Skip to main content

Cell Surface Membrane Structure and the Function of Endothelial Cells

  • Chapter
Structure and Function of the Circulation

Abstract

The principal function of the circulatory system is to transport molecules, both nutritive and informational, to the various tissues of the body. In trying to understand this process, early physiologic experiments (Pappenheimer et al., 1951; Landis and Pappenheimer, 1963; Renkin, 1964) established that the exchange process was mediated by a semipermeable “membrane.” That is, molecular exchange between the blood and tissue spaces takes place across a selective barrier that on the one hand allows the free exchange of molecules less than 45 Å in diameter (Landis and Pappenheimer, 1963) and on the other hand restricts the movement of larger diameter molecules (Garlick and Renkin, 1970; Landis and Pappenheimer, 1963). The discontinuous nature of molecular transport across this “membrane” has been explained by assuming that exchange occurs through pores of two general classes: small pores (diam. ∼90 Å; freq. 15–20/µm2) and large pores (diam. ∼500–700 Å; freq. 1/15–20 µm2) (Landis and Pappenheimer, 1963; Simionescu et al., 1976a; Lassen and Trap-Jensen, 1970). This theory has been developed in recent years to explain the differing permeabilities of the various vascular compartments; more permeable compartments such as those found in the liver and adrenal cortex have more pores of both classes, whereas relatively impermeable compartments such as those found in the brain (Crone and Lassen, 1969; Simionescu et al., 1976a) have fewer pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahkong, Q.F., Fisher, D., Tampion, W., and Lucy, I.A., 1973, The fusion of erythrocytes by fatty acids, esters, retinol and α-tacopherol. Biochem. J., 136:147–155.

    Google Scholar 

  • Allison, A.C., and Davies, P., 1974, Mechanisms of endocytosis and exocytosis. Symp. Soc. Exp. Biol., 28:419–446.

    Google Scholar 

  • Allison, A.C., Davies, P., and De Pétris, S., 1971, Role of contractile microfilaments in macrophage movement and endocytosis. Nature [New Biol.], 232:153–155.

    ADS  Google Scholar 

  • Anderson, R.G.W., Goldstein, J.L., and Brown, M.S., 1976, Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc. Natl. Acad. Sci. U.S.A., 73:2434–2438.

    ADS  Google Scholar 

  • Anderson, R. G.W., Brown, M.S., and Goldstein, J.L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell, 10:351–364.

    Google Scholar 

  • Ashwell, G., and Morell, A.G., 1974, Role of surface carbohydrates in hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol., 41:99–128.

    Google Scholar 

  • Atkins, R.C., and Ford, W.L., 1974, Early cellular events in a systemic graft-vs.-host reaction. I. The migration of responding and nonresponding donor lymphocytes. J. Exp. Med., 141:664–680.

    Google Scholar 

  • Beers, R.F., and Bassett, E.G. (eds.), 1976, “Cell Membrane Receptors for Viruses, Antigens and Antibodies. Polypeptide Hormones, and Small Molecules.” Raven Press, New York.

    Google Scholar 

  • Ben-Bassat, I., Bensch, K.G., and Schrier, S.L., 1972, Drug-induced erythrocyte membrane internalization. J. Clin. Invest., 51:1833–1844.

    Google Scholar 

  • Bergelson, L.D., and Barsukov, L.I., 1977, Topological asymmetry of phospholipids in membranes. Science, 197:224–230.

    ADS  Google Scholar 

  • Bessis, M., Weed, R.I., and Leblond, P.F. (eds.), 1973, “Red Cell Shape: Physiology, Pathology, Ultrastructure.” Springer-Verlag, Berlin.

    Google Scholar 

  • Birchmeier, W., and Singer, S.J., 1977a, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J. Cell Biol., 73:647–659.

    Google Scholar 

  • Birchmeier, W., and Singer, S.J., 1977b, Muscle G-actin is an inhibitor of ATP-induced erythrocyte ghost shape changes and endocytosis. Biochem. Biophys. Res. Commun., 77:1354–1360.

    Google Scholar 

  • Blanchette-Mackie, E.J., and Scow, R.O., 1971, Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons: Electron microscope cytochemical study. J. Cell Biol., 51:1–25.

    Google Scholar 

  • Blitz, A.L., Fine, R.E., and Toselli, P.A., 1977, Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum. J. Cell Biol., 75:135–147.

    Google Scholar 

  • Bode, F., Baumann, K., and Kinne, R., 1976, Analysis of the pino-cytic process in rat kidney. II. Biochemical composition of pinocytic vesicles compared to brush border microvilli, lysosomes and basolateral plasma membrane. Biochim. Biophys. Acta., 433:294–310.

    Google Scholar 

  • Bradfield, J.W.B., and Born, G.V.R., 1973, The migration of rat thoracic duct lymphocytes through spleen in vivo. Br. J. Exp. Pathol., 54:509–517.

    Google Scholar 

  • Branton, D., 1966, Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. U.S.A., 55:1048–1056.

    ADS  Google Scholar 

  • Bretscher, M.S., 1973, Membrane structure—some general principles. Science, 181:622–629.

    ADS  Google Scholar 

  • Bretscher, M.S., 1974, Some aspects of membrane structure, in “Perspectives in Membrane Biology.” (S. Estrada-O. and C. Gitler, eds.), pp. 3–20, Academic Press, New York.

    Google Scholar 

  • Brightman, M.W., Reese, T.S., and Feder, N., 1970, Assessment with the electron-microscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks, in “Capillary Permeability.” (C. Crone and N.A. Lassen, eds.) pp. 468–476, Academic Press, New York.

    Google Scholar 

  • Brightman, M.W., Hori, M., Rapaport, S.I., Reese, T.S., and Westergaard, E., 1973, Osmotic opening of tight junctions in cerebral endothelium. J. Comp. Neurol., 152:317–326.

    Google Scholar 

  • Brown, M.V., Shaw, W., Baginsky, M., Boberg, J., and Augustin, J., 1976, Lipases and lipoproteins, in “Lipoprotein Metabolism.” (H. Greten, ed.) pp. 2–6, Springer-Verlag, New York.

    Google Scholar 

  • Bruns, R.R., and Palade, G.E., 1968a, Studies on blood capillaries. I. Genera] organization of blood capillaries in muscle. J. Cell Biol., 37:244–276.

    Google Scholar 

  • Bruns, R.R., and Palade, G.E., 1968b, Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol., 37:277–299.

    Google Scholar 

  • Buonassisi, V., 1973, Sulphated mucopolysaccharide synthesis and secretion in endothelial cell-cultures. Exp. Cell Res., 76:363–368.

    Google Scholar 

  • Buonassisi, V., and Root, M., 1975, Enzymatic degradation of heparin-related mucopolysaccharides from the surface of endothelial cell cultures. Biochim. Biophys. Acta., 385:1–10.

    Google Scholar 

  • Butcher, E.C., Scollay, R.G., and Weissman, I.L., 1979, Lymphocyte adherence to high endothelial venules: Characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J. Immunol., 123:1996–2003.

    Google Scholar 

  • Caldwell, P., Seegal, B.C., and Hsu, K., 1976, Angiotensin-connecting enzyme: Vascular endothelial localization. Science, 191:1050–1051.

    ADS  Google Scholar 

  • Caro, C.G., and Nerem, R.M., 1973, Transport of 14C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res., 32:187–205.

    Google Scholar 

  • Carpenter, G., and Cohen, S., 1976, 125labeled human epidermal growth factor—binding, internalization, and degradation in human fibroblasts. J. Cell Biol., 71:159–171.

    Google Scholar 

  • Casley-Smith, J.R., 1976, The functioning and interrelationships of blood capillaries and lymphatics. Experientia, 32:1–12.

    Google Scholar 

  • Casley-Smith, J.R., and Chin, J.C., 1971, The passage of cytoplasmic vesicles across endothelial and mesothelial cells. Microsc., 93:167–189.

    Google Scholar 

  • Casley-Smith, J.R., Green, H.S., Harris, J.L., and Wadey, P.J., 1975, The quantitative morphology of skeletal muscle capillaries in relation to permeability. Microvasc. Res., 10:43–64.

    Google Scholar 

  • Chapman, D., 1975a, Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys., 8:185–235.

    Google Scholar 

  • Chapman, D., 1975b, Fluidity and phase transitions of cell membranes, in “Biomembranes.” (H.K. Eisenberg, E. Katchalski-Katzer, and L.A. Mauson, eds.) Vol. 7, pp. 1–9, Plenum Press, New York.

    Google Scholar 

  • Chapman, D., and Cornell B.A., 1977, Phase transitions, protein aggregation and membrane fluidity, in “Structure of Biological Membranes.” (S. Abrahamsson and I. Pascher, eds.) pp. 85–93, Plenum Press, New York.

    Google Scholar 

  • Chen, L.L., and Haines, T.H., 1976, The flagellar membrane of Ochromonas danica. Isolation and electrophoretic analysis of the flagellar membrane, axonemes and mastigonemes. J. Biol. Chem., 251:1835–1842.

    Google Scholar 

  • Chen, L.L., Pousada, M., and Haines, T.H., 1976, The flagellar membrane of Ochromonas danica. Lipid composition. J. Biol. Chem., 251:1835–1842.

    Google Scholar 

  • Claude, P., and Goodenough, D.A., 1973, Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol., 58:390–400.

    Google Scholar 

  • Climenti, F., and Palade, G.E., 1969, Intestinal capillaries. I. Permeability to peroxidase and ferritin. J. Cell Biol., 41:33–58.

    Google Scholar 

  • Cliff, W.J., 1976, “Biological Structure and Function. 6. Blood Vessels.” (R.J. Harrison, R.M.H. McMinn, and I.E. Treherne, eds.) Cambridge University Press, New York.

    Google Scholar 

  • Connell, C.J., and Mercer, K.L., 1974, Freeze-fracture appearance of the capillary endothelium in the cerebral cortex of mouse brain. Am. J. Anat., 140:595–599.

    Google Scholar 

  • Crone, C, and Lassen, N.A. (eds.), 1969, “Capillary Permeability,” Proceedings of the Alfred Benzon Symposium II, Alfred Benzon Symposium, 2d, Royal Danish Academy of Sciences and Letters, 1969, Academic Press, New York.

    Google Scholar 

  • Crone, C, and Thompson, A.M., 1970, Permeability of brain capillaries, in “Capillary Permeability.” (C. Crone and N.A. Lassen, eds.) pp. 447–453, Proceedings of the Alfred Benzon Symposium II, Alfred Benzon Symposium, 2d, Royal Danish Academy of Sciences and Letters, 1969, Academic Press, New York.

    Google Scholar 

  • Danielli, J., and Davson, H., 1935, A contribution to the theory of permeability of thin films. J. Cell. Physiol., 5:495–508.

    Google Scholar 

  • Danon, D., 1970, Blood vessel surface charge analysis by electron microscopy. (J. Ditzel and D.H. Lewis, eds.) 6th Eur. Conf. Microcirc., 1971:415–419, Basel, New York, Karger.

    Google Scholar 

  • Depierre, J.P., and Dallner, G., 1975, Structural aspects of the membrane of the endoplasmic reticulum. Biochim. Biophys. Acta., 415:411–472.

    Google Scholar 

  • De Pierre, J.W., and Ernster, L., 1977, Enzyme topology of intracellular membranes. Annu. Rev. Biochem., 46:201–262.

    Google Scholar 

  • Dermietzel, R., 1975, Junctions in the central nervous system of the cat. IV. Interendothelial junctions of cerebral blood vessels from selected areas of the brain. Cell Tissue Res., 164:45–62.

    Google Scholar 

  • Deuticke, B., 1968, Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta., 163:494–500.

    Google Scholar 

  • Dorer, F.E., Kahn, J.R., Lentz, K.E., Levine, M., and Skeggs, L.T., 1974, Hydrolysis of bradykinen by angiotensin-converging enzyme. Circ. Res., 34:824–827.

    Google Scholar 

  • Du Praw, E.J., 1968, “Cell and Molecular Biology.” Academic Press, New York.

    Google Scholar 

  • Edelman, G.M., Yahara, I., and Wang, J.L., 1973, Receptor mobility and receptor-cytoplasmic interactions in lymphocytes (Cell surface lymphocyte receptor mobility — Lectins — Concanavalin-A). Proc. Natl. Acad. Sci. U.S.A., 70:1442–1446.

    ADS  Google Scholar 

  • Edidin, M., 1974, Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng., 3:179–201.

    Google Scholar 

  • Elfvin, L.-G., 1965, The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J. Ultrastruct. Res., 12:687–704.

    Google Scholar 

  • Elias, P.M., Goerke, J., and Friend, D.S., 1978, Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J. Cell Biol., 78:577–596.

    Google Scholar 

  • Evans, E.A., 1974, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J., 14:923–931.

    ADS  Google Scholar 

  • Farquhar, M.G., 1960, An electron microscope study of glomerular permeability. Anat. Rec., 136:191 (Abstract).

    Google Scholar 

  • Farquhar, M.G., and Palade, G.E., 1963, Junctional complexes in various epithelia. J. Cell Biol., 17:375–412.

    Google Scholar 

  • Farr, A., and De Bruyn, P., 1975, The mode of lymphocyte migration through postcapillary vesicle endothelium in lymph node. Am. J. Anat., 143:59–92.

    Google Scholar 

  • Fawcett, D.W., 1965, Surface specializations of absorbing cells. J. Histochem. Cytochem., 13:75–91.

    Google Scholar 

  • Ford, W.L., and Sedgely, M., 1976, The mgiration of lymphocytes across vascular endothelium. Agents & Actions 6(1–3):248–250.

    Google Scholar 

  • Ford, W.L., Sedgley, M., Sparshott, S.M., and Smith, M.E., 1976, The migration of lymphocytes across specialized vascular endothelium II. The contrasting consequences of treating lymphocytes with trypsin or neuraminidase. Cell Tissue Kinet., 9:351–361.

    Google Scholar 

  • Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins. Nature 268:23–26.

    ADS  Google Scholar 

  • Friend, D.S., and Farquhar, M.G., 1967, Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol., 35:357–376.

    Google Scholar 

  • Freitas, A.A., and De Sousa, M., 1976, The role of cell interactions in the control of lymphocyte traffic. Cell. Immunol., 22:345–350.

    Google Scholar 

  • Frye, L.D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell. Science, 7:319–335.

    Google Scholar 

  • Garlick, D.G., and Renkin, E.M., 1970, Transport of large molecules from plasma to interstitial fluid and lymph in dogs. Am. J. Physiol., 219(6):1595–1605.

    Google Scholar 

  • Gesner, B.M., and Ginsburg, V., 1964, Effect of glycosidases on the fate of transfused lymphocytes. P.N.A.S., 52:750–755.

    Google Scholar 

  • Gesner, B.M., Woodruff, J.J., and McCluskey, R.T., 1969, An autoradiographic study of the effect of neuraminidase or trypsin on transfused lymphocytes. Am. J. Pathol., 57:215–230.

    Google Scholar 

  • Gillette, R.W., McKenzie, G.O., and Swanson, M.H., 1973, Effect of concanavalin A on the homing of labeled T lymphocytes. J. Immunol., 111(6):1902–1905.

    Google Scholar 

  • Ginn, F.L., Hochstein, P., and Trump, B.F., 1969, Membrane alterations in hemolysis: Internalization of plasmalemma induced by primaquine. Science, 164:843–845.

    ADS  Google Scholar 

  • Goldschneider, I., and McGregor, D., 1968, Migration of lymphocytes and thymocytes in the rat. I. The route of migration from blood to spleen and lymph nodes. J. Exp. Med., 127:155–168.

    Google Scholar 

  • Goldstein, G.W., Csejtey, J., and Diamond, I., 1976, Carrier mediated glucose transport in capillaries isolated from rat brain. J. Neurochem., 28:725–728.

    Google Scholar 

  • Goldstein, J.L., and Brown, M.S., 1977, The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem., 46:897–930.

    Google Scholar 

  • Goldstein, J.L., Anderson, R.G.W., and Brown, M.S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis. Nature, 279:679–685.

    ADS  Google Scholar 

  • Goodenough, D.A., and Revel, J.P., 1970, A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol., 45:272–290.

    Google Scholar 

  • Gordon, S., 1975, Cell fusion and some subcellular properties of heterokaryons and hybrids. J. Cell Biol., 67:257–280.

    Google Scholar 

  • Gorter, E., and Grendel, F., 1925, Bimolecular layers of lipids on chromocytes of blood. J. Exp. Med., 41:439–443.

    Google Scholar 

  • Gowans, J., and Knight, E., 1964, The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond., 159:257–282.

    ADS  Google Scholar 

  • Gray, G.M., 1974, Glycosphingolipids in biological membranes, in “Perspectives in Membrane Biology.” (S. Estrada and C. Gitler, eds.) pp. 85–106, Academic Press, New York.

    Google Scholar 

  • Green, H.S., and Casley-Smith, J.R., 1972, Calculations on the passage of small vesicles across endothelial cells by Brownian motion. J. Theor. Biol., 35:103–111.

    Google Scholar 

  • Guidotti, G., 1972, Membrane proteins. Annu. Rev. Biochem., 41:731–752.

    Google Scholar 

  • Gutman, G., and Weissman, I., 1973, Homing properties of thymus-independent follicular lymphocytes. Transplantation, 16(6):621–629.

    Google Scholar 

  • Guyton, A.C., 1976, “Textbook of Medical Physiology.” W. B. Saunders, Philadelphia.

    Google Scholar 

  • Hackenbrock, C.R., 1977, Molecular organization and the fluid nature of the mitochondrial energy transducing membrane, in “Structure of Biological Membranes.” (S. Abrahamsson and I. Pascher, eds.) pp. 199–234, Plenum Press, New York.

    Google Scholar 

  • Hayashi, H., Plishker, G.A., Vaughan, L., and Penniston, J.T., 1975, Energy-Dependent endotycosis in erythrocyte ghosts. IV. Effects of Ca++, Na+ + K+, and 5′-adenyl-inidodiphosphate. Biochim. Biophys. Acta., 382:218–229.

    Google Scholar 

  • Hendler, R.W., 1971, Biological membrane ultrastructure. Physiol. Rev., 51(1):66–97.

    Google Scholar 

  • Heuser, J., 1980, Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol., 84:560–583.

    Google Scholar 

  • Howard, J.C., 1972, The life span and recirculation of marrow-derived small lymphocytes from the rat thoracic duct. J. Exp. Med., 135:185–199.

    Google Scholar 

  • Huang, H.W., 1973, Mobility and diffusion in the plane of cell membrane. J. Theor. Biol., 40:11–17.

    Google Scholar 

  • HÜttner, I., More, R.H., and Rona, G., 1970, Fine structural evidence of specific mechanism for increased endothelial permeability in experimental hypertension. Am. J. Pathol., 61:395–412.

    Google Scholar 

  • Hü, I., Boutet, M., and More, R.H., 1973, Studies on protein passage through arterial endothelium. II. Regional differences in permeability to fine structural protein tracers in arterial endothelium of normotensive rat. Lab. Invest., 28:678–685.

    Google Scholar 

  • Jain, M.K., 1975, Role of cholesterol in biomembranes and related systems, in “Current Topics in Membranes and Transport.” (F. Bronner and A. Kleinzeller, eds.) Vol. 6, pp. 1–58, Academic Press, New York.

    Google Scholar 

  • Jarrett, H.W., Reid, T.B., and Penniston, J.T., 1977, Concurrent inhibition of the low-affinity Ca2+-stimulated ATPase and MgATP-dependent endocytosis in erythrocyte ghosts by N-napthylmaleimide and carbomylcyanide-m-chlorophenylhydrazone. Arch. Biochem. Biophys., 183:498–510.

    Google Scholar 

  • Jennings, M.A., and Florey, L., 1967, An investigation of some properties of endothelium related to capillary permeability. Proc. R. Soc. Lond. [Biol.], 167:39–63.

    ADS  Google Scholar 

  • Johnson, A., and Erdos, E., 1977, Metabolism of vasoactive peptides by human endothelial cells in culture. J. Clin. Invest., 59:684–695.

    Google Scholar 

  • Jod, F., 1971, Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Br. J. Exp. Pathol., 52:646–649.

    Google Scholar 

  • Kahn, C.R., 1976, Membrane receptors for hormones and neurotransmitters. J. Cell Biol., 70:261–286.

    Google Scholar 

  • Kanaseki, T., and Kadota, K., 1969, The “vesicle in a basket.” A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movement. J. Cell Biol., 42:202–220.

    Google Scholar 

  • Karlsson, K., 1977, Aspects on structure and function of sphingo-lipids in cell surface membranes, in “Structure of Biological Membranes.” (S. Abrahamsson and I. Pascher, eds.) pp. 245–274, Plenum Press, New York.

    Google Scholar 

  • Karnovsky, M.J., 1967, The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol., 35:213–236.

    Google Scholar 

  • Karnovsky, M.J., 1968, The ultrastructural basis of transcapillary exchanges. J. Gen. Physiol., 52(Suppl.):64–95.

    Google Scholar 

  • Karnovsky, M.J., 1970, Morphology of capillaries with special reference to muscle capillaries, in “Capillary Permeability.” (C. Crone and N.A. Lassen, eds.) pp. 341–350, Proceedings of the Alfred Benzon Symposium II, Alfred Benzon Symposion, 2d, Royal Danish Academy of Sciences and Letters, 1969, Academic Press, New York.

    Google Scholar 

  • Katchalsky, A.D., Danon, D., Nevo, A., and de Vries, A., 1959, Interaction of basic polyelectrolytes with the red blood cell. II. Agglutination of red blood cells by polymeric bases. Biochim. Biophys. Acta., 33:120–138.

    Google Scholar 

  • Katz, B., 1969, “The Release of Neural Transmitter Substances.” pp. 1–12, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Kitchens, C.S., and Weiss, L., 1975, Ultrastructural changes of endothelium associated with thrombocytopenia. Blood, 46(4):567–578.

    Google Scholar 

  • Klenk, H.-D., and Choppin, P.W., 1969, Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza viruses grown in these cells. Virology, 38:255–268.

    Google Scholar 

  • Klenk. H.–D., and Choppin, P.W., 1970, Plasma membrane lipids and parainfluenza virus assembly. Virology, 40:939–947.

    Google Scholar 

  • Korn, E., 1966, Structure of biological membranes: The unit membrane theory is reevaluated in light of the data now available. Science, 153:1491–1498.

    ADS  Google Scholar 

  • Korn, E.D., 1975, Biochemistry of endocytosis, in “Biochemistry of Cell Walls and Membranes.” (C.F. Fox, ed.) pp. 1–26, University Park Press, Baltimore.

    Google Scholar 

  • Landis, E.M., and Pappenheimer, J.R., 1963, Exchange of substances through the capillary walls, in “Handbook of Physiology.” (W.F. Hamilton and P. Dow, eds.) Sect. 2, Vol. 2, pp. 961–1034, Am Physiol. Soc, Washington.

    Google Scholar 

  • Lassen, N.A., and Trap-Jensen, J., 1970, Estimation of the fraction of the enterendothelial slit which must be open in order to account for the observed transcapillary exchange of small hydrophilic molecules in skeletal muscle in man, in “Capillary permeability.” (C. Crone and N.A. Lassen, eds.) pp. 647–653, Academic Press, New York.

    Google Scholar 

  • Latta, H., 1970, The glomerular capillary wall. J. Ultrastruct. Res., 32:526–544.

    Google Scholar 

  • Lee, H.-J., Larue, J.N., and Wilson, I.B., 1971, Angiotensinconverting enzyme from guinea pig and hog lung. Biochim. Biophys. Acta., 250:549–557.

    Google Scholar 

  • Lentz, K.E., Skeggs, L.T., Woods, K.R., Kahn, J.R., and Shumway, N.P., 1956, The amino acid composition of hypertensin II and its biochemical relationship to hypertensin I. J. Exp. Med., 104:183–191.

    Google Scholar 

  • Lucy, J.A., 1970, The fusion of biological membranes. Nature, 227:815–817.

    ADS  Google Scholar 

  • Luft, J.H., 1966, Fine structure of capillary and endocapillary layers as revealed by ruthenium. Fed. Proc. Fed. Am. Soc. Exp. Biol., 25:1773–1783.

    Google Scholar 

  • Luft, J.H., 1971, Ruthenium red and violet. I. Chemistry, purification, methods of use for E.M. and mechanism of action. Anat. Rec., 171:347–368.

    Google Scholar 

  • Lutz, H.U., Liu, S.-C, and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J. Cell Biol., 73:548–560.

    Google Scholar 

  • Mahoney, E.M., Hamill, A.L., Scott, W.A., and Cohn, Z.A., 1977, Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc. Natl. Acad. Sci. U.S.A., 74:4895–4899.

    ADS  Google Scholar 

  • Majno, G., 1965, Ultrastructure of the vascular membrane, in “Handbook of Physiology.” (W.F. Hamilton and P. Dow, eds.) Vol. 3, pp. 2293–2375, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Majno, G., and Palade, G.E., 1961, Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. J. Biophys. Biochem. Cytol., 11:571–600.

    Google Scholar 

  • Marchesi, V.T., and Florey, H.W., 1960, Electron micrographie observations on the emigration of leucocytes. Quart. J. Exp. Physiol., 45:343–348.

    Google Scholar 

  • Maul, G.G., 1971, Structure and formation of pores in fenestrated capillaries. J. Ultrastruct. Res., 36:768–782.

    Google Scholar 

  • Mehrishi, J.N., 1972, Molecular aspects of the mammalian cell surface. Prog. Biophys. Mol. Biol., 25:1–68.

    Google Scholar 

  • Meister, A., 1973, On the enzymology of amino acid transport. Science, 180:33–39.

    ADS  Google Scholar 

  • Michel, R.P., Inoue, S., and Hogg, J.C., 1977, Pulmonary capillary permeability to HRP in dogs: A physiological and morphological study. J. Appl. Physiol., 42:13–21.

    Google Scholar 

  • Montesano, R., Perrelet, A., Vassalli, P., and Orci, L., 1979, Absence of filipin-sterol complexes from large coated pits on the surface of culture cells. Proc. Natl. Acad. Sci. U.S.A., 76:6391–6395.

    ADS  Google Scholar 

  • Moxon, L.A., Wild, A.E., and Slade, B.S., 1976, Localisation of proteins in coated micropinocytotic vesicles during transport across rabbit yolk sac endoderm. Cell Tissue Res., 171:175–193.

    Google Scholar 

  • Nes, W., 1974, Role of sterols in membranes. Lipids, 9(8):596–612.

    Google Scholar 

  • Neufeld, E.F., Lime, T.W., and Shapiro, L.J., 1975, Inherited disorders of lysosomal metabolism. Annu. Rev. Biochem., 44:357–376.

    Google Scholar 

  • Nicolson, G., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim. Biophys. Acta., 457:57–108.

    Google Scholar 

  • Nicolson, G.L., and Painter, R.G., 1973, Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding-sites for positively charged colloidal particles. J. Cell Biol., 59:395–406.

    Google Scholar 

  • Ody, C, and Junod, A.F., 1977, Converting enzyme activity in endothelial cells isolated from pig pulmonary artery and aorta, Am. J. Physiol., 232:95–98.

    Google Scholar 

  • Olivecrona, T., Bengtsson, G., Höök, M., and Lindahl, U., 1975, Physiologic implications of the interaction between lipoprotein lipase and some sulfated glycosaminoglycans, in “Lipoprotein Metabolism.” (H. Greten, ed.) pp. 13–19, Springer-Verlag, New York.

    Google Scholar 

  • Olivecrona, T., Bengtsson, G., Marklund, S.-E., Lindahl, U., and Höök, M., 1977, Heparin-lipoprotein lipase interactions. Fed. Proc., 36(1):60–65.

    Google Scholar 

  • Orci, L., Carpentier, J.-L., Perrelet, A., Anderson, R.G.W., Goldstein, J.L., and Brown, M.S., 1978, Occurrence of low density lipoprotein receptors within large pits on the surface of human fibroblasts as demonstrated by freeze-etching. Exp. Cell Res., 113:1–13.

    Google Scholar 

  • Orlowski, M., Sessa, G., and Green, J.P., 1974, γ glutamyl transpeptidase in brain capillaries: Possible site of a blood-brain barrier for amino acids. Science, 184:66–68.

    ADS  Google Scholar 

  • Overton, E., 1895, Über die osmotischen eigenschafter der lebenden pflanzenund tierzelle Vjseher. Naturforsch Ges. Zurich, 40:159–201.

    Google Scholar 

  • Palade, G.E., 1953, Fine structure of blood capillaries. J. Appl. Physiol. A, 24:1424.

    Google Scholar 

  • Palade, G.E., 1961, Blood capilaries of the heart and other organs. Circulation, 24:368–384.

    Google Scholar 

  • Palade, G.E., and Bruns, R.R., 1968, Structural modulations of plasma-lemmal vesicles. J. Cell Biol., 37:633–649.

    Google Scholar 

  • Papahadjapoulos, D., Poste, G., Schaeffer, B.E., and Vail, W.J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles. Biochim. Biophys. Acta., 352:10–28.

    Google Scholar 

  • Pappenheimer. J.R., Renkin, E.M., and Barrero, L.M., 1951, Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol., 167:13–46.

    Google Scholar 

  • Parkes, J., and Fox, C.F., 1975, On the role of lysophosphatides in virus-induced cell fusion and lysis. Biochemistry, 14(17):3725–3729.

    Google Scholar 

  • Pasternak, C.A., and Micklem, K., 1974, The biochemistry of virus-induced cell fusion: Changes in membrane integrity. Biochem. J., 140:405–411.

    Google Scholar 

  • Pearse, B.M.F., 1975, Coated vesicles from pig brain—purification and biochemical characterization. J. Mol. Biol., 97:93–98.

    Google Scholar 

  • Penniston, J.T., and Green, D.E., 1968, The conformational basis of energy transformations in membrane systems. IV. Energized states and pinocytosis in erythrocyte ghosts. Arch. Biochem. Biophys., 128:339–350.

    Google Scholar 

  • Pesanti, E.L., and Axline, S.G., 1975, Colchicine effects on lysosomal enzyme-induction and intracellular degradation in cultivated macrophage. J. Exp. Med., 141:1030–1046.

    Google Scholar 

  • Pinto Da Silva, P., and Branton, D., 1970, Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J. Cell Biol., 45:598–605.

    Google Scholar 

  • Pollard, T.D., 1976, Cytoskeletal functions of cytoplasmic contractile proteins, in “Cell Shape and Surface Architecture.” (J.P. Revel, U. Henning, and C.F. Fox, eds.) pp. 269–286, A.R. Liss, New York.

    Google Scholar 

  • Poste, G., 1971, Membrane fusion reaction: A theory. J. Theor. Biol., 32:165–184.

    Google Scholar 

  • Poste, C, and Allison, A.C., 1973, Membrane fusion. Biochim. Biophys. Acta., 300:421–465.

    Google Scholar 

  • Quinn, P.J., 1976, Membrane permeability and transport, in “The Molecular Biology of Cell Membranes.” pp. 130–172, University Park Press, Baltimore.

    Google Scholar 

  • Reese, T.E., and Karnovsky, M., 1967, Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol., 34:207–217.

    Google Scholar 

  • Renkin, E., 1964, Transport of large molecules across capillary walls. Physiologist, 7:13–28.

    Google Scholar 

  • Rhodin, J.H.G., 1962, The diaphragm of capillary endothelial fenestrations. J. Ultrastruct. Res., 6:171–185.

    Google Scholar 

  • Robertson, J.D., 1957, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J. Biophys. Biochem. Cytol., 3:1043–1047.

    Google Scholar 

  • Rodewald, R., 1973, Intestinal transport of antibodies in the newborn rat. J. Cell Biol., 58:189–211.

    Google Scholar 

  • Rodewald, R., 1976, Intestinal transport of peroxidase-conjugated IgG fragments in the neonatal rat, in “Maternofoetal Transmission of Immunoglobulins.” (W.A. Hemmings, ed.) pp. 137–149, Cambridge University Press, London.

    Google Scholar 

  • Rosenbluth, J., and Wissig, S.L., 1964, The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol., 23:307–325.

    Google Scholar 

  • Roth, T.F., and Porter, K.R., 1964, Yolk protein uptake in the oocyte of the mosquito Aedis aegypti, L., J. Cell Biol., 20:313–332.

    Google Scholar 

  • Roth, T.F., Cutting, J.A., and Atlas, S.B., 1976, Protein transport—a selective membrane mechanism. J. Supramol. Struct., 4:527–548.

    Google Scholar 

  • Rothman, J.E., Tsai, D.K., Dawidowicz, E.A., and Lenard, J., 1976, Transbilayer phospholipid asymmetry and its maintenance in membrane of influenza-virus. Biochemistry, 15:2361–2370.

    Google Scholar 

  • Rubin, B.T., 1977, A theoretical model of the pinocytotic vesicular transport process in endothelial cells. J. Theor. Biol., 64:619–647.

    Google Scholar 

  • Ryan, J.W., and Smith, U., 1971, A rapid, simple method for isolating pinocytotic vesicles and plasma membrane of lung. Biochim. Biophys. Acta., 249:177–180.

    Google Scholar 

  • Ryan, J.W., Smith, U., and Niemeyer, R.S., 1972, Angiotensin I: Metabolism by plasma membrane of lung. Science, 176:64–66.

    ADS  Google Scholar 

  • Ryan, J.W., Day, A.R., Schultz, D.R., Ryan, U.S., Chung, A., Marlborough, D.I., and Dorer, F.E., 1976a, Localization of angiotensin converting enzyme (kininase II). I. Preparation of antibody-hemeoctopeptide conjugates. Tissue Cell 8(1):111–124.

    Google Scholar 

  • Ryan, U.S., Ryan, J.W,, Whitaker, C, and Chiu, A., 1976b, Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8(1):125–145.

    Google Scholar 

  • Satir, B., Schooley, C, and Satir, P., 1973, Membrane fusion in a model system. J. Cell Biol., 56:153–176.

    Google Scholar 

  • Schoefl, G.I., 1972, The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A reexamination. J. Exp. Med., 136:568–588.

    Google Scholar 

  • Schneeberger-Keeley, E.E., and Karnovsky, M.J., 1968, The ultra-structural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J. Cell Biol., 37:781–793.

    Google Scholar 

  • Scow, R.O., B·lanchette-Mackie, E.J., and Smith, L.C., 1976, Role of capillary endothelium in the clearance of chylomicrons. A mode for lipid transport from blood by lateral diffusion in cell membranes. Circ. Res., 39:149–162.

    Google Scholar 

  • Sedgley, M., and Ford, W.L., 1976, The migration of lymphocytes across specialized vascular endothelium. I. The entry of lymphocytes into the isolated mesenteric lymph-node of the rat. Cell Tissue Kinet., 9:231–243.

    Google Scholar 

  • Shea, S.M., and Karnovsky, M.J., 1969, Vesicular transport across endothelium: Simulation of a diffusion model. J. Theor. Biol., 24:30–42.

    Google Scholar 

  • Sheetz, M.P., and Singer, S. J., 1974, Biological membranes as bi-layer couples. A molecular mechanism of drug-erythrocyte interaction. Proc. Natl. Acad. Sci. U.S.A., 71(11):4457–4461.

    ADS  Google Scholar 

  • Sheetz, M.P., and Singer, S.J., 1976, Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J. Cell Biol., 70:247–251.

    Google Scholar 

  • Sheetz, M.P., and Singer, S.J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J. Cell Biol., 73:638–646.

    Google Scholar 

  • Sheetz, M.P., Painter, R.G., and Singer. S.J., 1976a, The contractile proteins of erythrocyte membranes and shape changes, in “Cell Motility.” (R. Goldman, T. Pollard, and J. Rosenbaum, eds.) pp. 651–664, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Sheetz, M.P., Painter, R.G., and Singer, S.J., 1976b, Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J. Cell Biol., 70:193–203.

    Google Scholar 

  • Siflinger, A., Parker, K., and Caro, C.G., 1975, Uptake of 125I albumin by the endothelial surface of the isolated dog common carotid artery—effect of certain physical factors and metabolic-inhibitors. Cardiovasc. Res., 9:478–489.

    Google Scholar 

  • Silverstein, S.C., Steinman, R.M., and Cohn, Z.A., 1977, “Endocytosis” (E.E. Snell, ed.) Annu. Rev. Biochem., 46:669–722, Annual Reviews, Inc., Palo Alto.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1972, Permability of intestinal capillaries. Pathway followed by dextrans and glycogens. J. Cell Biol., 53:365–392.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1973, Permeability of muscle capillaries to exogenous myoglobin. J. Cell Biol., 57:424–452.

    Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G.E., 1974, Morphometric data on the endothelium of blood capillaries. J. Cell Biol., 60:128–152.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1975a, Permeability of muscle capillaries to small hemepeptides. Evidence for the existence of patent transendothelial channels. J. Cell Biol., 64:586–607.

    Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G.E., 1975b, Segmental differentiation of cell junctions in the vascular endothelium. The microvasculature. J. Cell Biol., 67:863–885.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1976a, Recent studies on vascular endothelium. Ann. N.Y. Acad. Sci., 275:64–75.

    ADS  Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G.E., 1976b, The blood vessel wall, hemorhelogy and hemodynamics. Thromb. Res., 8(2):247–256.

    Google Scholar 

  • Simionescu, N., Simionescu, M., and Palade, G.E., 1976c, Structural functional correlates in the transendothelial exchange of water-soluble macromolecules. Thromb. Res., 8(2):257–269.

    Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G.E., 1976d, Segmental differentiations of cell junctions in the vesicular endothelium. Arteries and veins. J. Cell Biol., 68:705–723.

    Google Scholar 

  • Singer, S.J., 1971, The molecular organization of biological membranes, in “Structure and Function of Biological Membranes.” (L.I. Rothfield, ed.) pp. 145–222, Academic Press, New York.

    Google Scholar 

  • Singer, S.J., 1974, The molecular organization of membranes. Annu. Rev. Biochem., 43:805–833.

    Google Scholar 

  • Singer, S.J., 1977, The fluid mosaic model of membrane structure, in “Structure of Biological Membranes.” (S. Abrahamsson and I. Pascher, eds.) pp. 443–461, Plenum Press, New York.

    Google Scholar 

  • Singer, S.J., and Nicolson, G.L., 1972, The fluid mosaic model of the structure of cell membranes. Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, 175:720–731.

    ADS  Google Scholar 

  • Skeggs, L.T., Kahn, J.R., and Shumway, N.P., 1956, The preparation and function of the hypertensin-coverting enzyme. J. Exp. Med., 103:295–299.

    Google Scholar 

  • Skutelsky, E., and Danon, D., 1976, Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J. Cell Biol., 71:232–241.

    Google Scholar 

  • Skutelsky, E., Rudich, Z., and Danon, D., 1975, Surface change properties of the luminal front of blood vessel walls: An electron microscopic analysis. Thromb. Res., 7:623–634.

    Google Scholar 

  • Smith, J.B., Mcintosh, G.H., and Morris, B., 1970b, The traffic of cells through tissues: A study of peripheral lymph in sheep. J. Anat., 107:87–100.

    Google Scholar 

  • Smith, U., and Ryan, J.W., 1972, Substructural features of pulmonary endothelial caveolae. Tissue Cell, 4(1):49–54.

    Google Scholar 

  • Smith, U., Ryan, J., and Smith, D., 1973, Freeze-etch studies of the plasma membrane of pulmonary endothelial cells. J. Cell Biol., 56:492–499.

    Google Scholar 

  • Soffer, R.L., Reza, R., and Caldwell, P.R.B., 1974, Angiotensinconverting enzyme from rabbit pulmonary particles. Proc. Natl. Acad. Sci. U.S.A., 71:1720–1724.

    ADS  Google Scholar 

  • Sordat, B., Hess, N.W., and Cottier, H., 1971, IgG immunoglobulin in the wall of post-capillary venules: Possible relationship to lymphocyte recirculation. Immunology, 20:115–118.

    Google Scholar 

  • Sprent, J., 1973, Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell. Immunol., 7:10–39.

    Google Scholar 

  • Straehelin, L.A., 1974, Structure and function of intracellular junctions. Int. Rev. Cytol., 39:191–283.

    Google Scholar 

  • Stamper, H.B., and Woodruff, J.J., 1976, Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med., 144:828–833.

    Google Scholar 

  • Stamper, H.B., and Woodruff, J., 1977, An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high-endothelial venules of lymph nodes. J. Immunol., 119(2):772–780.

    Google Scholar 

  • Steck, T.L., 1974, The organization of proteins in the human red blood cell membrane. A review. J. Cell Biol., 62:1–19.

    Google Scholar 

  • Stein, O., and Stein, Y., 1972, An electron-microscopic study of the transport of peroxidases in the endothelium of mouse aorta. Zeit, für Zellforsch. und Mikorsk. Anat., 133:211–222.

    Google Scholar 

  • Steinman, R.M., and Cohn, Z.A., 1972, Interaction of horseradish-peroxidase with mouse peritoneal macrophages in vitro. J. Cell Biol., 55:186–204.

    Google Scholar 

  • Steinman, R.M., Silver, J.M., and Cohn, Z.A., 1974, Pinocytosis in fibroblasts. Quantitative studies in vitro. J. Cell Biol., 63:949–969.

    Google Scholar 

  • Sterret, P., Bradley, I.M., Kitten, G.T., Jansen, H.F., and Holioway, L.S., 1976, Cerebrovasculature permeability changes following experimental cerebral angiography. J. Neurol. Sci., 30:385–403.

    Google Scholar 

  • Tani, E., Yamagata, S., and Ito, Y., 1977, Freeze-fracture of capillary endothelium in rat brain. Cell Tissue Res., 176:157–165.

    Google Scholar 

  • Tilney, L.G., and Detmers, P., 1975, Actin in erythrocyte ghosts and its association with spectrin. J. Cell Biol., 66:508–520.

    Google Scholar 

  • Tsai, K.-H., and Lenard, J., 1975, Asymmetry of influenza-virus membrane bilayer demonstrated with phospholipase-C. Nature (Lond), 253:554–555.

    ADS  Google Scholar 

  • Tsukagoshi, N., and Franklin, R.M., 1974, Structure and synthesis of a lipid-containing bacteriophage. XIII. Studies on the origin of the viral phospholipids. Virology, 59:408–417.

    Google Scholar 

  • Van Deenan, L.L.M., de Gier, J., van Golde, L.M.G., Nauta, I.L.D., Renooy, W., Verkleij, A.J., and Zwaal, R.F.A., 1977, Some topological and dynamic aspects of lipids in the erythrocyte membrane, in “Structure of Biological Membranes.” (S. Abrahamsson and I. Pascher, eds.) pp. 107–118, Plenum Press, New York.

    Google Scholar 

  • Vincent, P.C., and Gunz, F., 1970, Control of lymphocyte level in the blood. Lancet, 2:342–344.

    Google Scholar 

  • Wagner, R., Rosenberg, M., and Estenson, R., 1971, Endocytosis in Chang liver cells. Quantitation by sucrose-3H uptake and inhibition by cytochalasin. J. Cell Biol., 50:804–817.

    Google Scholar 

  • Weinbaum, S., and Caro, C., 1976, A macromolecule transport model for the arterial wall and endothelium based on the ultrastructural specialization observed in electron mciroscopic studies. J. Fluid Mechanics, 74:611–640.

    MATH  ADS  Google Scholar 

  • Weiss, L., 1969, “The Cell Periphery,” in Int. Rev. Cytol., (G.H. Bourne and J.F. Danielli, eds.), 26:63–105, Academic Press, New York.

    Google Scholar 

  • Westergaard, E., and Brightman, M.W., 1973, Transport of proteins across normal cerebral arterioles. J. Comp. Neurol., 152:17–44.

    Google Scholar 

  • Wild, A.E., 1975, Role of the cell surface in selection during transport of proteins from mother to foetus and newly born. Philos. Trans. R. Soc. Lond. [Biol.], 271:395–410.

    ADS  Google Scholar 

  • Wild, A.E., 1976, Mechanism of protein transport across the rabbit yolk sac endoderm, in “Maternofoetal Transmission of Immunoglobulins” (W.A. Hemmings, ed.) pp. 155–167, Cambridge University Press, London.

    Google Scholar 

  • Wilkins. M.H.F., Blaurock, A.E., and Engelman, D.M., 1971, Bilayer structure in membranes. Nature [New Biol.], 230:72–76.

    Google Scholar 

  • Williams, M.C., and Wissig, S.L., 1975, The permeability of muscle capillaries to HRP, J. Cell Biol., 66:531–555.

    Google Scholar 

  • Williams, M., and Wissig, S., 1978, Permeability of muscle capillaries to microperoxidase. J. Cell Biol., 76:341–359.

    Google Scholar 

  • Wills, E.J., Davies, P., Allison, A.C., and Haswell, A.D., 1972, Cytochalasin B fails to inhibit pinocytosis by macrophages. Nature [New Biol.], 240:58–60.

    Google Scholar 

  • Wolff, J., and Merker, H.J., 1966, Ultrastruktur und Bildung von poren in endothel von porosen und geschlossenen Kapillaren. Z. Zellforsch. Mikrosk. Anat., 73:174–191.

    Google Scholar 

  • Woodruff, J.J., 1974, Role of lymphocyte surface determinants in lymph node homing. Cell. Immunol., 13:378–384.

    Google Scholar 

  • Woodruff, J., and Gesner, B.M., 1968, Lymphocytes: Circulation altered by trypsin. Science, 161:176–178.

    ADS  Google Scholar 

  • Woodruff, J.J., and Gesner, B.M., 1969, The effect of neuraminidase on the fate of transfused lymphocytes. J. Exp. Med., 129:551–567.

    Google Scholar 

  • Woodruff, J.J., and Rasmussen, R.A., 1979, In vitro adherence of lymphocytes to unfixed and fixed high endothelial cells of lymph nodes. J. Immunol., 123:2369–2371.

    Google Scholar 

  • Yanovsky, A., and Loyter, A., 1972, The mechanisms of cell fusion. I. Energy requirements for virus-induced fusion of ehrlich ascites tumor cells. J. Biol. Chem., 247(12):4021–4028.

    Google Scholar 

  • Young, J.D., Ellory, J.C., and Wright, P.C., 1975, Evidence against the participation of the γglutamyltransferase-γglutamylcyclo-transferase pathway in amino acid transport by rabbit erythrocytes. Biochem. J., 152:713–715.

    Google Scholar 

  • Youngdahl-Turner, P., Allen, R.H., and Rosenberg, L.E., 1977, Binding and uptake of transcobalamin 2 by human fibroblasts. Clin. Res., 25:472A.

    Google Scholar 

  • Zwaal, R.F., Roelofsen, B., and Colley, C.M., 1973, Localization of red cell membrane constituents. Biochim. Biophys. Acta., 300:159–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Anderson, R.G.W. (1981). Cell Surface Membrane Structure and the Function of Endothelial Cells. In: Schwartz, C.J., Werthessen, N.T., Wolf, S. (eds) Structure and Function of the Circulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7927-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7927-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7929-8

  • Online ISBN: 978-1-4615-7927-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics