Skip to main content

Studies of Lyotropic Liquid Crystals that Align in Magnetic Fields

  • Chapter

Abstract

An overview of the status of research into lyotropic liquid crystals that align in magnetic fields is presented. These mesophases are novel ones and do not correspond to the hexagonal or lamellar phases which are well characterised. They may be classified broadly into two types, those that spontaneously align with directors parallel to the magnetic field (Type I) and those which align with directors all in a perpendicular plane (Type II). Low angle X-ray diffraction for one type II mesophase reveal§ only two distances 38A° and a distribution about 90Å but no repeated spacings. Low angle laser light diffractions yield repeated spacings in the region of 9–19 pm separation in lamellar arrays. Suggestions as to the origin of these very large spacings are made. The superstructure of these liquid crystals is probably made up of disc or rod like micelles (depending on the type of mesophase) of finite but large size, which combine to pack in a manner which results in a uniaxial fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Tanford, “The Hydrophobic Effect”, Wiley-Interscience, New York, 1973.

    Google Scholar 

  2. G. S. Hartley et al., Z. Phys. Chem. 170 321 (1934). Trans. Farady Soc. 31, 31, 120, 183, (1935).

    Google Scholar 

  3. G. Friedel, Ann. Physique 18, 273 (1922)

    Google Scholar 

  4. G. H. Brown, J. W. Doane and V. D. Neff, “A Review of the

    Google Scholar 

  5. Structure and Physical Properties of Liquid Crystals“, C.R.C. Press, Cleveland, Ohio, 1971.

    Google Scholar 

  6. V. Luzzati, in “Biological Membranes”, D. Chapman, Editor, Academic Press, N.Y., 1968.

    Google Scholar 

  7. V. Luzzatí, H. Mustacchi and A. Skoulios, Acta. Cryst. 13, 660 (1960).

    Article  Google Scholar 

  8. L. Mandell, K. Fontell and P. Ekwall, in “Ordered Fluids and Liquid Crystals” R.S. Porter and J. F. Johnson, Editors, p. 89, Adv. Chem. Series No. 63, American Chemical Society, Washington

    Google Scholar 

  9. D.C., 1967.

    Google Scholar 

  10. K. D. Lawson and T. J. Flautt, J. Am. Chem. Soc. 89, 5489 (1967).

    Article  Google Scholar 

  11. G. W. Gray, “Molecular Structure and Properties of Liquid Crystals”, Academic Press, New York, 1962.

    Google Scholar 

  12. A. Saupe and G. Englert, Phys. Rev. Lett. 11, 462 (1963).

    Article  Google Scholar 

  13. P.G. De Gennes, “The Physics of Liquid Crystals”, Clarendon Press, Oxford, 1974.

    Google Scholar 

  14. Z. Luz and S. Meíboom, J. Chem. Phys. 59, 275 (1973).

    Article  Google Scholar 

  15. J. Seelig and W. Neiderberger, J. Am. Chem. Soc. 96, 2069 (1974).

    Article  Google Scholar 

  16. K. D. Lawson and T. J. Flautt, J. Phys. Chem. 72, 2066 (1968).

    Article  Google Scholar 

  17. J. Charvolin and P. Rigny, J. Phys. (Paris) Colloq. 30, 76 (1969). 16. T. Drakenburg, A. Johansson and S. Forsen, J. Phys. Chem. 74, 4528 (1970).

    Google Scholar 

  18. F. Y. Fujiwara and L. W. Reeves, Can. J. Chem. 56, 2178 (1978).

    Article  Google Scholar 

  19. K. Radley, L. W. Reeves and A. S. Tracey, J. Phys. Chem. 80, 174 (1976).

    Article  Google Scholar 

  20. L. W. Reeves, J. A. Vanin and V. R. Vanin, Ann. de Acad. Bras. Cienc. 44, 431 (1972).

    Google Scholar 

  21. L. W. Reeves, J. M. Riveros, R. A. Spragg and L. W. Reeves, Mol. Phys. 25, 9 (1973).

    Article  Google Scholar 

  22. L. W. Reeves, J. Sanches de Cara, M. Suzuki and A. S. Tracey, Mol. Phys. 25, 1481 (1973).

    Article  Google Scholar 

  23. D. M. Chen and L. W. Reeves, J. Am. Chem. Soc. 94, 4384 (1972).

    Article  Google Scholar 

  24. L. W. Reeves, A. S. Tracey and M. M. Tracey, J. Am. Chem. Soc. 95, 3799 (1973).

    Article  Google Scholar 

  25. L. W. Reeves and A.S. Tracey, J. Am. Chem. Soc. 96, 365 (1974).

    Article  Google Scholar 

  26. L. W. Reeves and A. S. Tracey, J. Am. Chem. Soc. 96, 1198 (1974).

    Article  Google Scholar 

  27. L. W. Reeves, M. Suzuki, A. S. Tracey and J. A. Vanin, Inorganic Chem. 13, 999 (1974).

    Article  Google Scholar 

  28. D. M. Chen, L. W. Reeves, A. S. Tracey and M. M. Tracey, J. Am. Chem. Soc. 96, 5349 (1974).

    Article  Google Scholar 

  29. F. Fujiwara, L. W. Reeves and A. S. Tracey, J. Am. Chem. Soc. 96, 5250 (1974).

    Article  Google Scholar 

  30. D. M. Chen, K. Radley and L. W. Reeves, J. Am. Chem. Soc. 96, 5251 (1974).

    Article  Google Scholar 

  31. L. W. Reeves and A. S. Tracey, J. Am. Chem. Soc. 96, 7176 (1974).

    Article  Google Scholar 

  32. K. Radley and L. W. Reeves, Can. J. Chem. 53, 2998 (1975).

    Article  Google Scholar 

  33. Y. Lee and L. W. Reeves, Can. J. Chem. 53, 161 (1975).

    Article  Google Scholar 

  34. L. W. Reeves and A. S. Tracey, J. Am. Chem. Soc. 97, 5729 (1975).

    Article  Google Scholar 

  35. D. Bailey, A. D. Buckingham, F. Fujiwara and L. W. Reeves, J. Magn. Resonance 18, 344 (1975).

    Google Scholar 

  36. F. Fujiwara and L. W. Reeves, J. Am. Chem. Soc. 98, 6790 (1976).

    Article  Google Scholar 

  37. Y. Lee and L. W. Reeves, Can. J. Chem. 54, 500 (1976).

    Article  Google Scholar 

  38. L. W. Reeves, M. Suzuki and J. A. Vanin, Inorg. Chem. 15, 1035 (1976).

    Article  Google Scholar 

  39. L. R. Baldo, L. W. Reeves and J. A. Vanin, Ann. Acad. Bras. Cienc. 48, 37 (1976).

    Google Scholar 

  40. L. W. Reeves, F. Y. Fujiwara and M. Suzuki, in “Magnetic Resonance in Colloid and Interface Science”, H. A. Resing and C. G. Wade, Editors,ACS Symposium Series, No. 34, p. 55, American Chemical Society, Washington, D.C., 1976.

    Google Scholar 

  41. D. M. Chen, F. Y. Fujiwara and L. W. Reeves, Can. J. Chem. 55, 2396 (1977).

    Article  Google Scholar 

  42. D. M. Chen, F. Y. Fujiwara and L. W. Reeves, Can. J. Chem. 55, 2404 (1977).

    Article  Google Scholar 

  43. F. Y. Fujiwara and L. W. Reeves, Can. J. Chem. 56, 2178 (1978).

    Article  Google Scholar 

  44. A. Loewenstein, M. Brennan and R. Schwarzmann, J. Phys. Chem. 82, 1744 (1978).

    Article  Google Scholar 

  45. F. Y. Fujiwara and L. W. Reeves, Paper in preparation.

    Google Scholar 

  46. Lia Quieroz de Amaral, C. de Alvarenga Freire Pimentel and M. Tavares, Private Communication Sao Paulo (1977), M. Tavares, Masters Dissertation, University of Sao Paulo (1978).

    Google Scholar 

  47. J. A. Pople, W. G. Schneider and H. J. Bernstein, “High Resolution Nuclear Magnetic Resonance”, McGraw Hill, N.Y., 1959.

    Google Scholar 

  48. P. C. Isolani, L. W. Reeves and J. A. Vanin, Can. J. Chem. (In Press).

    Google Scholar 

  49. G. W. Stockton, C. F. Polnaszek, L. C. Leitch, A. P. Tulloch and I. C. P. Smith, Biochem. Biophys. Res. Comm. 60, 844 (1974).

    Article  Google Scholar 

  50. J. Seelig and W. Niederberger, Biochemistry 13, 1585 (1974).

    Article  PubMed  Google Scholar 

  51. J. Seelig and A. Seelig, Biochemistry 13, 4839 (1974).

    Article  PubMed  Google Scholar 

  52. J. H. Davis and K. R. Jeffrey, Chem. Phys. Lipids 20, 87 (1977).

    Article  Google Scholar 

  53. J. Seelig, J. Am. Chem. Soc. 92, 3881 (1970).

    Article  Google Scholar 

  54. G. W. Stockton, C. F. Polnaszek, A. P. Tulloch, F. Masan and I. C. P. Smith, Biochemistry 15, 954 (1976).

    Article  PubMed  Google Scholar 

  55. B. Mely, J. Charvolin and P. Keller, Chem. Phys. Lipids 15, 161 (1975).

    Article  Google Scholar 

  56. S. Marcelja, Biochimica et Biophysica Acta 367, 165 (1974).

    Article  PubMed  Google Scholar 

  57. M. Suzuki, Ph.D. dissertation. University of Sao Paulo. In preparation.

    Google Scholar 

  58. V. R. Paoli-Monteiro, L. W. Reeves, M. Suzuki and J. A. Vanin, Paper presented at the International Conference on Liquid Crystals, Bordeaux, 1978.

    Google Scholar 

  59. R. Parry, D. Phil. Dissertation, University of Oxford, (1978).

    Google Scholar 

  60. N. O. Persson and A. Johansson, Acta. Chem. Scandinavica 25, 2118 (1971).

    Article  Google Scholar 

  61. G. J. T. Tiddy, J. Chem. Soc. (Lond) Faraday I, 1290 (1978).

    Google Scholar 

  62. Y. Lee, L. W. Reeves and A. S. Tracey, Can. J. Chem. (In Press).

    Google Scholar 

  63. L. W. Reeves, A. S. Tracey and M. M. Tracey, Can. J. Chem. (In Press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Fujiwara, F., Reeves, L.W., Suzuki, M., Vanin, J.A. (1979). Studies of Lyotropic Liquid Crystals that Align in Magnetic Fields. In: Mittal, K.L. (eds) Solution Chemistry of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7880-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7880-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7882-6

  • Online ISBN: 978-1-4615-7880-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics