Skip to main content

Potassium and Chloride Channels in Red Blood Cells

  • Chapter
Single-Channel Recording

Abstract

The red blood cell (RBC) is a free-floating cell whose physiological function is strongly dependent on the permeability properties of its cell membrane (Passow, 1964; Sachs et al., 1975). Although RBCs are relatively simple, they are, like more complicated cells, able to maintain a constant cell volume and a highly asymmetrical transmembrane ion distribution. Furthermore, RBCs can undergo marked membrane permeability changes in response to specific stimuli (Lew and Ferreira, 1978). Such activatable permeabilities are not regenerative but do share similarities with certain membrane ion permeabilities in excitable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells,J. Membr. Biol. 6:315–328.

    Article  CAS  Google Scholar 

  • Cala, P. M., 1977, Volume regulation by flounder red blood cells in anisotonic media,J. Gen. Physiol. 69:537–552.

    Article  PubMed  CAS  Google Scholar 

  • Cala, P. M., 1980, Volume regulation by Amphiuma red blood cells. The membrane potential and its implication regarding the nature of the ion-flux pathways,J. Gen. Physiol. 76:683–708.

    Article  PubMed  CAS  Google Scholar 

  • Cole, K. S., 1972, Membranes, Ions and Impulses, University of California Press, Berkeley.

    Google Scholar 

  • Dalmark, M., and Wieth, J. O., 1972, Temperature dependence of chloride, bromide, iodide, thiogamate and salicyclate transport in human red cells,J. Physiol. (Lond.) 224:583–610.

    CAS  Google Scholar 

  • Davoren, P. R., and Sutherland, E. W., 1963, The effect of L-epinephrine and other agents in the synthesis and release of adenosine 3’-5’ phosphate by whole pigeon erythrocytes, J. Biol. Chem. 238:3009–3015.

    PubMed  CAS  Google Scholar 

  • Davson, H., 1937, The loss of potassium from the erythrocyte in hypotonic saline, J. Cell. Comp. Physiol. 10:247.

    Article  CAS  Google Scholar 

  • Fenwick, E., Marty, A., and Neher, E., 1982, A patch clamp study of bovine chromaffin cells and to their sensitivity to acetylcholine, J. Physiol. (Lond.) 331:577–597.

    CAS  Google Scholar 

  • Fricke, H., and Morse, S., 1925, The electric resistance and capacity of blood for frequencies between 800 and 4 1/2 million cycles,J. Gen. Physiol. 9:153–167.

    Article  PubMed  CAS  Google Scholar 

  • Gardos, G., 1958, The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta 30:653–654.

    Article  PubMed  CAS  Google Scholar 

  • George, J. N., Weed, R. I., and Reed, C. F., 1977, Adhesion of human erythrocytes to glass. The nature of the interaction and the effect of serum and plasma,J. Cell. Physiol. 77:51–60.

    Article  Google Scholar 

  • Gingell, D., Todd, I., and Parsegian, V. A., 1977, Long-range attraction between red cells and a hydrocarbon surface, Nature 268:767–769.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., 1978, Cellular adhesiveness and extracellular substrata, Int. Rev. Cytol. 53:65–144.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, S., Dupre, A., and Rothstein, A., 1982, Volume regulation by human lymphocytes. Role of calcium,J. Gen. Physiol. 79:849–869.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, J. O., 1973, Characteristics of chloride transport in human red blood cells,J. Gen. Physiol. 61:185–206.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., 1981, Potassium channel currents in human red blood cells,J. Physiol. (Lond.) 319:97–98P.

    Google Scholar 

  • Hamill, O. P., 1982, Ca and volume sensitive K channels in frog red blood cells. Pfluegers Arch. 394:R30.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Heinz, A., and Passow, H., 1980, The role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts,J. Membr. Biol. 57:119–131.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on the membrane potential of single muscle fibres,J. Physiol. (Lond.) 148:127–160.

    CAS  Google Scholar 

  • Hoffman, J. F., and Laris, P. C., 1974, Determination of membrane potentials in human and amphiuma red blood cells by means of a fluorescent probe,J. Physiol. (Lond.) 239:519–552.

    CAS  Google Scholar 

  • Hunter, M. J., 1971, A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell,J. Physiol. (Lond.) 218:49P.

    Google Scholar 

  • Johnson, S. L., and Woodbury, J. W., 1964, Membrane resistance of human red cells,J. Gen. Physiol. 47:827–847.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A., 1977, The relationship between anion exchange and net anion flow across the human red blood cell membrane,J. Gen. Physiol. 69:363–386.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Riordan, J. R., Schuhmann, B., Wood-Guth, I., and Passow, H., 1975, Calcium-potassium stimulated net potassium efflux from human erythrocyte ghosts,J. Membr. Biol. 25:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F. M., 1971, The response of duck erythrocytes to non-hemolytic hypotonic media,J. Gen. Physiol. 58:372–395.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F. M., 1981, Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media, Annu. Rev. Physiol. 43:493–505.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F. M., Robbie, D. E., and Orloff, J., 1976, Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes, Am. J. Physiol. 231:306–312.

    PubMed  CAS  Google Scholar 

  • Lassen, U. V., Pope, L., and Vestergaard-Bogind, B., 1978, Chloride conductance of the Amphiuma red cell membrane,J. Membr. Biol. 39:27–48.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., 1971, On the ATP dependence of the Ca++-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827–830.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., and Ferreira, H. G., 1976, Variable Ca sensitivity of a K selective channel in intact red cell membrane, Nature 263:336–338.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. F., and Ferriera, H. G., 1978, Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes, Curr. Top. Membr. Transp. 10:217–271.

    Article  CAS  Google Scholar 

  • Marino, D., Sarkadi, B., Gardos, G., and Bolis, L., 1981, Calcium-induced alkali cation transport in nucleated red cells, Mol. Physiol. 1:295–300.

    CAS  Google Scholar 

  • Neher, E., 1982, Unit conductance studies in biological membrane, in: Techniques in Cellular Physiology, Vol. Pl/II (P. F. Baker, ed.), pp. 1–16, Elsevier/North Holland, County Clare, Ireland.

    Google Scholar 

  • Neher, E., Sakmann, B., and Steinbach, J. H., 1978, The extracellular patch clamp: A method for resolving current through individual open channels in biological membranes, Pfluegers Arch. 375:219–228.

    Article  CAS  Google Scholar 

  • Orskov, S. L., 1956, Experiments on the influence of adrenaline and noradrenaline on the potassium absorption of RBCs from pigeon and frogs, Acta Physiol. Scand. 37:299.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J. C., Gitelman, H. J., Glosson, P. S., and Leonard, D. L., 1975, Role of calcium in volume regulation by dog red blood cells,J. Gen. Physiol. 65:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Passow, H., 1964, Ion and water permeability of the red blood cell, in: The Red Blood Cell (C. Bishop and D. Surgenor, eds.), pp. 71–145, Academic Press, New York.

    Google Scholar 

  • Post, R. L., and Jolly, P. C., 1957, The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane, Biochim. Biophys. Acta 25:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Poznasky, M., and Solomon, A. K., 1972, Regulation of human red cell volume by linked cation fluxes, J. Membr. Biol. 10:259–266.

    Article  Google Scholar 

  • Riddick, D. H., Kregenow, F. M., and Orloff, J., 1971, Effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes, J. Gen. Physiol. 57:752–766.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, O. M., and Rosen, S. M., 1969, Properties of an adenyl cyclase partially purified from frog erythrocytes, Arch. Biochem. Biophys. 131:449–456.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J. P. F. C., and Schatzmann, H. J., 1982, Is the red cell calcium pump electrogenic? J. Physiol. (Lorn.) 327:1–15.

    CAS  Google Scholar 

  • Schatzmann, H. J., 1975, Active calcium transport and Ca++ activated ATPase in human red cell, Curr. Top. Membr. Transp. 6:125–168.

    Article  CAS  Google Scholar 

  • Sachs, J. R., Knauf, P. A., and Dunham, P. B., 1975, Transport through red cell membrane, in: The Red Blood Cell, Vol. II (D. M. Surgenor, ed.), pp. 613–707, Academic Press, New York.

    Google Scholar 

  • Sen, A. K., and Post, R. L., 1964, Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte,J. Biol. Chem. 239:345–352.

    PubMed  CAS  Google Scholar 

  • Simons, T. J. B., 1976, Calcium dependent potassium exchange in human red cell ghosts,J. Physiol. (Lond.) 256:227–244.

    CAS  Google Scholar 

  • Szasz, I., Sarkadi, B., and Gardos, G., 1977, Mechanism of Ca++-dependent selective rapid K+-transport induced by propranolol in red cells,J. Membr. Biol. 35:75–93.

    Article  PubMed  CAS  Google Scholar 

  • Szebeni, J., 1981, The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles, Acta. Biochim. Biophys. Acad. Sci. Hung. 16:77–82.

    PubMed  CAS  Google Scholar 

  • Tosteson, D. C., and Hoffman, J. F., 1960, Regulation of cell volume by active cation transport in high and low potassium sheep red cells, J. Gen. Physiol. 44:169–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hamill, O.P. (1983). Potassium and Chloride Channels in Red Blood Cells. In: Sakmann, B., Neher, E. (eds) Single-Channel Recording. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7858-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7858-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7860-4

  • Online ISBN: 978-1-4615-7858-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics