Skip to main content

Measurement of Blood Pressure, Blood Flow and Resistance to Blood Flow in the Systemic Circulation

  • Chapter
Structure and Function of the Circulation

Abstract

The ramifications of blood pressure, blood flow, and resistance are vast subjects to discuss, and some means of containing them has had to be devised. The account that follows deals with blood pressure, blood flow, and their interrelationship in a manner that is intended to provide by text and illustration both a clear description of principles, and an indication of aspects that are especially important or contentious. Where hard data are provided, they are concentrated into tabular form. The method of citing references has followed a rather similar pattern. There are a number of recent, fully referenced, monographs and review articles that deal with these subjects. Where a source of information is not specifically cited, it can be located by reference to these reviews which are separately listed. The sources of information that are especially important, contentious, or new are individually cited and listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, E.M., 1962, Sound and pressure signals obtained from a single intracardiac transducer, IRE Trans. Biomed. Electron. BME 9:74.

    Google Scholar 

  • American Heart Association (Kirkendall, W.M., Burton, A.C., Epstein, F.H., and Freis, E.D.), 1967, Recommendations for human blood pressure determination by sphygmomanometers, Circulation 36:980.

    PubMed  CAS  Google Scholar 

  • Angelakos, E.T., 1964, Semiconductor pressure microtransducers for measuring velocity and acceleration of intraventricular pressures, Am. J. Med. Electron. 3:266.

    PubMed  CAS  Google Scholar 

  • Banazak, E.F., Stekiel, W.J., Grace, R.A., and Smith, J.J., 1960. Estimation of hepatic blood flow using a single injection dye clearance method, Am. J. Physiol. 198:877.

    Google Scholar 

  • Bennett, H.S., Sweet, W.H., and Bassett, D.L., 1944, Heated thermocouple, flowmeter, J. Clin. Invest. 23:200.

    Google Scholar 

  • Bergel, D.H., and Gessner, U., 1966, The electromagnetic flowmeter, in “Methods in medical research” (R.F. Rushmer, ed.), Vol. 11, pp. 70–82, Year Book, Chicago.

    Google Scholar 

  • Bloch, E.H., 1966, Low-compliance pressure gauge, in “Methods in medical research” (R.F. Rushmer, ed.), Vol. 11, pp. 190–194, Year Book, Chicago.

    Google Scholar 

  • Bollinger, A., Butti, P., Barras, J.-P., Trachsler, H., and Siegenthaler, W., 1974, Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique, Microvase. Res. 7:61.

    CAS  Google Scholar 

  • Borst, J.G.G., and Molhuysen, J.A., 1952, Exact determination of the central venous pressure by a simple clinical method, Lancet 2:304.

    PubMed  CAS  Google Scholar 

  • Bradley, E.L., 1974, Measurement of helatic blood flow in man, Surgery, 75:783.

    PubMed  Google Scholar 

  • Bradley, S.E., Ingelfinger, F.J., Bradley, G.D., and Curry, J.J., 1945, Estimation of hepatic blood flow in man, J. Clin. Invest. 24:890.

    Google Scholar 

  • Branthwaite, M.A., and Bradley, R.D., 1968, Measurement of cardiac output by thermal dilution in man, J. Appl. Physiol. 24:434.

    PubMed  CAS  Google Scholar 

  • Brodie, T.G., and Russell, A.E., 1905, On the determination of the rate of blood flow through an organ, J. Physiol. (London) 32:47.

    Google Scholar 

  • Cappelen, C. Jr., (ed.). 1968, “New findings in blood flowmetry,” Universitetsforlaget, Oslo.

    Google Scholar 

  • Catchpole, B.N., and Jepson, R.P., 1955, Hand and finger blood flow, Clin. Sci. 14:109.

    PubMed  CAS  Google Scholar 

  • Chauveau, A., Bertolus, G., and Laroyenne, L., 1860, Vitesse de la circulation dans lest artères du cheval d’après les indications d’un nouvel hémodromètre, J. Physiol. (Brown-Sequard) 3:695.

    Google Scholar 

  • Clarc, F.H., Schmidt, E.M., and de la Croiz, R.F., 1965, Fiber optic blood pressure catheter with frequency response from dc into the audio range, Proc. Nat. Electron Conf. 21:213.

    Google Scholar 

  • Cooper, T., Pinakatt, T., and Richardson, A.W., 1963, The use of the thermal dilution principle for measurement of cardiac output in the rat, Med. Electron. Biol. Eng. 1:61.

    Google Scholar 

  • Coulter, N.A., Jr., 1966, Toward a rational system of units in hemodynamics. IEEE Trans. Biomed. Eng. BME-13:207.

    Google Scholar 

  • Cournand, A., 1945, Measurement of the cardiac output in man using the right heart catheterization. Description of technique, discussion of validity and of place in the study of the circulation, Federation Proc. 4:207.

    Google Scholar 

  • Dahn, I., and Hallböök, T., 1970, Simultaneous blood flow measurements by water and strain gauge plethysmography, Scand. J. Clin. Lab. Invest. 25:419.

    PubMed  CAS  Google Scholar 

  • Davison, R., and Cannon, R., 1974, Estimation of central venous pressure by examination of jugular veins, Am. Heart J. 87:279.

    PubMed  CAS  Google Scholar 

  • Denniston, J.C., Mahr, J.T., Reeves, J.T., Cruz, J.C., Cymerman, A., and Grover, R.F., 1976, Measurement of cardiac output by electrical impedance at rest and during exercise, J. Appl. Physiol. 40:91.

    PubMed  CAS  Google Scholar 

  • Donald, D.E., and Yipintsoi, T., 1973, Comparison of measured and indocyanine green blood flows in various organs and systems, Proc. Staff Meetings Mayo Clinic 48:492.

    CAS  Google Scholar 

  • Evonuk, E., Imig, C.J., Greenfield, W., and Eckstein, J.W., 1961, Cardiac output measured by thermal dilution of room temperature injectate, J. Appl. Physiol. 16:271.

    PubMed  CAS  Google Scholar 

  • Fegler, G., 1954, Measurement of cardiac output in anaesthetised animals by a thermodilution method, Quart. J. Exp. Physiol. 39:153.

    PubMed  CAS  Google Scholar 

  • Fegler, G., 1957, The reliability of the thermodilution method for determination of the cardiac output and the blood flow in central veins, Quart. J. Exp. Physiol. 42:254.

    PubMed  CAS  Google Scholar 

  • Fick, A., 1870, Ueber die Messung des Blutquantums in den Herzbentrikeln, S.B. Phys. Med. ges. Würzburg, July 9.

    Google Scholar 

  • Folse, R., 1965, Application of the sudden injection dye dilution principle to the study of the femoral circulation, Surg. Gynecol. Obstet. 120:1194.

    PubMed  CAS  Google Scholar 

  • Folts, J.D., and Rowe, G.G., 1971, A nonerosive electromagnetic flowmeter probe for chronic aortic implantation, J. Appl. Physiol. 31:782.

    PubMed  CAS  Google Scholar 

  • Forrester, J.S., Ganz, W., Diamond, G., McHugh, T., Chonette, D.W., and Swan, H.J.C., 1972, Thermodilution cardiac output determination with a single flow-directed catheter, Amer. Heart J. 83:306.

    PubMed  CAS  Google Scholar 

  • Forsyth, R.P., 1972, Sympathetic nervous system control of distribution of cardiac output in unanaesthetized monkeys. Federation Proc. 31:1240.

    CAS  Google Scholar 

  • Franklin, D.J., Baker, D. W., and Rushmer, R.F., 1962, Pulsed ultrasonic transit time flowmeter, IRE Trans. Biomed. Electron. 9:44.

    Google Scholar 

  • Franklin, D.L., Schlegel, W.A., and Rushmer, R.F., 1961, Blood flow measured by Doppler frequency shift of backscattered ultrasound, Science 134:564.

    PubMed  CAS  Google Scholar 

  • Freundlich, I.M., 1972, Thermography, New Engl. J. Med. 287:880.

    PubMed  CAS  Google Scholar 

  • Fronek, A., and Ganz, V., 1960, Measurement of flow in single blood vessels including cardiac output by local thermodilution, Circulation Res. 8:175.

    Google Scholar 

  • Fry, D.L. and Ross, J. Jr., 1966, Survey of flow detection technics, in “Methods in medical research”, Vol. 11, pp.50–69, Year Book, Chicago.

    Google Scholar 

  • Gabe, I.T., 1972, Pressure measurement in experimental physiology, in “Cardiovascular fluid dynamics” (D.H. Bergel, ed.) Vol. 1, pp.11–50, Academic, New York.

    Google Scholar 

  • Ganz, W., Donoso, R., Marcus, H.S., Forrester, J.S., and Swan, H.J.C., 1971, A new technique for measurement of cardiac output by thermal dilution in man, Am. J. Cardiol. 27:392.

    Google Scholar 

  • Garrow, J.S., 1963, Zero-muddler for unprejudiced sphygmomanometry, Lancet 2:1205.

    PubMed  CAS  Google Scholar 

  • Gauer, O.H., and Gienapp, E., 1950, A miniature pressure recording device, Science 112:404.

    PubMed  CAS  Google Scholar 

  • Gessner, U., 1972, Vascular input impedance in “Cardiovascular fluid dynamics” (D.H. Bergel, ed.), Vol. 1, pp.315–349, Academic, New York.

    Google Scholar 

  • Goodyer, A.V.N., Huros, A., Eckhardt, W.F., and Ostberg, R., 1959, Thermal dilution curves in the intact animal, Circulation Res. 7:432.

    PubMed  CAS  Google Scholar 

  • Gould, K.L., Trenholme, S., and Kennedy, J.W., 1973, In vivo comparison of catheter manometer systems with the catheter-tip micromanometer, J. Appl. Physiol. 34:263.

    PubMed  CAS  Google Scholar 

  • Grahn, A.R., Paul, M.H., and Wessel, H.U., 1969, A new direction- sensitive probe for catheter-tip thermal velocity measurement, J. Appl. Physiol. 27:407.

    PubMed  CAS  Google Scholar 

  • Greenfield, A.D.M., 1960, II, Electromechanical methods. Venous occlusion plethysmography. Peripheral blood flow by calorimetry, in “Methods in Medical Research” (H.D. Bruner, ed.), Vol. 8, pp.293–307, Year Book, Chicago.

    Google Scholar 

  • Hainsworth, R., Ledsome, J.R., and Snow, H.M., 1968, Dynamic testing of electromagnetic flowmeters by mechanical and electronic methods, J. Appl. Physiol. 25:469.

    Google Scholar 

  • Hales, J.R.S., 1974, Radioactive microsphere techniques for studies of the circulation, Clin. Exper. Pharmacol. Physiol., 1 Suppl 1:31.

    Google Scholar 

  • Hales, S., 1733, “Statistical essays, Vol. 2, Haemostaticks,” Innys and Manby, London.

    Google Scholar 

  • Hamilton, W.F., Brewer, G., and Brotman, I., 1934, Pressure contours in the intact animal, Am. J. Physiol. 107:427.

    Google Scholar 

  • Hansen, A.T., 1949, Pressure measurements in the human organism, Acta Physiol. Scand. 19 Suppl. 68:1.

    Google Scholar 

  • Harris, T.R., and Newman, E.V., 1970, An analysis of mathematical models of circulatory indicator-dilution curves, J. Appl. Physiol. 28:840.

    PubMed  CAS  Google Scholar 

  • Hering, E., 1829, Versuche, die Schnelligkeit des Blutlaufs und der Absonderung zu bestimmen, Z. Physiol. 3:85.

    Google Scholar 

  • Histand, M.B., Miller, C.W., and McLeod, F.D., 1973, Transcutaneous measurement of blood velocity profiles and flow, Cardiovasc. Res. 7:703.

    PubMed  CAS  Google Scholar 

  • Hök, B., 1974, Electrolytic catheter-tip pressure transducer, Med. Biol. Eng. 12:355.

    PubMed  Google Scholar 

  • Holland, W.W., and Humerfelt, S., 1964, Measurement of blood-pressure: comparison of intra-arterial and cuff values, Brit. Med. J. 2:1241.

    PubMed  CAS  Google Scholar 

  • Hyman, C., and Winsor, T., 1961, History of plethysmography, J. Cardiovasc. Surg. 2:506.

    CAS  Google Scholar 

  • Intaglietta, M., Pawula, R.F., and Tompkins, W.R., 1970, Pressure measurements in the mammalian microvasculature, Microvasc. Res. 2:212.

    PubMed  CAS  Google Scholar 

  • Jorfeldt, L., and Wahren, J., 1971, Leg blood flow during exercise in man, Clin. Sci. 41:459.

    PubMed  CAS  Google Scholar 

  • Kaihara, S., Van Heerden, P.D., Migita, T., and Wagner, H.N., 1968, Measurement of the distribution of cardiac output, J. Appl. Physiol. 25:696.

    PubMed  CAS  Google Scholar 

  • Kazamias, T.M., Grander, M.P., Franklin, D.L., and Ross, J. Jr., 1971, Blood pressure measurment with Doppler ultrasonic flowmeter, J. Appl. Physiol. 30:585.

    PubMed  CAS  Google Scholar 

  • Kety, S.S., 1949, Measurement of regional circulation by the local clearance of radioactive sodium, Am. Heart J. 38:321.

    PubMed  CAS  Google Scholar 

  • Kety, S.S. and Schmidt, C.F., 1948, Nitrous oxide method for the quantitative determinations of cerebral blood flow in man: theory, procedure and normal values, J. Clin. Invest. 27:476.

    Google Scholar 

  • Khalil, H.H., Richardson, T.O., and Guyton, A.C., 1966, Measurement of cardiac output by thermal-dilution and direct Fick methods in dogs, J. Appl. Physiol. 21:1131.

    PubMed  CAS  Google Scholar 

  • Kolin, A., 1936, An electromagnetic flowmeter. Principle of the method and its application to blood flow measurement, Proc. Soc. Exp. Biol. Med. 35:53.

    Google Scholar 

  • Korner, P.I., 1965, The effect of section of the carotid sinus and aortic nerves on the cardiac output of the rabbit, J. Physiol. (London), 180:226.

    Google Scholar 

  • Korotkoff, N.S., 1905, On methods of studying blood pressure, Izv. Voennomed. Akad. St. Petersburg 11:365.

    Google Scholar 

  • Krogh, A., and Lindhard, J., 1912, Measurements of the blood flow through the lungs of man, Skand. Arch. Physiol. 27:100.

    CAS  Google Scholar 

  • Kubicek, W.G., Karnegis, J.N., Patterson, R.P., Witsoe, D.A., and Mattson, R.H., 1966, Development and evaluation of an impedance cardiac output system, Aerospace Med. 37:1208.

    PubMed  CAS  Google Scholar 

  • Lambert, E.H., and Wood, E.H., 1947, The use of a resistance wire strain gauge manometer to measure intraarterial pressure, Proc. Soc. Exp. Biol. Med. 64:186.

    PubMed  CAS  Google Scholar 

  • Landis, E.M., 1934, Capillary pressure and capillary permeability, Physiol. Rev. 14:404.

    Google Scholar 

  • Lassen, N.A., and Ingvar, D.H., 1972, Radioisotopic assessment of regional blood flow, in “Progress in nuclear medicine” (E.J. Potchen and V.R. McCready, eds.) Vol. 1, pp.376–409, Karger, Basel.

    Google Scholar 

  • Lassen, N.A., Lindbjerg, I.F., and Dahn, I., 1965, Validity of the Xenon-133 method for measurement of muscle blood flow evaluated by simultaneous venous occlusion plethysmography; observations in the calf of normal man and in patients with occlusive vascular disease, Circulation Res. 16:287.

    PubMed  CAS  Google Scholar 

  • Laurens, P., Bouchard, F., Brial, E., Cornu, C., Baculard, P., and Soulie, P., 1959, Bruits et pressions cardiovasculaires enregistrés in situ à l’aide d’un micromanomètre, Arch Maladies Coeur Valisseaux 52:121.

    CAS  Google Scholar 

  • Levinsky, N.G., and Levy, M., 1973, Clearance technics, in “Handbook of physiology, Section 8: Renal physiology” pp.103–117, American Physiological Society, Washington.

    Google Scholar 

  • Lindström, L.H., 1970, Miniaturized pressure transducer intended for intravascular use, IEEE Trans. Bio-Med. Eng. BME 17:207.

    Google Scholar 

  • Longhurst, J., Capone, R.J., Mason, D.T., and Zelis, R., 1974, Comparison of blood flow measured by Plethysmograph and flowmeter during steady state forearm exercise, Circulation 44:535.

    Google Scholar 

  • Lowe, R.D., and Stephens, N.L., 1961, Carotid occlusion; Diagnosis by opthalmodynamometry during carotid compression, Lancet 1:1241.

    PubMed  CAS  Google Scholar 

  • Ludbrook, J., and Collins, C.M., 1967, Venous occlusion plethysmography in the human upper limb, Circulat. Res. 2:139.

    Google Scholar 

  • Ludwig, C., 1847, Venous occlusion plethysmography in the human upper limb, “A short history of physiology” (K.J. Franklin), 1933, Bale, London.

    Google Scholar 

  • Ludwig, C., and Dogiel, J., 1867, Venous occlusion plethysmography in the human upper limb, “A short history of physiology,” (K.J. Franklin), 1933, Bale, London.

    Google Scholar 

  • Mason, D.T., Gabe, I.T., Mills, C.J., Gault, J.H., Ross, J. Jr., Braunwald, E., and Shillingford, J.P., 1970, Applications of the catheter-tip electromagnetic velocity probe in the study of the central circulation in man, Am. J. Med. 49:465.

    PubMed  CAS  Google Scholar 

  • Melbin, J., and Spohr, M., 1969, Evaluation and correction of manometer systems with two degrees of freedom, J. Appl. Physiol. 27:749.

    PubMed  CAS  Google Scholar 

  • Mellander, S., 1970, Systemic circulation: local control, Ann. Rev. Physiol. 32.313.

    CAS  Google Scholar 

  • Milnor, W.R., 1972, Pulsatile blood flow, N. Engl. J. Med. 287:27.

    PubMed  CAS  Google Scholar 

  • Mills, C.J., 1972, Measurement of pulsatile flow and flow velocity, in “Cardiovascular fluid dynamics” (D.H. Bergel, ed.), Vol. 1, pp.51–90, Academic, New York.

    Google Scholar 

  • Moore, J.W., Kinsman, J.M., Hamilton, W.F., and Spurling, R.G., 1929, Studies on the circulation. II. Cardiac output determinations: comparison of the injection method with the direct Fick procedure, Am. J. Physiol. 89:331.

    CAS  Google Scholar 

  • Moss, A.J., and Adams, F.H., 1963, Index of indirect estimation of diastolic blood pressure, Am. J. Diseases Children 106:364.

    CAS  Google Scholar 

  • Nerem, R.M., Rumberger, J.A., Gross, D.R., Hamlin, R.L., and Geiger, G.L., 1974, Hot-film anemometer velocity measurements of arterial blood flow in horses, Circulation Res. 34:193.

    PubMed  CAS  Google Scholar 

  • Nielsen, P.E., and Jannicke, H., 1974, The accuracy of auscultatory measurement of arm blood pressure in very obese subjects, Acta Med. Scand. 195:403.

    PubMed  CAS  Google Scholar 

  • Nielsen, S.L., 1972, Measurement of blood flow in adipose tissue from the washout of Xenon-133 after atraumatic labelling, Acta Physiol. Scand. 84:187.

    PubMed  CAS  Google Scholar 

  • Noble, F.W., 1957, The sonic valve pressure gauge, IRE Trans. Med. Electron. PGME 8:38.

    Google Scholar 

  • Noble, F.W., 1959, A hydraulic pressure generator for testing the dynamic characteristics of blood pressure manometers, J. Lab. Clin. Med. 54:897.

    PubMed  CAS  Google Scholar 

  • Overbeck, H.W., Daugherty, R.M. Jr., and Haddy, F.J., 1969, Continuous infusion indicator dilution measurement of limb blood flow and vascular response to magnesium sulfate in normotensive and hypertensive men, J. Clin. Invest. 48:1944.

    PubMed  CAS  Google Scholar 

  • Peronneau, P., Deloche, A., Bui Mong Hung, and Hinglais, J., 1969, Débitmétrie ultrasonore: développements et applications expérimentales, Europ. Surg. Res. 1:147.

    CAS  Google Scholar 

  • Plesch, J., 1909, Hämodynamische Studien, Z. Exp. Path. Ther. 6:380.

    Google Scholar 

  • Poiseuille, J.L.M., 1828, “Recherches sur la force du coeur aortique” Didot, Paris.

    Google Scholar 

  • Raftery, E.B., and Ward, A.P., 1968, The indirect method of recording blood pressure, Cardiovasc. Res. 2:210.

    PubMed  CAS  Google Scholar 

  • Ramirez, A., Hood, W.B. Jr., Polany, M., Wagner, R., Yankopoulos, N.A., and Abelmann, W.H., 1969, Registration of intravascular pressure and sound by a fiberoptic catheter, J. Appl. Physiol. 26:679.

    PubMed  CAS  Google Scholar 

  • Raper, A.J., and Levasseur, J.E., 1971, Accurate sustained measurement of intra-luminal pressure from the microvasculature, Cardiovasc. Res. 5:589.

    PubMed  CAS  Google Scholar 

  • Rein, H., 1928, Die Thermo-Stromuhr, Z. Biol. 87:394.

    Google Scholar 

  • Reneman, R.S., Clarke, H.F., Simmons, N., and Spencer, M.P., 1973, In vivo comparison of electromagnetic and Doppler flowmeters: with special attention to the processing of the analogue Doppler flow signal, Cardiovasc. Res. 7:557.

    PubMed  CAS  Google Scholar 

  • Roberts, L.N., Smiley, J.R., and Manning, G.W., 1953, A comparison of direct and indirect blood-pressure determination, Circulation 8:232.

    PubMed  CAS  Google Scholar 

  • Roman, J., Henry, J.P., and Meehan, J.P., 1965, Validity of flight blood pressure data, Aerospace Med. 36:436.

    Google Scholar 

  • Rose, G.A., Holland, W.W., and Crowley, E.A., 1964, Sphygmomanometer for epidemiologists, Lancet 1:296.

    PubMed  CAS  Google Scholar 

  • Rudolph, A.M., and Heymann, M.A., 1967, The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow, Circulation Res. 21:163.

    PubMed  CAS  Google Scholar 

  • Russell, R.W.R., and Cranston, W.I., 1961, Ophthalmodynamometry in carotid artery disease, J. Neurol. Neurosurg. Psych. 24:281.

    CAS  Google Scholar 

  • Sapirstein, L.A. 1957, Regional blood flow by fractional distribution of indicators, Am. J. Physiol. 193:161.

    Google Scholar 

  • Seed, W.A., and Wood, N.B., 1970, Development and evaluation of a hot-film velocity probe for cardiovascular studies, Cardiovasc. Res. 4:253.

    PubMed  CAS  Google Scholar 

  • Singh, R., Ranieri, A.J. Jr., Vest, H.R. Jr., Bowers, D.L., and Dammann, J.F. Jr., 1970, Simultaneous determinations of cardiac output by thermal dilution, fiberoptic and dye-dilution methods, Am. J. Cardiol. 25:579.

    PubMed  CAS  Google Scholar 

  • Smith, H.C., Sturm, R.E., and Wood, E.H., 1973, Videodensitometric system for measurement of vessel blood flow, particularly in the coronoary arteries, in man, Am. J. Cardiol. 32:144.

    PubMed  CAS  Google Scholar 

  • Spieckermann, P.G., and Bretschneider, H.J., 1968, Vereinsfachte quantitative Auswertung von Indikatorverdünnungskurven, Arch. Kreislaufforsch 55:211.

    PubMed  CAS  Google Scholar 

  • Stegall, H.F., 1967, A simple inexpensive sinusoidal pressure generator, J. Appl. Physiol. 22:591.

    PubMed  CAS  Google Scholar 

  • Stegall, H.F., Kardon, M.B., and Kemmerer, W.T., 1968, Indirect measurement of arterial blood pressure by Doppler ultrasonic sphygmomanometry, J. Appl. Physiol. 25:793.

    PubMed  CAS  Google Scholar 

  • Stewart, G.N., 1897, Researches on the circulation time and on the influences which affect it. IV. The output of the heart. J. Physiol. (London) 22:159.

    CAS  Google Scholar 

  • Taylor, J.B., Lowen, B., and Polyani, M., 1972, In vivo monitoring with a fiber optic catheter, J. Am. Med. Assoc. 221:667.

    CAS  Google Scholar 

  • Thorburn, G.D., Kopald, H.H., Herd, J.A., Hollenberg, M., O’Morchoe, C.C.C., and Barger, A.C., 1963, Intrarenal distribution of nutrient blood flow determined with Krypton 85 in the unanes-thetised dog. Circulation Res. 13:290.

    PubMed  CAS  Google Scholar 

  • Vatner, S.F., Franklin, D., and Van Citters, R.L., 1970, Simultaneous comparison and calibration of the Doppler and electromagnetic flowmeters, J. Appl. Physiol. 29:907.

    PubMed  CAS  Google Scholar 

  • Warnick, A., and Drake, E.H., 1958, A new intracardiac pressure measuring system for infants and adults, IRE Nat. Conv. Rec. 9:68.

    Google Scholar 

  • Warren, D.J., and Ledingham, J.G.G., 1974, Measurement of cardiac output distribution using microspheres: some practical and theoretical considerations, Cardiovasc. Res. 8:570.

    PubMed  CAS  Google Scholar 

  • Warren, D.J. and Ledingham, J.G.G., 1974, Cardiac output in the conscious rabbit: an analysis of the thermodilution technique, J. Appl. Physiol. 36:246.

    PubMed  CAS  Google Scholar 

  • Wetterer, E., 1943, Eine neuer manometrische Sonde mit elekitrischer Transmission, Z. Biol. 101:332.

    Google Scholar 

  • White, S.W., McRitchie, R.J., and Porges, W.L., 1974, A comparison between thermodilution, electromagnetic and Doppler methods for cardiac output measurement in the rabbit, Clin. Exper. Pharmacol. Physiol. 1:175.

    CAS  Google Scholar 

  • White, S.W., Chalmers, J.P., Hilder, R., and Korner, P.I., 1967, Local thermodilution method for measuring blood flow in the portal and renal veins of the unanaesthetized rabbit, Aust. J. Exp. Biol. Med. Sci. 45:453.

    PubMed  CAS  Google Scholar 

  • Wiederhielm, C.A., and Rushmer, R.F., 1964, Pre- and post-arteriolar resistance changes in the blood vessels of the frog’s mesentery, Bibliotheca Anat. 4:234.

    Google Scholar 

  • Wiggers, C.J., 1928, “The pressure pulses in the cardiovascular system,” Longmans, London.

    Google Scholar 

  • Wilson, E.M., Ranieri, A.J. Jr., Updike, O.L., and Dammann, J.F. Jr., 1972, An evaluation of thermal dilution for obtaining measurements of cardiac output, Med. Biol. Eng. 10:179.

    PubMed  CAS  Google Scholar 

  • Wright, B.M., and Dore, C.F., 1970, A random zero sphygmomanometer, Lancet 1:337.

    PubMed  CAS  Google Scholar 

  • Yanof, H.M., Rosen, A.L., McDonald, N.M., and McDonald, D.A., 1963, A critical study of the responses of manometers to forced oscillations, Phys. Med. Biol. 8:407.

    Google Scholar 

  • Zierler, K.L., 1965, Equations for measuring blood flow by external monitoring of radioisotopes, Circulation Res. 16:309.

    PubMed  CAS  Google Scholar 

  • Zweifach, B.W., 1973, Microcirculation, Ann. Rev. Physiol. 35:117.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Ludbrook, J. (1980). Measurement of Blood Pressure, Blood Flow and Resistance to Blood Flow in the Systemic Circulation. In: Schwartz, C.J., Werthessen, N.T., Wolf, S. (eds) Structure and Function of the Circulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7924-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7924-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7926-7

  • Online ISBN: 978-1-4615-7924-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics