Advertisement

Computer Simulation of Density-Gradient Centrifugation

Chapter
  • 104 Downloads

Abstract

Modern biochemical techniques are continuously refined to produce new and improved results. Improvements in the useful power of a biochemical technique can in principle be achieved in two ways. One is the classic trial-and-error approach whereby the parameters of the experimental conditions are varied one by one until a suitable set of conditions is found. The other way of improving or optimizing a technique is theoretical. The desired quality of the outcome of the experiment in question (i.e., the degree of analytical reliability or the desired power of resolution) is considered in physicochemical terms, and the experimental conditions that are needed to achieve this quality are calculated.

Keywords

Human Serum Albumin Indirect Approach Sample Zone Sedimentation Coefficient Gradient Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. G. (ed.), 1966, The development of zonal centrifuges and ancillary systems for tissue fractionation and analysis, Natl. Cancer Inst. Monogr. 21.Google Scholar
  2. Barber, E. J., 1966, Calculation of density and viscosity of sucrose solutions as a function of concentration and temperature, Natl. Cancer Inst. Monogr. 21:219–239.PubMedGoogle Scholar
  3. Berman, A. S., 1966, Theory of centrifugation: Miscellaneous studies, Natl. Cancer Inst. Monogr. 21:41–76.PubMedGoogle Scholar
  4. Bishop, B. S., 1966, Digital computation of sedimentation coefficients in zonal centrifuges, Natl. Cancer Inst. Monogr. 21:175–188.PubMedGoogle Scholar
  5. Carlson, A. D., and Souček, B., 1975, Computer simulation of firefly flash sequences, J. Theor. Biol. 55:353–370.PubMedCrossRefGoogle Scholar
  6. Cox, D. J., 1965a, Computer simulation of sedimentation in the ultracentrifuge. I. Diffusion, Arch. Biochem. Biophys. 112:249–258.CrossRefGoogle Scholar
  7. Cox, D. J., 1965b, Computer simulation of sedimentation in the ultracentrifuge. II. Concentration-independent sedimentation, Arch. Biochem. Biophys. 112:259–266.CrossRefGoogle Scholar
  8. Cox, D. J., 1967, Computer simulation of sedimentation in the ultracentrifuge. III. Concentration-dependent sedimentation, Arch. Biochem. Biophys. 119:230–239.PubMedCrossRefGoogle Scholar
  9. Cox, D. J., 1969, Computer simulation of sedimentation in the ultracentrifuge. IV. Velocity sedimentation of self-associating solutes, Arch. Biochem. Biophys. 129:106–123.PubMedCrossRefGoogle Scholar
  10. Eikenberry, E. F., Bickle, T. A., Traut, R. R., and Price, C. A., 1970, Separation of large quantities of ribosomal subunits by zonal centrifugation, Eur. J. Biochem. 12:113–116.PubMedCrossRefGoogle Scholar
  11. Fisher, É., and Keleti, T., 1975, Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact, Acta Biochim. Biophys. Acad. Sci. Hung. 10(3):221–227.Google Scholar
  12. Funding, L., 1973, Estimation of equivalent sedimentation coefficients with zonal rotors, in: European Symposium of Zonal Centrifugation in Density Gradient, Spectra 2000 (J.-C. Chermann, ed.), Vol. 4, pp. 45–49, Editions Cité Nouvelle, Paris.Google Scholar
  13. Garfinkel, D., London, J. W., Dzubow, L., and Nicklas, W. J., 1975, Computer simulation of the metabolism of guinea pig brain slices, and how they differ from the intact brain, Brain Res. 92:207–218.PubMedCrossRefGoogle Scholar
  14. Gilbert, L. M., and Gilbert, G. A., 1973, Sedimentation velocity measurement of protein association, in: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, eds.), Vol. XXVII, pp. 273–296, Academic Press, New York.Google Scholar
  15. Hinton, R. H., 1971, Computational approaches in the processing of zonal results, in: Separations with Zonal Rotors (E. Reid, ed.), pp. Z–5.l–Z–5.10, Wolfson Bioanalytical Centre, University of Surrey, Guildford, England.Google Scholar
  16. Ifft, J. B., Voet, D. H., and Vinograd, J., 1961, The determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge, J. Phys. Chem. 65:1138–1145.CrossRefGoogle Scholar
  17. Johns, P., and Stanworth, D. R., 1976, A simple numerical method for the construction of isokinetic sucrose density gradients, and their application to the characterization of immunoglobulin complexes, J. Immunol. Methods 10:231–252.PubMedCrossRefGoogle Scholar
  18. Kim, M., and Woo, K. B., 1975, Kinetic analysis of cell size and DNA content distributions during tumor cell proliferation: Erlich ascites tumor study, Cell Tissue Kinet. 8:197–218.PubMedGoogle Scholar
  19. Leach, J. M., 1971, Data processing of zonal centrifuge experiments, in: Separations with Zonal Rotors (E. Reid, ed.), pp. Z–4.l–Z–4.16, Wolfson Bioanalytical Centre, University of Surrey, Guildford, England.Google Scholar
  20. London, J. W., Yarrish, R., Dzubow, L. D., and Garfinkel, D., 1974, Computer simulation and optimization, as exemplified by the enzyme-coupled aminotransferase (transaminase) assays, Clin. Chem. 20(11): 1403–1407.PubMedGoogle Scholar
  21. Ludlum, D. B., and Warner, R. C., 1965, Equilibrium centrifugation in cesium sulfate solutions, J. Biol. Chem. 240:2961–2965.PubMedGoogle Scholar
  22. Martin, R. G., and Ames, B. N., 1961, A method for determining the sedimentation behaviour of enzymes: Application to protein mixtures, J. Biol. Chem. 236:1372–1379.PubMedGoogle Scholar
  23. Meuwissen, J. A. T. P., 1973, Hydrodynamic instability: An explanation of anomalous zone spreading in density gradient methodology, in: European Symposium of Zonal Centrifugation in Density Gradient, Spectra 2000 (J.-C. Chermann, ed.), Vol. 4, pp. 21–31, Editions Cité Nouvelle, Paris.Google Scholar
  24. Noll, H., 1967, Characterization of macromolecules by constant velocity sedimentation, Nature (London) 215:360–363.CrossRefGoogle Scholar
  25. Norman, M. R., 1971, Simple equations for relating volume to radius in “B” type zonal rotors, in: Separations with Zonal Rotors (E. Reid, ed.), pp. Z–3.1–Z–3.4, Wolfson Bioanalytical Centre, University of Surrey, Guildford, England.Google Scholar
  26. Pollack, M. S., and Price, C. A., 1971, Equivolumetric gradients for zonal rotors: Separation of ribosomes, Anal. Biochem. 42:38–47.PubMedCrossRefGoogle Scholar
  27. Pretlow, T. G., 1971, Estimation of experimental conditions that permit cell separations by velocity sedimentation on isokinetic gradients of Ficoll in tissue culture medium, Anal. Biochem. 41:248–255.PubMedCrossRefGoogle Scholar
  28. Pretlow, T. G., Boone, C. W., Shrager, R. I., and Weiss, G. H., 1969, Rate zonal centrifugation in a Ficoll gradient, Anal. Biochem. 29:230–237.PubMedCrossRefGoogle Scholar
  29. Price, C. A., 1973, Equivolumetric gradients: Apparent limits on resolution and capacity imposed by gradient-induced zone narrowing, in: European Symposium of Zonal Centrifugation in Density Gradient, Spectra 2000 (J.-C. Chermann, ed.), Vol. 4, pp. 71–81, Editions Cité Nouvelle, Paris.Google Scholar
  30. Rickwood, D., 1976, Metrizamide—A gradient medium for centrifugation studies, Nyegaard & Co., Oslo, Norway.Google Scholar
  31. Sartory, W. K., Halsall, H. B., and Breillat, J. P., 1976, Simulation of gradient and band propagation in the centrifuge, Biophys. Chem. 5:107–135.PubMedCrossRefGoogle Scholar
  32. Schumaker, V. N., 1967, Zone centrifugation, in: Advances in Biological and Medical Physics (C. A. Tobias and J. H. Lawrence, eds.), pp. 245–339, Academic Press, New York.Google Scholar
  33. Spragg, S. P., Morrod, R. S., and Rankin, C. T., Jr., 1969, The optimization of density gradients for zonal centrifugation, Sep. Sci. 4:467–479.CrossRefGoogle Scholar
  34. Steensgaard, J., 1970, Construction of isokinetic sucrose gradients for rate-zonal centrifugation, Eur. J. Biochem. 16:66–70.PubMedCrossRefGoogle Scholar
  35. Steensgaard, J., and Funding, L., 1974, Computer simulation of rate-zonal centrifugation, in: Methodological Developments in Biochemistry (E. Reid, ed.), Vol. 4, pp. 55–65, Longman, London.Google Scholar
  36. Steensgaard, J., and Hill, R., 1970, Separation and analysis of soluble immune complexes by rate-zonal ultracentrifugation, Anal. Biochem. 34:485–493.PubMedCrossRefGoogle Scholar
  37. Steensgaard, J., Funding, L., and Meuwissen, J. A. T. P., 1973, Simulation of rate-zonal centrifugation on a digital computer, Eur. J. Biochem. 39:481–491.PubMedCrossRefGoogle Scholar
  38. Steensgaard, J., Funding, L., and Meuwissen, J. A. T. P., 1974, A FORTRAN program for simulation of zonal centrifugation, in: Methodological Developments in Biochemistry (E. Reid, ed.), Vol. 4, pp. 67–80, Longman, London.Google Scholar
  39. Steensgaard, J., Johansen, H. K. W., and Møller, N. P. H., 1975, Computer simulation of immunochemical interactions, Immunology 29:571–579.PubMedGoogle Scholar
  40. Steensgaard, J., Maw Liu, B., Cline, G. B., and Möller, N. P. H., 1977. The properties of immune complex-forming systems—a new theoretical approach, Immunology 32:445–456.PubMedGoogle Scholar
  41. Steensgaard, J., Møller, N. P. H., and Funding, L., 1978, Rate zonal centrifugation: Quantitative aspects, in: Centrifugal Separations in Molecular and Cell Biology (G. B. Birnie and D. Rickwood, eds.), pp. 115–168, Butterworths, London.Google Scholar
  42. Stewart, J., 1975, Urea handling by the renal countercurrent system: Insights from computer simulation, Pfluegers Arch. 356:133–151.CrossRefGoogle Scholar
  43. Svedberg, T., and Pedersen, K. O., 1940, The ultracentrifuge, Oxford University Press, Oxford.Google Scholar
  44. Svensson, H., Hagdahl, L., and Lerner, K.-D., 1957, Zone electrophoresis in a density gradient: Stability conditions and separation of serum proteins, 5c. Tools 4:1–10.Google Scholar
  45. Taketomi, H., Ueda, Y., and Gō, N., 1975, Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions, Int. J. Peptide Protein Res. 7:445–459.CrossRefGoogle Scholar
  46. Vinograd, J., and Hearst, J. E., 1962, Equilibrium sedimentation of macromolecules and viruses in a density gradient, Fortschr. Chem. Org. Naturst. 20:372–379.Google Scholar
  47. Walsh, G. R., 1975, Methods of Optimization, J. Wiley & Sons, London.Google Scholar
  48. Wright, R. R., Pappas, W. S., Carter, J. A., and Weber, C. W., 1966, Preparation and recovery of cesium compounds for density gradient solutions, Natl. Cancer Inst. Monogr. 21:241–249.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  1. 1.Institute of Medical BiochemistryUniversity of AarhusAarhus CDenmark

Personalised recommendations