Skip to main content

On the Gauge for the Third Boundary Value Problem

  • Chapter
Stochastic Processes
  • 577 Accesses

Abstract

For fairly general g, c if

$$E_x \left[ {\int_0^\infty {e_q (s)\hat e_c (s)I_A \left( {X(s)} \right)d\xi (s)} } \right] < \infty$$

for some x ∈D̄, where D is a bounded domain and A∂D is a nonempty open subset, it is shown that the gauge function for the third boundary value problem is bounded continuous. In the case of the Neumann problem, with the further assumption that q is Holder continuous, it is shown that the gauge is in C 2 (D) ∩ C 1(0304D).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Chung and P. Hsu: Gauge theorem for the Neumann problem, Seminar on Stochastic processes, 1984, pp. 63–70. Birkhauser, Boston, 1986.

    Google Scholar 

  2. N. Falkner: FeynmanKac junctionals and positive solutions of 1/2Au + qu = 0, Zeit. Wahr. 65 (1983) 19–33.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Hsu: Probabilistic approach to the Neumann problem, Comm. Pure Appl. Math. 38 (1985) 445–472.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Ito: Fundamental solutions of parabolic differential equations and boundary value problems, Japan J. Math. 27 (1957) 55–102.

    Google Scholar 

  5. Z. Ma: On the probabilistic approach to boundary value problems, BiBoS 288, 1987.

    Google Scholar 

  6. Z. Ma and R. Song: Probabilistic methods in Schrodinger equations, Seminar on Stochastic processes, 1989, pp. 135–164. Birkhauser, Boston, 1990.

    Google Scholar 

  7. V. G. Papanicolaou: The probabilistic solution of the third boundary value problem for second order elliptic equations, Prob. Theory Rel. Fields 87 (1990) 27–77.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. J. Williams: A Feynman — Kac gauge for solvability of the Schrodinger equation, Adv. Appl. Math. 6 (1985) 1–3.

    Article  MATH  Google Scholar 

  9. Z. Zhao: Conditional gauge with unbounded potential, Zeit. Wahr. 65 (1983) 13–18.

    Article  MATH  Google Scholar 

  10. Z. Zhao: Green function for Schrodinger operator and conditioned FeynmanKac gauge, J. Math. Anal. Appl. 116 (1986) 309–334.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ramasubramanian, S. (1993). On the Gauge for the Third Boundary Value Problem. In: Cambanis, S., Ghosh, J.K., Karandikar, R.L., Sen, P.K. (eds) Stochastic Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7909-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7909-0_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7911-3

  • Online ISBN: 978-1-4615-7909-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics