Skip to main content

Biochemical Mechanisms Responsible for Alcohol-Associated Myocardiopathy

  • Chapter

Abstract

An overview of alcohol metabolism is presented followed by a discussion of the unique pathways for the metabolism of ethanol by the heart. The evidence for cardiac metabolic injury produced as a result of ethanol metabolism is then presented. Such injury involves the mitochondria, contractile proteins, and alterations in calcium fluxes and storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Thiel DH: Effects of ethanol upon organ systems other than the central nervous system, in Tabakoff B, Sutker PB, Randall CL (eds): Medical and Social Aspects of Alcohol Abuse. New York, Plenum Press, 1983, pp 95–97.

    Google Scholar 

  2. Alcohol and Health Third Special Report to the U.S. Congress for the Secretary of Health, Education, and Welfare, USPO Stock #017-024-00892-3, June 1978, pp 109–119.

    Google Scholar 

  3. Brigden W, Robinson J: Alcoholic heart disease. Br Med J 2:1283–1289, 1964.

    Article  PubMed  CAS  Google Scholar 

  4. Alexander CS: Electron microscopic observations in alcoholic heart disease. Br Heart J 29:200–206, 1967.

    Article  PubMed  CAS  Google Scholar 

  5. Alderman EL, Coltart DJ: Alcohol and the heart. Br Med Bull 38:77–90, 1982.

    PubMed  CAS  Google Scholar 

  6. Schwartz L, Sample KA, Wigle ED: Severe alcoholic cardiomyopathy reversed with abstention from alcohol. Am J Cardiol 36:963–966, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Smith M, Hopkinson DA, Harris H: Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet 34:251–271, 1971.

    Article  PubMed  CAS  Google Scholar 

  8. Smith M, Hopkinson DA, Harris H: Studies on the subunit structure and molecular size of the human alcohol dehydrogenase isozymes determined by the different loci ADH1 ADH2 and ADH3. Ann Hum Genet 36:401–414, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Stanatoamnopoulous G, Chen S, Fukui M: Liver alcohol dehydrogenase in Japanese: High population frequency of atypical forms and its possible role in alcohol sensitivity. Am J Hum Genet 27:789–796, 1975.

    Google Scholar 

  10. Lieber CS: Metabolism of Alcohol in Medical Disorders of Alcoholism Pathogenesis and Treatment. Philadelphia, WB Saunders, 1982, pp 1–42.

    Google Scholar 

  11. Lochner A, Cowley R, Brink AJ: Effect of ethanol on metabolism and function of perfused rat heart. Am Heart J 78:770–780, 1969.

    Article  PubMed  CAS  Google Scholar 

  12. Segel LD, Rendig SV, Choquet Y, et al: Effects of chronic graded ethanol consumption in the metabolism ultrastructure and mechanical function of the rat heart. Cardiovasc Res 9:649–663, 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Lange LG, Sobel BE: Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest 72:724–731, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Bing RJ: Cardiac metabolism: Its contributions to alcoholic heart disease and myocardial failure. Circulation 58:965–970, 1978.

    PubMed  CAS  Google Scholar 

  15. Lange LG, Bergmann SR, Sobel BE: Identification of fatty acid ethyl esters as products of rabbit myocardial ethanol metabolism. J Biol Chem 256:12968–12972, 1981.

    PubMed  CAS  Google Scholar 

  16. Williams SS, Li TK: The effect of chronic alcohol administration on fatty acid metabolism and pyruvate oxidation of heart mitochondria. J Mol Cell Cardiol 12:1003–1011, 1977.

    Article  Google Scholar 

  17. Pachinger OM, Tillmanns H, Mao JC, et al: The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. J Clin Invest 52:2690–2696, 1973.

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi T, Kako KJ: Metabolic effects of ethanol on the rabbit heart. Circ Res 26:625–634, 1970.

    PubMed  CAS  Google Scholar 

  19. Wendt VE, Wu C, Balcon R, et al: Hemodynamic and metabolic effects of chronic alcoholism in man. Am J Cardiol 25:175–184, 1965.

    Article  Google Scholar 

  20. Segel LD, Rendig SV, Mason DT: Left ventricular dysfunction of isolated working rat hearts after chronic alcohol consumption. Cardiovasc Res 13:136–146, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Bing RJ, Tillmanns H, Fauvel JM, et al: Effect of prolonged alcohol administration on calcium transport in heart muscle of the dog. Circ Res 35:33–38, 1974.

    PubMed  CAS  Google Scholar 

  22. Schreiber SS, Briden J, Oratz M, et al: Ethanol acetaldehyde and myocardial protein synthesis. J Clin Invest 51:2820–2826, 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Schreiber S.S., Oratz M., Rothschild M.A., et al: Alcoholic cardiomyopathy II. J Mol Cell Cardiol 6:207–213, 1974.

    Article  PubMed  CAS  Google Scholar 

  24. Zuhlke V, du Mesnil de Rochemont W, Gudbjarnason S, et al: Inhibition of protein synthesis in cardiac hypertrophy and its relation to myocardial failure. Circ Res 18:558–572, 1966.

    PubMed  CAS  Google Scholar 

  25. Fassold, E, Nayler WG, Kukovetz WR: Inhibition of cardiac Ca++ dependent myofibrillar ATPase by acetaldehyde. Nannyn-Schmiedeberg’s Arch of Pathology 302:R33–37, 1978.

    Google Scholar 

  26. Schwartz A, Sordahl LA, Entman ML, et al: Abnormal biochemistry in myocardial failure. Am J Cardiol 32:407–122, 1973.

    Article  PubMed  CAS  Google Scholar 

  27. Sulakhe R. V., Dhalla N.S.: Excitation contraction coupling in heart. J Clin Invest 50:1019–1027, 1971.

    Article  PubMed  CAS  Google Scholar 

  28. Goodman DS, Deykin D: Fatty acid ethyl ester formation during ethanol metabolism in vivo. Proc Soc Exp Biol Med 113:65–67, 1963.

    PubMed  CAS  Google Scholar 

  29. Lange LG: Nonoxidative ethanol metabolism: Formation of fatty acid ethyl esters by cholesterol esterase. Proc Natl Acad Sci USA 79:3954–3957, 1983.

    Article  Google Scholar 

  30. Lange LG, Sobel BE: Myocardial metabolites of ethanol. Circ Res 52:479–482, 1983.

    PubMed  CAS  Google Scholar 

  31. Schwartz A, Levey GS, Entman ML, et al: Modulation of calcium in the heart, in Kobayoshi T, Sano T, Dhalla NS (eds): Recent Advances in Studies of Cardiac Structure and Metabolism. Baltimore, University Park Press, 1978, pp 195–198.

    Google Scholar 

  32. Holroyde MJ, Howe E, Solaro RJ: Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP-dependent phosphorylation. Biochem Biophys Acta 586:63–69, 1979.

    Article  CAS  Google Scholar 

  33. Mope L, McClellan GB, Winegard S: Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol 75:271–282, 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Kopp SJ, Barany M: Phosphorylation of the 19,000-dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotopic agents. J Biol Chem 254:12007–12012, 1979.

    CAS  Google Scholar 

  35. LePeuch CJ, Haiech J, Démaille JG: Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 18:5150–5157, 1979.

    Article  CAS  Google Scholar 

  36. Kranias EG, Mandel F, Wang T, et al: Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′5′-monophos-pohate dependent protein kinase. Biochemistry 19:5434–5439, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Ohmori F, Tada M, Kinoshita N, et al: Effect of protein kinase modulator on cAMP-dependent protein kinase-catalyzed phosphorylation of phospholamban and stimulation of calcium transport in cardiac sarcoplasmic reticulum, in Kobayashi T., Sano T., Dhalla N.S. (eds): Recent Advances in Studies of Cardiac Structure and Metabolism. Baltimore, University Park Press, 1978, pp 279–284.

    Google Scholar 

  38. Tsien RW: Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res 8:363–420, 1977.

    PubMed  CAS  Google Scholar 

  39. Bilezikijian LM, Kranias EG, Potter JD, et al: Studies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase. Circ Res 49:1356–1362, 1981.

    Google Scholar 

  40. Wolf H, Hofmann F: Purification of myosin light chain kinase from canine cardiac muscle. Proc Natl Acad Sei USA 77:5852–5855, 1980.

    Article  CAS  Google Scholar 

  41. Scheuer J, Bahn AK: Cardiac contractile proteins: Adenosine triphosphatase activity and physiological function. Circ Res 45:1–12, 1979.

    PubMed  CAS  Google Scholar 

  42. Wang T, Grasside Gende A.O., Schwartz A.: Kinetic properties of calcium adnenosine triphosphatase of seroplasmic reticulum isolated from cat skeletal muscles. J Biol Chem 254:10675–10678, 1979.

    PubMed  CAS  Google Scholar 

  43. Swartz MH, Repke DI, Katz AM, et al: Effects of ethanol on calcium binding and calcium uptake by cardiac microsomes. Biochem Pharmacol 23:2369–2376, 1974.

    Article  PubMed  CAS  Google Scholar 

  44. Williams JW, Tada M, Katz AM, et al: Effect of ethanol and acetaldehyde on the (Na+ + K+)activated adenosine triphosphatase activity of cardiac plasma membranes. Biochem Pharmacol 24:27–52, 1975.

    Article  PubMed  CAS  Google Scholar 

  45. Weber AJ: On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769, 1959.

    PubMed  CAS  Google Scholar 

  46. Puszkin S, Rubin E: Adenosine diphosphate effect on contractility of human muscle actomyosin: Inhibition by ethanol and acetaldehyde. Science 188:1319–1320, 1975.

    Article  PubMed  CAS  Google Scholar 

  47. Retig JN, Kirchberger MA, Rubin E, et al: Effects of ethanol on calcium transport by microsomes phosphorylated by cyclic AMP-dependent protein kinase. Biochem Pharmacol 26:393–396, 1977.

    Article  PubMed  CAS  Google Scholar 

  48. Vesely DL, Lehotay DC, Levey GS: Effects of ethanol on myocardial guamylate and adenylate cyclase activity and on cyclic cAMP and GMP levels. J Stud Alcohol 39:842–847, 1978.

    PubMed  CAS  Google Scholar 

  49. Whetton AD, Needham L, Dodd NJF, et al: Forskolin and ethanol both perturb the structure of liver plasma membranes and activate adenylate cyclase activity. Biochem Pharmacol 32:1601–1608, 1983.

    Article  PubMed  CAS  Google Scholar 

  50. Polimeni PI, Otten MD, Hoeschen LE: In vivo effects of ethanol on the rat myocardium: Evidence for a reversible, non-specific increase of sarcolemmal permeability. J Mol Cell Cardiol 15:113–122, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Rottenberg H, Waring AJ, Rubin E: Tolerance and cross-tolerance in chronic alcoholics: Reduced membrane binding of ethanol and other drugs. Science 213:583–585, 1981.

    Article  PubMed  CAS  Google Scholar 

  52. Van Vleet JF, Hall BV, Simon J: Vitamin E deficiency. A sequential light and electron microscopic study of skeletal muscle degeneration in weaning rabbits. Am J Pathol 52:1067–1079, 1968.

    PubMed  Google Scholar 

  53. Myers CE, McGuire W, Young R: Adinomyocin: Amelioration of toxicity by alpha-tocopherol. Cancer Treat Rep 60:961–962, 1976.

    PubMed  CAS  Google Scholar 

  54. Kuo JF, Andersson GGA, Wise BC, et al: Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin and trifluoperazine. Proc Natl Acad Sci USA 77:7039–7043, 1980.

    Article  PubMed  CAS  Google Scholar 

  55. Ogawa Y, Takai Y, Kawahara Y, et al: A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. J Immunol 127:1369–1375, 1981.

    PubMed  CAS  Google Scholar 

  56. Kawahara Y, Takai Y, Minakuchi R, et al: Possible involvement of Ca2+-activated, phospho-lipid-dependent protein kinase in platelet activation. J Biochem 88:913–916, 1980.

    CAS  Google Scholar 

  57. Sano K, Takai Y, Yamaniski J, et al: A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. J Biol Chem 258:2010–2013, 1983.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Van Thiel, D.H., Gavaler, J.S., Lehotay, D.C. (1985). Biochemical Mechanisms Responsible for Alcohol-Associated Myocardiopathy. In: Galanter, M. (eds) Recent Developments in Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7715-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7715-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7717-1

  • Online ISBN: 978-1-4615-7715-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics