Skip to main content

Abstract

Recent advances in brain imaging have allowed a regional examination of brain function using multiple-probe inert gas studies of cerebral blood flow, positron or single photon tomography. Inert gas blood flow methods using inhalation or injection of 133xenon have been used with multiple-probe systems to measure blood flow in 1 to 2 cm regions of lateral cortex. The sensitivity of these systems to neurophysiological stimuli and neurological diseases have been demonstrated in numerous studies of the normal resting state, memory and learning, motor activity and sensory input, dementia, and aphasia, to name some. Positron tomography utilizes cyclotron-produced, short-lived positron-emitting isotopes to label biologically active radiopharmaceuticals. Using positron tomographs capable of quantitative three-dimensional imaging and appropriate tracer-kinetic models, regional metabolic function, including glucose, oxygen, amino acid metabolism, and receptor-binding can be regionally studied throughout the brain. Clinical studies have been performed in dementia, schizophrenia, affective disorders, resting states, and sensory stimulation. Positron tomography offers potentially the greatest variety of studies and highest temporal and spatial resolution of any of the presently available functional brain-imaging modalities. Its principal drawback is the very high cost. Single photon tomography uses gammaemitting isotopes such as 123iodine and 133xenon to image regional cerebral blood flow and recently receptor function. Although at present it does not have the variety of studies or the technical capabilities of positron tomography, it does provide three-dimensional studies with 1 to 2 cm resolutions throughout the brain at a considerably lower cost than positron tomography. In the future, magnetic resonance studies of blood flow or phosphorus metabolism may add a fourth modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lassen NA, Hoedt-Rasmussen K, Sorenssen SC, et al: Regional cerebral blood flow in man determined by 85Kr. Neurology 13:719–727, 1963.

    PubMed  CAS  Google Scholar 

  2. Hoedt-Rasmussen K, Sveinsdottir E, Lassen NA: The inert gas intra-arterial injection method for determining regional cerebral blood flow in man through the intact skull. Circ Res 18:237–247, 1966.

    PubMed  CAS  Google Scholar 

  3. Mallet BL, Veall N: Measurement of regional cerebral clearance rates in man using Xenon-122 inhalation and extra-cranial recording. Clin Sci 29:179–292, 1965.

    Google Scholar 

  4. Veall N, Mallet BL: Regional cerebral blood flow determination by 133Xe inhalation and external recording: The effect of arterial recirculation. Clin Sci 30:353–369, 1966.

    PubMed  CAS  Google Scholar 

  5. Austin G, Laffin D, Hayward W: Evaluation of fast component (grey matter) by 12 minutes I.V. method, using analog computer analysis, in Harper AM, Jennett WB, Miller ID, Rowan JO (eds): Blood Flow and Metabolism in the Brain. Edinburgh, Churchill Livingstone, 1975, p 8.25–8.27.

    Google Scholar 

  6. Obrist WD, Thompson HK, Wang HS, et al: Regional cerebral blood flow estimated by 133Xenon inhalation. Stroke 6:245–256, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Risberg J, Ali ZA, Wilson EM: Regional CBF by 133Xenon inhalation: Preliminary evaluation of an initial slope index in patients with unstable flow compartments. Stroke 6:142–148, 1975.

    Article  PubMed  CAS  Google Scholar 

  8. Lassen NA, Ingvar, DH: Regional cerebral blood flow measurement in man. Arch Neurol 9:615–622, 1963.

    Article  Google Scholar 

  9. Ingvar DH, Cronquist S, Enberg R, et al: Normal values of regional cerebral blood flow in man, including flow and weight estimates of gray and white matter. Acta Neurol Scand 41(Suppl 14):72–78, 1965.

    Article  Google Scholar 

  10. Sveinsdottir E, Larsen B, Rommer P, et al: A multidetector scintillation camera with 254 channels. J Nucl Med 18:168–174, 1977.

    PubMed  CAS  Google Scholar 

  11. Sokoloff L: Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc 40:2311–2316, 1981.

    PubMed  CAS  Google Scholar 

  12. Siesjo BK: Brain Energy Metabolism. New York, John Wiley and Sons, 1978, p. 88-94.

    Google Scholar 

  13. Ingvar DH: Hyperfrontal distribution of the cerebral grey matter flow in resting wakefullness, on the functional anatomy of the conscious state. Acta Neurol Scand 60:12–25, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Prohovnik I, Hakansson K, Risberg J: Observations on the functional significance of regional cerebral blood flow in “resting” normal subjects. Neuropsychologia 18:203–217, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Knopman DS, Rubens AB, Klassen AC, et al: Regional cerebral blood flow patterns during verbal and nonverbal and auditory activation. Brain Lang 9:93–112, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Maximilian VA: Cortical blood flow asymmetries during monaural verbal stimulaton. Brain Lang 15:1–11, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Halsey JH, Blanenstein UW, Wilson EM, et al: Regional cerebral blood flow comparison of right and left hand movement. Neurology 29:21–28, 1979.

    PubMed  Google Scholar 

  18. Ingvar DH, Phillipson L: Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Neurology 2:230–237, 1977.

    CAS  Google Scholar 

  19. Maximilian VA, Prohovnik I, Risberg J, et al: Regional blood flow changes in the left hemisphere during word pair learning and recall. Brain Lang 6:22–31, 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Risberg J, Maximilian VA, Prohovnik I: Changes of cortical activity patterns during habituation to a reasoning test. Neuropsychologia 15:793–798, 1977.

    Article  PubMed  CAS  Google Scholar 

  21. Hagberg B: Defects of immediate memory related to the cerebral blood flow distribution. Brain Lang 5:366–377, 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Hagberg B, Ingvar DH: Cognitive reduction in presenile dementia related to regional abnormalities of the cerebral blood flow. Br J Psychiatry 128:209–222, 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Franzen G, Ingvar DH: Abnormal distribution of cerebral activity in chronic schizophrenia. J Psychiatr Res 12:199–214, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Melamed E, Lavy S, Bentin S, et al: Reduction in regional cerebral blood flow during normal aging in man. Stroke 11:31–34, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Berglund M, Risberg J: Regional cerebral blood flow in a case of amphetamine intoxication. Psychopharmacology 70:219–221, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Sakai F, Meyer JS, Karacan I, et al: Narcolepsy: regional cerebral blood flow during sleep and wakefullness. Neurology 29:61–67, 1979.

    PubMed  CAS  Google Scholar 

  27. Soh K, Larsen B, Skinhoj E, et al: Regional cerebral blood flow in aphasia. Arch Neurol 35:625–632, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Maly J, Turnheim M, Heiss WD, et al: Brain perfusion and neuropsychological test scores: A correlation study in aphasics. Brain Lang 4:78–94, 1977.

    Article  PubMed  CAS  Google Scholar 

  29. Berglund M, Risberg J: Regional cerebral blood flow during alcohol withdrawal. Arch Gen Psychiatry 38:351–355, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Huang SC, Phelps ME, Hoffman EJ, et al: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82, 1980.

    PubMed  CAS  Google Scholar 

  31. Alavi A, Reivich M, Greenberg J, et al: Determination of local cerebral glucose utilization in man using “C-deoxyglucose and positron emission tomography”. J Nucl Med 23:13, 1982.

    Google Scholar 

  32. Ehrin E, Stone-Elander S, Nilsson JLG, et al: C-11-labelled glucose and its utilization in positron-emission tomography. J Nucl Med 24:326–331, 1983.

    PubMed  CAS  Google Scholar 

  33. Frakowiak RJS, Lenzi GL, Jones T, et al: Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure and normal values. J Assist Comput Tomography 4:727–736, 1980.

    Article  Google Scholar 

  34. Phelps ME, Barrio JR, Huang SC, et al: The measurement of local cerebral protein synthesis in man with positron computed tomography (PCT) and C-11 L-leucine. J Nucl Med 23:p6, 1982.

    Google Scholar 

  35. Baron JC, Comar D, Zarifian E: An in vivo study of the dopaminergic receptors in the brain of man using 11C-pimozide and positron emission tomography in Magistretti PC (ed): Functional Radionuclide Imaging of the Brain. New York, Raven Press, p 339–346, 1983.

    Google Scholar 

  36. Wagner HN, Burns HD, Dannais RF: Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–66, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Cho ZH, Chan JK, Ericksson L, et al: Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16:1174–1176, 1975.

    PubMed  CAS  Google Scholar 

  38. Muehllenher G: Resolution limit of positron cameras. J Nucl Med 17:757, 1976.

    Google Scholar 

  39. Hoffman EJ, Phelps ME, Huang SC: Performance evaluation of a positron tomography designed for brain imaging. J Nucl Med 24:245–57, 1983.

    PubMed  CAS  Google Scholar 

  40. Sank VJ, Brooks RA, Friauf WS, et al: Performance evaluation and calibration of the NeuroPET scanner. IEEE Trans Nucl Sci NS-30:636-639, 1983.

    Google Scholar 

  41. Litton J, Bergstrom M, Eriksson L, et al: Performance study of the PC-384 positron camera system for emission tomography of the brain. J Comput Assist Tomography 8:74–87, 1983.

    Article  Google Scholar 

  42. Budinger TF, DeRengo SE, Greenberg W, et al: Quantitative protentials of dynamic emission computed tomography. J Nucl Med 19:309–315, 1978.

    PubMed  CAS  Google Scholar 

  43. Ter-Pogossian MM, Ficke DC, Hood JT Sr: PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomography 6:125–133, 1982.

    Article  CAS  Google Scholar 

  44. Herscovitch P, Markham J, Raichle ME: Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24:782–789, 1983.

    PubMed  CAS  Google Scholar 

  45. Raichle ME, Martin WRW, Herscovitch P, et al: Brain blood flow measured with intravenous H2 15O II. Implementation and validation. J Nucl Med 24:790–798, 1983.

    PubMed  CAS  Google Scholar 

  46. Sokoloff L, Reivich M, Kennedy C, et al: The (C-14) deoxy glucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anaesthetized albino rat. J Neurochem 28:897–916, 1977.

    Article  PubMed  CAS  Google Scholar 

  47. Frakowiak RJS, Pozzilli C, Legg NJ, et al: Regional cerebral oxygen supply and utilization in dementia—A clinical and physiological study with Oxygen-15 and positron tomography. Brain 104:753–778, 1980.

    Article  Google Scholar 

  48. Foster NL, Chase TN, Fedio P, et al: Focal cortical changes in Alzheimer’s disease demonstrated by positron emission tomography with 18F-fluorodeoxyglucose. Neurology 33:961–965, 1983.

    PubMed  CAS  Google Scholar 

  49. Buchsbaum MS, Ingvar DH, Kessler RM, et al: Cerebral glucography with positron tomography. Arch Gen Psychiatry 39:251–259, 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Farkas T, Ferris SH, Wolf AF, et al: The application of 18F-2-deoxy-2-fluoro-D-glucose and positron emission tomography in the study of psychiatric condition, in Passonean JV, Hawkins RA, Lust WP, et al (eds): Cerebral Metabolism and Neural Function. Baltimore, Williams and Wilkins, pp 403–8, 1980.

    Google Scholar 

  51. Widen L, Bergstrom M, Blomquist G, et al: Positron tomography studies of brain energy metabolism in schizophrenia, in Heiss WD, Phelps ME (eds): Positron Tomography of the Brain. New York, Springer Verlag, pp 192–195, 1983.

    Chapter  Google Scholar 

  52. Kessler RM, Clark CM, Buchsbaum MS, et al: Regional correlations in the patterns of glucose use in patients with schizophrenia and normal subjects during mild pain stimulation, in Heiss WD, Phelps ME (eds): Positron Tomography of the Brain. New York, Springer-Verlag, pp 196–200, 1983.

    Chapter  Google Scholar 

  53. Clark CM, Kessler RM, Buchsbaum MS, et al: A correlations method for analyzing positron emission tomography data: A pilot study of normals and patients with schizophrenia. Biol Psychiatry 19:663–678, 1984.

    PubMed  CAS  Google Scholar 

  54. Kuhl DE, Metter EJ, Riege WH, et al: Patterns of local glucose utilization in depression, multiple infarct dementia, and Alzheimer’s disease. J Nucl Med 24:p20–21, 1983.

    Google Scholar 

  55. Buchsbaum MS, DeLisi LE, Holcomb HH, et al: Anteroposterior gradients in cerebral gucose use in schizophrenia and affective disorders. Arch Gen Psychiatry 1984 (in press).

    Google Scholar 

  56. Mazziotta JC, Phelps ME, Carson RE, et al: Tomographic imaging of human cerebral metabolism: Sensory deprivation. Ann Neurol 12:435–444, 1982.

    Article  PubMed  CAS  Google Scholar 

  57. Phelps ME, Mazziotta JC, Kuhl DE, et al: Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation. Net ology 31:517–529, 1981.

    CAS  Google Scholar 

  58. Reivich M, Cobbs W, Rosenquist A, et al: Abnormalities in local glucose metabolism in patients with visual field defects. J Cereb Blood Flow Metab 1(Suppl 1):S471–2, 1981.

    Google Scholar 

  59. Greenberg GH, Reivich M, Alavi A, et al: Metabolle mapping of functional activity in human subjects with the (18F) Fluorodeoxy glucose technique. Science 212:678–680, 1981.

    Article  PubMed  CAS  Google Scholar 

  60. Mazziotta JC, Phelps ME, Carson RE, et al: Tomographic mapping of human cerebral metabolism: Auditory stimulation. Neurology 32:927–37, 1982.

    Google Scholar 

  61. Kuhl DE, Edwards RO: Image separation radio-isotope scanning. Radiology 80:653–661, 1963.

    Google Scholar 

  62. Stokely EM, Sveinsdottir E, Lassen NA, et al: A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomography 4:230–240, 1980.

    Article  CAS  Google Scholar 

  63. Kuhl DE, Barrio JR, Huang SC: Quantifying local cerebral blood flow by N-isopropyl-p-[123I] iodoamphetamine, (IMP) tomography. J Nucl Med 23:196–203, 1982.

    PubMed  CAS  Google Scholar 

  64. Hill TC, Holman BL, Lovett R, et al: Initial experience with SPECT (Single-photon computerized tomography) of the brain using N-isopropyl-I-123-piodoamphetamine: Concise communication. J Nucl Med 23:191–195, 1982.

    PubMed  CAS  Google Scholar 

  65. Kung HF, Tramposch KM, Blau M: A new brain perfusion imaging agent: [I-123] HIPDM: N,N,N1-trimethyl-N1-[2-hydroxy-3-methyl-5-iodobengl]-l,3 propane diamine. J Nucl Med 24:66–72, 1983.

    PubMed  CAS  Google Scholar 

  66. Eckelman WC, Reba RC, Rzeszotarski WJ, et al: External imaging of cerebral muscarinic acetylcholine receptors. Science 223:291–293, 1984.

    Article  PubMed  CAS  Google Scholar 

  67. Kloster G, Langer P, Wutz W, et al: 75,77Br-and 123I-analogues of D-glucose as potential tracers for glucose utilization in heart and brain. Eur J Nucl Med 8:237–241, 1983.

    Article  PubMed  CAS  Google Scholar 

  68. Eckelman WC, Gibson RE, Vieras F, et al: In vivo receptor binding of iodinated beta-adren-oceptor blockers. J Nucl Med 21:436–442, 1980.

    PubMed  CAS  Google Scholar 

  69. Rogers WL, Clinthorne NH, Stauros J, et al: SPRINT: A stationary detector single photon ring tomograph for brain imaging. IEEE Trans Med Imag MI-l:63-68, 1982.

    Google Scholar 

  70. Jaszczak R: Physical characteristics of SPECT systems, September, 1982. J Comput Assist Tomography 6:1205–1215, 1982.

    Article  CAS  Google Scholar 

  71. Kuhl DE, Edwards RO, Ricci AR: The Mark IV system for radionuclide tomography of the brain. Radiology 121:405–413, 1976.

    PubMed  CAS  Google Scholar 

  72. Kanno I, Uemura K, Miura S, et al: Headtome: A hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomography 5:216–226, 1981.

    Article  CAS  Google Scholar 

  73. Lassen NA, Henricksen L, Holm S: Cerebral blood-flow tomography: Xenon-133 compared with isopropyl-amphetamine-iodine-123: Concise communication. J Nucl Med 24:17–21, 1983.

    PubMed  CAS  Google Scholar 

  74. Lauritzen M, Henricksen L, Lassen NA: Regional cerebral blood flow during rest and skilled hand movements by Xenon-123 inhalation and emission computerized tomography. J Cereb Blood Flow Metab 1:385–9, 1981.

    Article  PubMed  CAS  Google Scholar 

  75. Henricksen L, Paulson OB, Lassen NA: Visual cortex activation recorded by dynamic emission computed tomography of inhaled Xenon-133. Eur J Nucl Med 6:487–9, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kessler, R.M. (1985). Functional Brain Imaging. In: Galanter, M. (eds) Recent Developments in Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7715-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7715-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7717-1

  • Online ISBN: 978-1-4615-7715-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics