, L. I., Krupnick, D., Cryer, D. R., and Marmur, J., 1970, The petite mutation in yeast: Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide, J. Mol. Biol. 52:323–335.

    PubMed  CAS  Google Scholar 

  • Gonzales, M. T., and Montya, E., 1976, Biological role of suppressiveness in yeast, Microbios Lett. 2:213–217.

    Google Scholar 

  • Gordon, P. A., and Stewart, P. R., 1969, Ubiquinone formation in wild-type and petite yeast: The effect of catabolite repression, Biochim. Biophys. Acta 177:358–360.

    PubMed  CAS  Google Scholar 

  • Grivell, L. A., Reijnders, L., and Borst, P., 1971, Isolation of yeast mitochondrial ribosomes highly active in protein synthesis, Biochim. Biophys. Acta 247:91–103.

    PubMed  CAS  Google Scholar 

  • Groot, G. S. P., 1974, The biosynthesis of mitochondrial ribosomes in Saccharomyces cerevisiae, in: Biogenesis of Mitochondria (A. M. Kroon and C. Saccone, eds.), pp. 443–452, Academic Press, London and New York.

    Google Scholar 

  • Gross, V. J., and Smith, D. G., 1972, The effect of nalidixic acid on growth and petite formation in Saccharomyces cerevisiae, Microbios 6:139–146.

    PubMed  CAS  Google Scholar 

  • Grossman, L. I., Goldring, E. S., and Marmur, J., 1969, Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis, J. Mol. Biol. 46:361–316.

    Google Scholar 

  • Guerineau, M., Grandchamp, C., Yotsuyanagi, Y., and Slonimski, P. P., 1968, Examen au microscope électronique du DNA mitochondrial de la levure: Molécules à deux extrémités libres, C. R. Acad. Sci. Ser. D. 266:1884–1887.

    CAS  Google Scholar 

  • Halbreich, A., and Rabinowitz, M., 1971, Isolation of Saccharomyces cerevisiae mitochondrial formyltetrahydrofolic acid: Methionyl-tRNA transformylase and the hybridization of mitochondrial fmet-tRNA with mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A. 68:294–298.

    PubMed  CAS  Google Scholar 

  • Hall, R. M., Trembath, M. K., Linnane, A. W., Wheelis, L., and Criddle, R. S., 1976, Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide, Mol. Gen. Genet. 144:253–262.

    PubMed  CAS  Google Scholar 

  • Hammond, R. C., Wright, M., and Whittaker, P. A., 1974, Growth on galactose can prevent or delay the induction of petite mutants of Saccharomyces cerevisiae NCYC 239 by ethidium bromide, Biochem. Soc. Trans. 2:218–221.

    CAS  Google Scholar 

  • Haslam, J. M., Perkins, M., and Linnane, A. W., 1973, A requirement for mitochondrial protein synthesis for the formation of a normal adenine-nucleotide transporter in yeast mitochondria, Biochem. J. 134:935–947.

    PubMed  CAS  Google Scholar 

  • Heritage, J., and Whittaker, P. A., 1977, Autorepression of ethidium-bromide mutagenesis in Kluyveromyces lactis, a petite-negative yeast, Biochem. Soc. Trans. 5:262–264.

    Google Scholar 

  • Herman, A. I., and Griffin, P. S. 1968, Respiratory-deficient mutants in Saccharomyces lactis, J.Bacteriol. 96:457–461.

    PubMed  CAS  Google Scholar 

  • Heslot, H., Goffeau, A., and Louis, C., 1970a, Respiratory metabolism of a “petite-negative” yeast, Schizosaccharomyces pombe 972h, J. Bacteriol. 104:473–481.

    PubMed  CAS  Google Scholar 

  • Heslot, H., Louis, C., and Goffeau, A., 1970b, Segregational respiratory-deficient mutants of a “petite-negative” yeast, Schizosaccharomyces pombe 972h, J. Bacteriol. 104:482–491.

    PubMed  CAS  Google Scholar 

  • Heude, M., and Chanet, R., 1975, Protein synthesis and the recovery of both survival and cytoplasmic “petite” mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis, Mutat. Res. 28:47–55.

    PubMed  CAS  Google Scholar 

  • Heude, M., and Moustacchi, E., 1973, Influence de la croissance sur la réparation des radiolésions responsable de la mutation cytoplasmique “petite colonie” chez la levure, C. R. Acad. Sci. 277:1561–1564.

    CAS  Google Scholar 

  • Heude, M., Chanet, R., and Moustacchi, E., 1975, Protein synthesis and recovery of both survival and cytoplasmic “petite” mutation in ultraviolet-treated yeast cells. I. Nucleardirected protein synthesis, Mutat. Res. 28:37–45.

    PubMed  CAS  Google Scholar 

  • Hoffman, H. P., and Avers, C. J., 1973, Mitochondrion of yeast: Ultrastructural evidence for one giant, branched organelle per cell, Science 181:749–751.

    Google Scholar 

  • Hollenberg, C. P., and Borst, P., 1971, Conditions that prevent ρ-induction by ethidium bromide, Biochem. Biophys. Res. Commun. 45:1250–1254.

    PubMed  CAS  Google Scholar 

  • Hollenberg, C. P., Borst, P., Thuring, R. W. J., and Van Bruggen, E. F. J., 1969, Size, structure and genetic complexity of yeast mitochondrial DNA, Biochim. Biophys. Acta 186:417–419.

    PubMed  CAS  Google Scholar 

  • Hollenberg, C. P., Borst, P., and Van Bruggen, E. F. J., 1972a, Mitochondrial DNA from cytoplasmic petite mutants of yeast, Biochim. Biophys. Acta 277:35–43.

    PubMed  CAS  Google Scholar 

  • Hollenberg, C. P., Borst, P., Flavell, R. A., Van Kreijl, C. F., Van Bruggen, E. F. J., and Arnberg, A. C., 1972b, The unusual properties of mt DNA from a “low-density” petite mutant of yeast, Biochim. Biophys. Acta 277:44–58.

    PubMed  CAS  Google Scholar 

  • Horn, P., and Wilkie, D., 1966, Selective advantage of the cytoplasmic respiratory mutant of Saccharomyces cerevisiae in a cobalt medium, Heredity 21:625–635.

    PubMed  CAS  Google Scholar 

  • James, A. P., Johnson, B. F., Inhaber, E. R., and Gridgeman, W. T., 1975, A kinetic analysis of spontaneous ρ mutations in yeast, Mutat. Res. 30:199–208.

    PubMed  CAS  Google Scholar 

  • Johnson, B. F., Williamson D. H., Dendy, P. P., and Hatfield, J. M. R., 1973, Killing of yeast cells and induction of the cytoplasmic petite mutation by partial cell irradiation with an ultraviolet microbeam, Exp. Cell Res. 82:79–88.

    PubMed  CAS  Google Scholar 

  • Kadenbach, B., 1967, Synthesis of mitochondrial proteins: The synthesis of cytochrome c in vitro, Biochim. Biophys. Acta 138:651–654.

    PubMed  CAS  Google Scholar 

  • Kellems, R. E., and Butow, R. A., 1972, Cytoplasmic type 80S ribosomes associated with yeast mitochondria. I. Evidence for ribosome binding sites on yeast mitochondria, J. Biol. Chem. 247:8043–8050.

    PubMed  CAS  Google Scholar 

  • Kellems, R. E., and Butow, R. A., 1974, Cytoplasmic type 80S ribosomes associated with yeast mitochondria. III. Changes in the amount of bound ribosomes in response to changes in metabolic state, J. Biol. Chem. 249:3304–3310.

    PubMed  CAS  Google Scholar 

  • Klingenberg, M., 1970, Metabolite transport in mitochondria: Example for intracellular membrane function, Essays Biochem. 6:119–159.

    PubMed  CAS  Google Scholar 

  • Kolarov, J., Subik, J., and Kováč, L., 1972, Oxidative phosphorylation in yeast. VIII. Osmotic and permeability properties of mitochondria isolated from wild type yeast and from a respiration deficient mutant, Biochim. Biophys. Acta 267:457–464.

    PubMed  CAS  Google Scholar 

  • Kováč, L., and Weissova, K., 1968, Oxidative phosphorylation in yeast. III. ATPase activity of a mitochondrial fraction from a cytoplasmic-respiratory-deficient mutant, Biochim. Biophys. Acta 153:55–59.

    PubMed  Google Scholar 

  • Kováčová, V., Vlcek, D., and Miadkova, E., 1969, Induction of respiration-deficient mutants by ultraviolet radiation in a synchronous yeast culture, Folia Microbiol. (Prague) 14:554–556.

    Google Scholar 

  • Kraml, J., and Mahler, H. R., 1967, Biochemical correlates of respiratory deficiency. VIII. A precipitating antibody against cytochrome oxidase of yeast and its use in the study of respiratory deficiency, Immunochemistry 4:213–226.

    PubMed  CAS  Google Scholar 

  • Kuzela, S., and Fećiková, H., 1970, Incorporation of 3H-UTP into mitochondria isolated from cytoplasmic and nuclear respiratory-deficient yeast mutants, Experientia 26:940–941.

    PubMed  CAS  Google Scholar 

  • Lachowicz, T. M., Konieczny, M., and Witkowska, R., 1974, Nonchromosomal respiratory deficient mutants induced by N, N-(p-xylylidene)-bis-aminoguanidine(2HC1), Acta Microbiol. Pol. Ser. A 6:147–154.

    CAS  Google Scholar 

  • Lacroute, F., 1963, Génétique de la résistance au 5-fluorouracile chez la levure, C. R. Acad. Sci. Ser. D 257:4213–4216.

    CAS  Google Scholar 

  • Lamb, A. J., and Rojanapo, W., 1973, Preferential transcription of dG+dC mitochondrial DNA in cytoplasmic petite mutants of Saccharomyces cerevisiae, Biochem. Bioplys. Res. Commun. 55:765–772.

    CAS  Google Scholar 

  • Lazowska, J., and Slonimski, P. P., 1976, Electron microscopy analysis of circular repetitive mitochondrial DNA molecules from genetically characterized rho mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 146:61–78.

    PubMed  CAS  Google Scholar 

  • Leon, S. A., and Mahler, H. R., 1968, Isolation and properties of mitochondrial RNA from yeast, Arch. Biochem. Biophys. 126:305–319.

    PubMed  CAS  Google Scholar 

  • Lindegren, C. C., and Lindegren, G., 1973, Mitochondrial modification and respiratory deficiency in the yeast cell caused by cadmium poisoning, Mutat. Res. 21:315–322.

    PubMed  CAS  Google Scholar 

  • Lindegren, C. C., Nagai, S., and Nagai, H., 1958, Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel, Nature (London) 182:446–448.

    CAS  Google Scholar 

  • Linnane, A. W., Lukins, H. B., Molloy, P. L., Nagley, P., Rytka, J., Sriprakash, K. S., and Trembath, M. K., 1976, Biogenesis of mitochondria: Molecular mapping of the mitochondrial genome of yeast, Proc. Natl. Acad. Sci. U.S.A. 73:2082–2085.

    PubMed  CAS  Google Scholar 

  • Locker, J., Rabinowitz, M., and Getz, G. S., 1974a, Electron microscopic and renaturation kinetic analysis of mitochondrial DNA of petite mutants of Saccharomyces cerevisiae, J. Mol. Biol. 88:489–507.

    PubMed  CAS  Google Scholar 

  • Locker, J., Rabinowitz, M., and Getz, G. S., 1974b, Tandem inverted repeats in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 71:1366–1370.

    PubMed  CAS  Google Scholar 

  • Luha, A. A., Sarcoe, L. E., and Whittaker, P. A., 1971, Biosynthesis of yeast mitochondria: Drug effects on the petite negative yeast Kluyveromyces lactis, Biochem. Biophys. Res. Commun. 44:396–402.

    PubMed  CAS  Google Scholar 

  • Luha, A. A., Whittaker, P. A., and Hammond, R. C., 1974, Biosynthesis of yeast mitochondria: Some effects of ethidium bromide on Kluyveromyces (Saccharomyces) fragilis, Mol. Gen. Genet. 129:311–323.

    PubMed  CAS  Google Scholar 

  • Lusena, C. V., and James, A. P., 1976, Alterations in mitochondrial DNA of yeast which accompany genetically and environmentally controlled changes in ρ mutability, Mol. Gen. Genet. 144:119–125.

    PubMed  CAS  Google Scholar 

  • Mackler, B., Douglas, H. C., Will, S., Hawthorn, D. C., and Mahler, H. R., 1965, Biochemical correlates of respiratory deficiency. IV. Composition and properties of respiratory particles from mutant yeasts, Biochemistry 3:677–682.

    Google Scholar 

  • Maclennan, D. H., Smoly, J. M., and Tzagaloff, A., 1968, Studies on the mitochondrial adenosine triphosphatase system. I. Restoration of adenosine triphosphate depend ent reactions in salt-extracted submitochondrial particles, J. Biol. Chem. 243:1589–1597.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., 1973, Structural requirements in mitochondrial mutagenesis, J. Supramol. Struct. 1:449–460.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Bastos, R. N., 1974a, A novel reaction of mitochondrial DNA with ethidium bromide, FEBS Lett. 39:27–34.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Bastos, R. N., 1974b, Coupling between mitochondrial mutation and energy transduction, Proc. Natl. Acad. Sci. U.S.A. 71:2241–2245.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Davidowicz, K., 1973, Autonomy of mitochondria of Saccharomyces cerevisiae in their production of messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 70:111–114.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Perlman, P. S., 1972, Mitochondrial membranes and mutagenesis by ethidium bromide, J. Supramol. Struct. 1:105–124.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and Perlman, P. S., 1973, Induction of respiration deficient mutants in Saccharomyces cerevisiae by Berenil. I. Berenil, a novel, non-intercalating mutagen, Mol. Gen. Genet. 121:285–294.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., Mackler, B., Slonimski, P. P., and Grandchamp, S., 1964, Biochemical correlates of respiratory deficiency. II. Antigenic properties of respiratory particles, Biochemistry 3:677–682.

    PubMed  CAS  Google Scholar 

  • Marcovich, H., 1951, Action de l’acriflavine sur les levures. VIII. Determination du composant actif et étude de l’euflavine sur les levures, Ann. Inst. Pasteur (Paris) 81:452.

    CAS  Google Scholar 

  • Maroudas, N. G., and Wilkie, D., 1968, Ultraviolet irradiation studies on the cytoplasmic determinant of the yeast mitochondrion, Biochim. Biophys. Acta 166:681–688.

    PubMed  CAS  Google Scholar 

  • Martin, N., Rabinowitz, M., and Fukuhara, H., 1976, Isoaccepting mitochondrial glutamyltRNA species transcribed from different regions of the mitochondrial genome of Saccharomyces cerevisiae, J. Mol. Biol. 101:285–296.

    PubMed  CAS  Google Scholar 

  • Marzuki, S., Hall, R. M., and Linnane, A. W., 1974, Induction of respiratory incompetent mutants by unsaturated fatty acid depletion in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 57:372–378.

    PubMed  CAS  Google Scholar 

  • Mattick, J. S., and Nagley, P., 1977, Comparitive studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome of Saccharomyces cerevisiae, Mol. Gen. Genet. 152:267–276.

    PubMed  CAS  Google Scholar 

  • Meyer, J. Z., and Whittaker, P. A., 1977, Respiratory repression and the stability of the mitochondrial genome, Mol. Gen. Genet. 151:333–342.

    PubMed  CAS  Google Scholar 

  • Meyer, R. R., and Simpson, M. V., 1969, DNA biosynthesis in mitochondria: Differential inhibition of mitochondrial and nuclear DNA polymerases by the mutagenic dyes ethidium bromide and acriflavine, Biochem. Biophys. Res. Commun. 34:238–244.

    PubMed  CAS  Google Scholar 

  • Michaelis, G., Douglass, S., Tsai, M.-J., and Criddle, R. S., 1971, Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae, Biochem. Genet. 5:487–495.

    PubMed  CAS  Google Scholar 

  • Michaelis, G., Petrochilo, E., and Slonimski, P. P., 1973, Mitochondrial genetics. III. Recombined molecules of mitochondrial DNA obtained from crosses between cytoplasmic petite mutants of Saccharomyces cerevisiae: Physical and genetic characterization, Mol. Gen. Genet. 123:51–65.

    PubMed  CAS  Google Scholar 

  • Michel, F., Lazowska, J., Faye, G., Fukuhara, H., and Slonimski, P. P., 1974, Physical and genetic organization of petite and grande yeast mitochondrial DNA. III. High resolution melting and reassociation studies, J. Mol. Biol. 85:411–431.

    PubMed  CAS  Google Scholar 

  • Miko, M., and Chance, B., 1975, Ethidium bromide as an uncoupler of oxidative phosphoryl-ation, FEBS Lett. 39:27–34.

    Google Scholar 

  • Mills, D. R., Peterson, R. L., and Spiegelman, S., 1967, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. U.S.A. 58:217–224.

    PubMed  CAS  Google Scholar 

  • Molloy, P. L., Linnane, A. W., and Lukins, H. B., 1975, Biogenesis of mitochondria: Analysis and deletion of mitochondrial antibiotic resistance markers in petite mutants of Saccharomyces cerevisiae, J. Bacteriol. 122:7–18.

    PubMed  CAS  Google Scholar 

  • Morgan, A. J., Heritage, J., and Whittaker, P. A., 1978, Protoplast fusion between petite and auxotrophic mutants of the petite-negative yeast, Kluyveromyces lactis, Microbios Lett. 4:103–107.

    Google Scholar 

  • Morimoto, H., and Halvorson, H. O., 1971, Characterization of mitochondrial ribosomes from yeast, Proc. Natl. Acad. Sci. U.S.A. 68:324–328.

    PubMed  CAS  Google Scholar 

  • Morimoto, R., Lewin, A., Hsu, H.-J., Rabinowitz, M., and Fukuhara, H., 1975, Restriction endonuclease analysis of mitochondrial DNA from grande and genetically characterized cytoplasmic petite clones of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 72:3862–3872.

    Google Scholar 

  • Mounolou, J.-C., 1967, Rôle d’un ADN spécifique dans le déterminisme génétique et physiologique des mitochondries de la levure, Thesis, Faculté des Sciences de l’Université de Paris.

    Google Scholar 

  • Mounolou, J.-C., Jakob, H., and Slonimski, P. P., 1966, Mitochondrial DNA from yeast petite mutants: Specific changes of buoyant density corresponding to different cytoplasmic mutations, Biochem. Biophys. Res. Commun. 24:218–224.

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., 1971, Evidence for nucleus independent steps in control of repair of mitochondrial damage. I. UV-induction of the cytoplasmic “petite” mutation in recombinationdeficient mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 114:50–58.

    Google Scholar 

  • Moustacchi, E., 1973, Cytoplasmic “petite” induction in recombination-deficient mutants of Saccharomyces cerevisiae, J. Bacteriol. 115:805–809.

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., and Enteric, S., 1970, Differential “liquid holding recovery” for the lethal effect and cytoplasmic “petite” induction by UV light in Saccharomyces cerevisiae, Mol. Gen. Genet. 109:69–83.

    PubMed  CAS  Google Scholar 

  • Moustacchi, E., and Williamson, D. H., 1966, Physiological variations in satellite components of yeast DNA detected by density gradient centrifugation, Biochem. Biophys. Res. Commun. 23:56–61.

    PubMed  CAS  Google Scholar 

  • Nagai, S., 1969, High-frequency production of respiratory mutants in yeast under nutritional deficiencies, Mutat. Res. 8:557–564.

    PubMed  CAS  Google Scholar 

  • Nagai, S., 1976, Counteracting effect of eosin and related dye stuffs on the production of respiration-deficient mutants in yeast by 4-nitroquinoline-l-oxide, Mutat. Res. 34:187–194.

    PubMed  CAS  Google Scholar 

  • Nagai, S., Yanagashima, N., and Nagai, H., 1961, Advances in the study of respiration-deficient (RD) mutation in yeast and other micro-organisms, Bacteriol. Rev. 25:404–426.

    PubMed  CAS  Google Scholar 

  • Nagley, P., and Linnane, A. W., 1970, Mitochondrial DNA-deficient petite mutants of yeast, Biochem. Biophys. Res. Commun. 39:989–996.

    PubMed  CAS  Google Scholar 

  • Nagley, P., and Linnane, A. W., 1972, Biogenesis of mitochondria. XXL Studies on the nature of the mitochondrial genome in yeast: The degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory-competent strain, J. Molec. Biol. 66:181–193.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., 1961, Adaptation of yeast to cadmium. IV. Production of respiratory-deficient variant by cadmium, Mem. Konan Univ. Sci. Ser. 5:-11–115.

    Google Scholar 

  • Nass, M. M. K., and Nass, D., 1963, Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions, J. Cell Biol. 19:613–629.

    PubMed  CAS  Google Scholar 

  • Nass, S., and Nass, M. M. K., 1963, Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments, J. Cell Biol. 19:613–629.

    PubMed  CAS  Google Scholar 

  • Nordström, K., 1967, Induction of the petite mutation in Saccharomyces cerevisiae by N-methyl-N-nitro-N-nitroso-guanidine, J. Gen. Microbiol. 48:277–281.

    PubMed  Google Scholar 

  • O’Connor, R. M., McArthur, C. R., and Clark-Walker, G. D., 1975, Closed-circular DNA from mitochondrial-enriched fractions of four petite-negative yeasts, Eur. J. Biochem. 53:137–144.

    Google Scholar 

  • Ogur, M., St. John, R., and Nagai, S., 1957, Tetrazolium overlay technique for population studies of respiratory deficiency in yeast, Science 125:928–929.

    PubMed  CAS  Google Scholar 

  • Oliver, S. G., 1977, On the mutability of the yeast mitochondrial genome, J. Theor. Biol. 67:195–201.

    PubMed  CAS  Google Scholar 

  • Oliver, S. G., and Williamson, D. H., 1976a, The molecular events involved in the induction of petite yeast mutants by fluorinated pyrimidines, Mol. Gen. Genet. 146:252–259.

    Google Scholar 

  • Oliver, S. G., and Williamson, D. G., 1976b, The conditions required for the induction of petite yeast mutants by fluorinated pyrimidines, Mol. Gen. Genet. 146:261–268.

    PubMed  CAS  Google Scholar 

  • Packer, L., Williams, M. A., and Criddle, R. S., 1973, Freeze-fracture studies on mitochondria from wild-type and respiratory-deficient yeasts, Biochim. Biophys. Acta 292:92–104.

    PubMed  CAS  Google Scholar 

  • Paoletti, C., Conder, H., and Guerineau, M., 1972, A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide, Biochem. Biophys. Res. Commun. 48:950–958.

    PubMed  CAS  Google Scholar 

  • Perkins, M., Haslam, J. M., and Linnane, A. W., 1973, The effects of physiological and genetical manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate cycle anions, Biochem. J. 134:923–934.

    PubMed  CAS  Google Scholar 

  • Perlman, P., and Mahler, H. R., 1970, Formation of yeast mitochondria. III. Biochemical properties of mitochondria isolated from a cytoplasmic petite mutant, J. Bioenerg. 1:113–138.

    PubMed  CAS  Google Scholar 

  • Perlman, P. S., and Mahler, H. R., 1971, Molecular consequences of ethidium bromide mutagenesis, Nature (London) 231:12–16.

    CAS  Google Scholar 

  • Pinto, M., Guerineau, M., and Paoletti, C., 1975, Ethidium bromide mutagenesis in yeast: Protection by anaerobiosis, Mutat. Res. 30:219–228.

    PubMed  CAS  Google Scholar 

  • Pinto da Costa, S. O., and Bacila, M., 1973, Induction of respiratory deficient non-chromosomal “petites” of Saccharomyces cerevisiae by sodium dodecyl sulfate, J. Bacteriol. 115:461–463.

    CAS  Google Scholar 

  • Pittman, D., 1959, Ultraviolet induction of respiration-deficient variants of Saccharomyces and their stability during vegetative growth, Cytologia 24:315–325.

    Google Scholar 

  • Pittman, D., Ranganathan, B., and Wilson, F., 1959, Photoreactivation studies on yeasts. II. Photoreactivation of the ultraviolet damage producing respiratory deficiency in heploid and tetraploid yeast, Exp. Cell Res. 17:368–377.

    PubMed  CAS  Google Scholar 

  • Pittman, D., Webb, J. M., Roshanmanesh, A., and Coker, L. E., 1960, Evidence for the genetic control of photoreactivation, Genetics 45:1023–1037.

    PubMed  CAS  Google Scholar 

  • Prunell, A., and Bernardi, G., 1974, The mitochondrial genome of wild-type yeast cells. IV. Genes and spacers, J. Mol. Biol. 86:825–841.

    PubMed  CAS  Google Scholar 

  • Rank, G. H., 1970a, Genetic evidence for “Darwinian” selection at the molecular level. I. The effect of the suppressive factor on cytoplasmically-inherited erythromycin-resistance in Saccharomyces cerevisiae, Can. J. Genet. Cytol. 12:129–136.

    PubMed  CAS  Google Scholar 

  • Rank, G. H., 1970b, Genetic evidence for “Darwinian” selection at the molecular level. II. Genetic analysis of cytoplasmically-inherited high and low suppressivity in Saccharomyces cerevisiae, Can. J. Genet. Cytol. 12:340–346.

    PubMed  CAS  Google Scholar 

  • Rank, G. H., and Bech-Hansen, N. T., 1972, Genetic evidence for “Darwinian” selection at the molecular level. III. The effect of the suppressive factor on nuclearly and cytoplasmically inherited chloramphenicol resistance in S. cerevisiae, Can. J. Microbiol. 18:1–7.

    PubMed  CAS  Google Scholar 

  • Raut, C., and Simpson, W. L., 1955, The effects of X-rays and ultraviolet light of different wavelengths on the production of cytochrome-deficient yeasts, Arch. Biochem. Biophys. 57:218–228.

    PubMed  CAS  Google Scholar 

  • Reijnders, L., and Borst, P., 1972, The number of 4-S RNA genes on yeast mitochondrial DNA, Biochem. Biophys. Res. Commun. 47:126–133.

    PubMed  CAS  Google Scholar 

  • Reijnders, L., Kleisen, C. M., Grivell, L. A., and Borst, P., 1972, Hybridization studies with yeast mitochondrial RNAs, Biochim. Biophys. Acta 272:396–407.

    PubMed  CAS  Google Scholar 

  • Roodyn, D., and Wilkie, D., 1967, A characteristic pattern of respiratory enzymes in cytoplasmic “petite” strains of Saccharomyces cerevisiae as revealed by multiple enzyme analysis, Biochem. J. 103:3C–5C.

    CAS  Google Scholar 

  • Ross, E., Ebner, E., Poyton, R. O., Mason, T. L., Ono, B., and Schatz, G., 1974, The biosynthesis of mitochondrial cytochromes, in: Biogenesis of Mitochondria (A. M. Kroon and C. Saccone, eds.), pp. 477–489, Academic Press, London and New York.

    Google Scholar 

  • Sarachek, A., 1958, The induction by ultraviolet radiation and the photoreactivation of heritable respiratory deficiency in Saccharomyces cerevisiae adapted and unadapted to aerobic respiration, Cytologia 23:143–158.

    Google Scholar 

  • Schatz, G., 1968, Impaired binding of mitochondrial adenosine triphosphatase in the cytoplasmic “petite” mutant of Saccharomyces cerevisiae, J. Biol. Chem. 243:2192–2199.

    PubMed  CAS  Google Scholar 

  • Schatz, G., Halsbrunner, E., and Tuppy, H. 1964, Deoxyribonucleic acid associated with yeast mitochondria, Biochem. Biophys. Res. Commun. 15:127–132.

    CAS  Google Scholar 

  • Schatz, G., Penfsky, H. S., and Racker, E., 1967, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIV. Interaction of purified mitochondrial adenosine triphosphatase from bakers’ yeast with submitochondrial particles from beef heart, J. Biol. Chem. 242:2552–2560.

    PubMed  CAS  Google Scholar 

  • Schmitt, H., 1969, Characterization of mitochondrial ribosomes from Saccharomyces cerevisiae, FEBS Lett, 4:234–238.

    PubMed  CAS  Google Scholar 

  • Schmitt, H., 1970, Characterization of a 72S mitochondrial ribosome from Saccharomyces cerevisiae, Eur. J. Biochem. 17:278–283.

    PubMed  CAS  Google Scholar 

  • Schmitt, H., 1971, Core particles and proteins from mitochondrial ribosomes of yeast, FEBS Lett 15:186–190.

    PubMed  CAS  Google Scholar 

  • Schwaier, R., Nashed, N., and Zimmerman, F. K., 1968, Mutagen specificity in the induction of karyotic versus cytoplasmic respiratory deficient mutants in yeast by nitrous acid and alkylating nitrosoamides, Mol. Gen. Genet. 102:290–300.

    PubMed  CAS  Google Scholar 

  • Schweyen, R. J., and Kaudewitz, F., 1976, Formation of rho Petites in yeast. 1. Multifactorial mitochondrial crosses (rho+ × rho) involving a mutation conferring temperature sensitivity of rho factor stability, Mol. Gen. Genet. 149:311–322.

    PubMed  CAS  Google Scholar 

  • Schweyen, R. J., Steyrer, U., Kaudewitz, F., Dujon, B., and Slonimski, P. P., 1976a, Mapping of mitochondrial genes in Saccharomyces cerevisiae: Population and pedigree analysis of retention or loss of four genetic markers in rho cells, Mol. Gen. Genet. 146:117–132.

    PubMed  CAS  Google Scholar 

  • Schweyen, R. J., Weiss-Brummer, B., Backhaus, B., and Kaudewitz, F., 1976b, Localization of seven gene loci on a circular map of the mitochondrial genome of Saccharomyces cerevisiae, in: The Genetic Function of Mitochondrial DNA (C. Saccone and A. M. Kroon, eds.), pp. 251–258, Elsevier, Amsterdam.

    Google Scholar 

  • Senior, A. E., 1971, Relation between the oligomycin-sensitivity conferring protein and other mitochondrial coupling factors, J. Bioenerg. 2:141–150.

    PubMed  CAS  Google Scholar 

  • Shapiro, L., Grossman, L. I., Marmur, J., and Kleinschmidt, A. K., 1968, Physical studies on the structure of yeast mitochondrial DNA, J. Mol. Biol. 33:907–922.

    PubMed  CAS  Google Scholar 

  • Sherman, F., 1959, The effect of elevated temperature on yeast. II. Induction of respiratory-deficient mutants, J. Cell. Comp. Physiol. 54:37–52.

    PubMed  CAS  Google Scholar 

  • Sherman, F., 1964, Mutants of yeast deficient in cytochrome c, Genetics 49:39–48.

    PubMed  CAS  Google Scholar 

  • Sherman, F., and Slonimski, P. P., 1964, Respiration-deficient mutants of yeast. II. Biochemistry, Biochim. Biophys. Acta 90:1–15.

    PubMed  CAS  Google Scholar 

  • Slonimski, P. P., 1949, Action de l’acriflavine sur les levures IV. Mode d’utilization du glucose par les mutants “petite colonie,” Ann. Inst. Pasteur (Paris) 77:47–63.

    CAS  Google Scholar 

  • Slonimski, P. P., 1968, Biochemical studies of “mitochondria” in cytoplasmic mutants, in: Biochemical Aspects of the Biogenesis of Mitochondria (E. C. Slater, J. M. Tager, S. Papa, and E. Quagliariello, eds.), pp. 475–476, Adriatica Editrice, Bari, Italy.

    Google Scholar 

  • Slonimski, P. P., and Ephrussi, B., 1949, Action de l’acriflavine sur les levures, V. Le système des cytochromes des mutants “petite colonie,” Ann. Inst. Pasteur (Paris) 77:47–63.

    CAS  Google Scholar 

  • Slonimski, P. P., and Hirsch, H. M., 1952, Nouvelles donnés sur la constitution enzymatique du mutant “petite-colonie” de Saccharomyces cerevisiae, C. R. Acad. Sci. Ser. D 235:741–743.

    CAS  Google Scholar 

  • Slonimski, P. P., and Tazagoloff, A., 1976, Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase, Eur. J. Biochem. 61:27–41.

    PubMed  CAS  Google Scholar 

  • Slonimski, P. P., Perrodin, G., and Croft, J. H., 1968, Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory-deficient nonchro-mosomal petites, Biochem. Biophys. Res. Commun. 30:232–239.

    PubMed  CAS  Google Scholar 

  • Smith, D. G., Marchant, R., Maroudas, N. G., and Wilkie, D., 1969, A comparative study of the mitochondrial structure of petite strains of Saccharomyces cerevisiae, J. Gen. Microbiol. 56:47–54.

    PubMed  CAS  Google Scholar 

  • Tavlitzki, J., 1949, Action de l’acriflavine sur les levures. II. Étude de la croissance des mutants “petite colonie,” Ann. Inst. Pasteur (Paris) 76:497–509.

    CAS  Google Scholar 

  • Tewari, K. K., Jayarman, J., and Mahler, H. R., 1965, Separation and characterization of mitochondrial DNA from yeast, Biochem. Biophys. Res. Commun. 21:141–147.

    PubMed  CAS  Google Scholar 

  • Tewari, K. K., Vötsch, W., Mahler, H. R., and Mackler, B., 1966, Biochemical correlates of respiratory deficiency. VI. Mitochondrial DNA, J. Mol. Biol. 20:453–481.

    PubMed  CAS  Google Scholar 

  • Trembath, M. K., Molloy, P. L., Sriprakash, K. S., Cutting, G. J., Linnane, A. W., and Lukins, H. B., 1976, Biogenesis of mitochondria. 44. Comparative studies and mapping of oligomycin resistance mutations in yeast based on gene recombination and petite deletion analysis, Mol. Gen. Genet. 145:43–52.

    PubMed  CAS  Google Scholar 

  • Tsai, M., Michaelis, G., and Criddle, R. S., 1971, DNA-dependent RNA polymerase from yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 68:473–477.

    PubMed  CAS  Google Scholar 

  • Tuppy, H., and Birkmayer, G., 1969, Cytochrome oxidase apoprotein in “petite” mutant yeast mitochondria: Reconstitution of cytochrome oxidase by combining apoprotein with cytohemin, Eur. J. Biochem. 8:237–243.

    PubMed  CAS  Google Scholar 

  • Tzagoloff, A., 1970, Assembly of the mitochondrial membrane system. III. Function and synthesis of the oligomycin-sensitivity-conferring protein of yeast mitochondria, J. Biol. Chem. 245:1545–1551.

    PubMed  CAS  Google Scholar 

  • Tzagoloff, A., and Meagher, P., 1971, Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria, J. Biol. Chem. 246:7328–7336.

    PubMed  CAS  Google Scholar 

  • Tzagoloff, A., Rubin, M. S., and Sierra, M. F., 1973, Biosynthesis of mitochondrial enzymes, Biochim. Biophys. Acta 301:71–104.

    PubMed  CAS  Google Scholar 

  • Tzagoloff, A., Akai, A., and Needleman, R. B., 1975, Assembly of the mitochondrial membrane system. XII. Properties of cytoplasmic mutants of Saccharomyces cerevisiae with specific lesions in cytochrome oxidase, Proc. Natl. Acad. Sci. U.S.A. 72:2054–2057.

    PubMed  CAS  Google Scholar 

  • Uchida, A., and Suda, K., 1973, Ethidium bromide-induced loss and retention of cytoplasmic drug resistance factors in yeast, Mutat. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Van Kreijl, C. F., and Bos, J. L., 1977, Repeating nucleotide sequence in repetitive mitochondrial DNA from a low-density petite mutant of yeast, Nucleic Acid Res. 4:2369–2374.

    PubMed  Google Scholar 

  • Verdière, J., and Lederer, F., 1971, Présence de la ℈N-trimethyl-lysine dans l’iso-1 et l’iso-2 cytochromes c synthétisés par des souches de levure a déficience respiratoire ρ2212;, FEBS Lett. 19:72–74.

    PubMed  Google Scholar 

  • Vidová, M., and Kováč, L., 1972, Nalidixic acid prevents the induction of yeast cytoplasmic respiration-deficient mutants by intercalating drugs, FEBS Lett. 22:347–351.

    PubMed  Google Scholar 

  • Wallis, O. C., and Whittaker, P. A., 1974, Induction of petite mutation in yeast by starvation in glycerol, J. Gen. Microbiol. 84:11–18.

    PubMed  CAS  Google Scholar 

  • Wallis, O. C., Ottolenghi, P., and Whittaker, P. A., 1972, Induction of petite mutants in yeast by starvation in glycerol, Biochem. J. 127:46P-47P.

    Google Scholar 

  • Waring, M. J., 1965, Complex formation between ethidium bromide and nucleic acids, J. Mol. Biol. 13:269–282.

    PubMed  CAS  Google Scholar 

  • Weislogel, P. O., and Butow, R. A., 1970, Low temperature and chloramphenicol induction of respiratory deficiency in a cold-sensitive mutant of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 67:52–58.

    PubMed  CAS  Google Scholar 

  • Weislogel, P. O., and Butow, R. A., 1971, Control of the mitochondrial genome in Saccharomyces cerevisiae: The fate of mitochondrial membrane proteins and mitochondrial deoxyribonucleic acid during petite induction, J. Biol. Chem. 246:5113–5119.

    PubMed  CAS  Google Scholar 

  • Weiss, H., 1976, Subunit composition and biogenesis of mitochondrial cytochrome b, Biochim. Biophys. Acta 456:291–313.

    PubMed  Google Scholar 

  • Weth, G., and Michaelis, G., 1974, The size of mitochondrial DNA from a cytoplasmic petite mutant of Saccharomyces cerevisiae, Mol. Gen. Genet. 135:269–272.

    PubMed  CAS  Google Scholar 

  • Wheelis, L., Trembath, M. K., and Criddle, R. S., 1975, Petite induction and recovery in the presence of high levels of ethidium bromide, Biochem. Biophys. Res. Commun. 65:838–845.

    PubMed  CAS  Google Scholar 

  • Whittaker, P. A., 1969, A model for the “petite” mutation in yeasts, Microbios 2:195–197.

    Google Scholar 

  • Whittaker, P. A., and Carnevali, F., 1977, Inhibition by nalidixic acid of nucleic acid and protein synthesis in Saccharomyces cerevisiae, Biochem. Soc. Trans. 5:1503–1505.

    PubMed  CAS  Google Scholar 

  • Whittaker, P. A., and Wallis, O. C., 1971, Biosynthesis of yeast mitochondria: Effects of rifampicin, Biochem. J. 125:82P.

    Google Scholar 

  • Whittaker, P. A., and Wright, M., 1972, Prevention by cycloheximide of petite mutation in yeast, Biochem. Biophys. Res. Commun. 48:1455–1459.

    PubMed  CAS  Google Scholar 

  • Whittaker, P. A., Hammond, R. C., and Luha, A. A., 1972, Mechanism of mitochondrial mutation in yeast, Nature (London) 238:266–268.

    CAS  Google Scholar 

  • Wilkie, D., 1963, The induction by monochromatic u.v. light of respiratory deficient mutants in aerobic and anaerobic cultures of yeast, J. Mol. Biol. 7:527–533.

    PubMed  CAS  Google Scholar 

  • Wilkie, D., and Maroudas, N. G., 1969, Induction of cytoplasmic respiratory deficiency in yeast by phenethyl alcohol, Genet. Res. 13:107–111.

    PubMed  CAS  Google Scholar 

  • Williams, P. G., and Stewart, P. R., 1976, The intramitochondrial location of cytochrome c peroxidase in wild-type and petite Saccharomyces cerevisiae, Arch. Microbiol. 107:63–70.

    PubMed  CAS  Google Scholar 

  • Williamson, D. H., 1970, The effect of environmental and genetic factors on the replication of mitochondrial DNA in yeast, in: Control of Organelle Development (P. L. Miller, ed.), Symp. Soc. Exp. Biol 24:247-276, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Williamson, D. H., and Fenell, D. J., 1974, Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments, Mol. Gen. Genet. 131:193–207.

    PubMed  CAS  Google Scholar 

  • Williamson, D. H., and Fenell, D. J., 1975, The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA, Methods Cell Biol. 12:335–351.

    PubMed  CAS  Google Scholar 

  • Williamson, D. H., Maroudas, N. G., and Wilkie, D., 1971, Induction of cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol, Mol. Gen. Genet. 111:209–223.

    PubMed  CAS  Google Scholar 

  • Wintersberger, E., 1965, Protein-Synthese in isolierten Hefe-Mitochondrien, Biochem. Z. 341:409–419.

    CAS  Google Scholar 

  • Wintersberger, E., 1966, Occurrence of a DNA-polymerase in isolated yeast mitochondria, Biochem. Biophys. Res. Commun. 25:1–7.

    PubMed  CAS  Google Scholar 

  • Wintersberger, E., 1967, A distinct class of ribosomal RNA components in yeast mitochondria as revealed by gradient centrifugation and by DNA-RNA hybridization, Z. Physiol. Chem. 348:1701–1704.

    CAS  Google Scholar 

  • Wintersberger, E., 1968, Synthesis of DNA in isolated yeast mitochondria, in: Biochemical Aspects of the Biogenesis of Mitochondria (E. C. Slater, J. M. Tager, S. Papa, and E. Quagliariello, eds.), pp. 189–201, Adriatici Editrice, Bari, Italy.

    Google Scholar 

  • Wintersberger, E., 1970, DNA-dependent RNA polymerase from mitochondria of a cytoplasmic “petite” mutant of yeast, Biochem. Biophys. Res. Commun. 40:1179–1184.

    PubMed  CAS  Google Scholar 

  • Wintersberger, E., and Viehauser, G., 1968, Function of mitochondrial DNA in yeast, Nature (London) 220:699–702.

    CAS  Google Scholar 

  • Wintersberger, U., and Hirsch, J., 1973a, Induction of cytoplasmic respiratory deficient mutants in yeast by the folic acid analogue, methotrexate. I. Studies on the mechanism of petite induction, Mol. Gen. Genet. 126:61–70.

    PubMed  CAS  Google Scholar 

  • Wintersberger, U., and Hirsch, J., 1973b, Induction of cytoplasmic respiratory deficient mutants in yeast by the folic acid analogue, methotrexate. II. Genetic analysis of the methotrexate induced petites, Mol. Gen. Genet. 126:71–74.

    PubMed  CAS  Google Scholar 

  • Wintersberger, U., and Wintersberger, E., 1970, Studies on the deoxyribonucleic acid polymerases from wild-type and respiration deficient yeast cells, Eur. J. Biochem. 13:20–27.

    PubMed  CAS  Google Scholar 

  • Wolf, K., and Kaudewitz, F., 1976, Effect of caffeine on the rho induction with ethidium bromide in Saccharomyces cerevisiae, Mol. Gen. Genet. 146:89–93.

    PubMed  CAS  Google Scholar 

  • Wolf, K., Burger, G., Lang, B., and Kaudewitz, F., 1976, Extrachromosomal inheritance in Schizosaccharomyces pombe. I. Evidence for extrakaryotically inherited mutation conferring resistance to antimycin, Mol. Gen. Genet. 144:67–73.

    PubMed  CAS  Google Scholar 

  • Yanagashima, N., 1967, Induction of heritable respiratory deficiency in yeast by salt solution, Plant Cell Physiol. 8:211–255.

    Google Scholar 

  • Yčas, M., 1954, A hereditary cytochrome deficiency appearing in yeast grown at elevated temperature, Exp. Cell Res. 10:746.

    Google Scholar 

  • Yotsuyanagi, Y., 1962, Étude sur le chondriome de la levure. II. Chondriomes des mutants á deficience respiratoire, J. Ultrastruct. Res. 7:141–158.

    PubMed  CAS  Google Scholar 

  • Zeman, L., and Lusena, C. V., 1974, DNA synthesis in isolated yeast mitochondria, Can. J. Biochem. 52:941–949.

    PubMed  CAS  Google Scholar 

  • Zeman, L., and Lusena, C. V., 1975, Preferential digestion of A+T-rich stretches of yeast mitochondrial DNA in isolated mitochondria, Eur. J. Biochem. 57:561–567.

    PubMed  CAS  Google Scholar 

  • Zennaro, E., Falcone, C., Frontali, L., and Puglisi, P. P., 1977, Dependence of cytoplasmic on mitochondrial protein synthesis in K. lactis CBS 2360.I. Biochemical analysis, Mol. Gen. Genet. 150:137–145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Whittaker, P.A. (1979). The Petite Mutation in Yeast. In: Roodyn, D.B. (eds) Subcellular Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7945-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7945-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7947-2

  • Online ISBN: 978-1-4615-7945-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics