Skip to main content

Modern Optical Methods for the Storage of Radiographs

  • Chapter
Progress in Medical Radiation Physics

Part of the book series: Progress in Medical Radiation Physics ((PIMR,volume 1))

Abstract

Eighty-five years after the detection of the principles of radiographic diagnosis by W. C. Roentgen in 1895, the world’s annual production amounts to some 2 billion radiographs. Scaled to the environment of a medium-size hospital, this means that the x-ray examinations will amass about 200,000 films per annum, which are stored for several years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Schneider and V. Taenzer, Probleme der Informationsübertragung bei der Mikroverfilmung von Röntgenaufnahmen, Roentgen Bl 25, 26–30 (1972).

    Google Scholar 

  2. K. H. Bernhardt, Die Mikro-Dokumentation von Röntgenaufnahmen mit dem “Linear-System,” Roentgen Bl 32, 329–334 (1979).

    Google Scholar 

  3. H. von Prosch, Formatreduzierte Krankenblatt- und Röntgenbildarchivierung, Roentgen Ber. 5, 205–211 (1976).

    Google Scholar 

  4. N. V. Optische Industrie “De Oude Delft”, Delft, The Netherlands.

    Google Scholar 

  5. LogEtronics Inc., Springfield, Virginia.

    Google Scholar 

  6. E. Lehtinen and I. Tämminen, Microfiling and Automatic Filing of Radiographs, Roentgen Bl 31, 300–303 (1978).

    Google Scholar 

  7. S. Läser, Archivierung von Röntgenfilmkopien verbunden mit der Möglichkeit einer einfachen Datenverarbeitung, Radiol Clin. 39, 252–255 (1970).

    Google Scholar 

  8. C. John, The reported film storage problem solved? 100 mm film miniaturization using the Oldelft, Delcopex and Odelcard systems. Radiography 19, 191–196 (1978).

    Google Scholar 

  9. H. Arvidsson, in Planning of Radiological Departments (M. Kormano and E. Stieve, eds.), pp. 122–123, Georg Thieme Publishers, Stuttgart (1974).

    Google Scholar 

  10. I. Rossi and P. Virtama, in Planning of Radiological Departments (M. Kormano and E. Stieve, eds.), pp. 123–125, Georg Thieme Publishers, Stuttgart (1974).

    Google Scholar 

  11. E. Kolihova, D. Obenbergerova, and M. A. Ansari, Unsere Erfahrungen mit dem Delcopex-System, Raddiagn. 19, 702–705 (1978).

    Google Scholar 

  12. L. Steinhart, Vorstellungen über eine Systemlösung der Archivierung von Röntgenaufnahmen, Raddiagn. 19, 706–708 (1978).

    Google Scholar 

  13. F. Bossard and M. Elcke, Zur Anwendung von Röntgenbild-Verkleinerungssystemen in einer zentralen Universitäts-Röntgendiagnostikabteilung unter Berücksichtigung der Betriebsstrukturen, Roentgenpraxis (Stuttgart) 30, 16–27 (1977).

    Google Scholar 

  14. H. Deininger, K. Goergens, H. Heitzeberg, F. Heuck, W. Hoeffken, J. Kahlstorf, G. Meier, L. Mitrovics, G. Müller, H. Oeser, Ch. F. Pahlow, R. Sörensen, H.-S. Stender, V. Taenzer, H. Weissleder, and E. Zeitler, Untersuchungen über die praktische Verwendbarkeit eines Röntgenfilm-Verkleinerungs-Systems, Fortschr. Roentgenstr. 120, 353–356 (1974).

    Article  Google Scholar 

  15. V. Taenzer and U. Schneider, Röntgenaufnahmen-Mikroarchivierung: Eine Bilanz, Fortschr. Roentgenstr. 120, 616–620 (1974).

    Article  Google Scholar 

  16. G. P. van Dijk, Röntgenarchivierung mit Mikrofilm, Chirurg 47, 62–65 (1976).

    Google Scholar 

  17. L. W. Busching, Implementing a new x-ray film management system, Radiol Technol 49, 603–610 (1978).

    Google Scholar 

  18. C. Th. Ruygrok, Ein Vergleichsversuch der modernen Kopiersysteme, presented in Symposium über Fragen der Archivierung und des Informationsaustausches in der Röntgendiagnostik, Munich, 15–16 November, 1971.

    Google Scholar 

  19. E. Ross, Der logetronisierte Mikrofilm in der Röntgendiagnostik bei integrierter Verfilmung und Archivierung, Fortschr. Roentgenstr. 124, 585–594 (1976).

    Article  Google Scholar 

  20. R. Bollen, private communication.

    Google Scholar 

  21. J. C. Dainty and R. Shaw, Image Science, Academic Press, New York (1974).

    Google Scholar 

  22. R. F. Wagner, Noise equivalent parameters in general medical radiography: the present picture and future pictures, Photogr. Sci. Eng. 21, 252–262 (1977).

    Google Scholar 

  23. K. G. Vosburgh, Storage and retrieval of radiographic images. Radiology 123, 619–624 (1977).

    Google Scholar 

  24. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. I. 27,379–423, 623–656 (1948).

    Google Scholar 

  25. J. H. Altmann and H. J. Zweig, Effect of spread function on the storage of information on photographic emulsions, Photogr. Sci. Eng. 7, 173–177 (1963).

    Google Scholar 

  26. R. F. Wagner, D. G. Brown, and M. S. Pastel, Application of information theory to the assessment of computed tomography, Med. Phys. 6, 83–94 (1979).

    Article  Google Scholar 

  27. H. Kanamori and S. Murashima, Information capacity of radiographic images for the random signal and continuous objects, Jpn. J. Appl. Phys. 9, 182–194 (1970).

    Article  ADS  Google Scholar 

  28. A. Rose, The sensitivity performance of the human eye on an absolute scale, J. Opt. Soc. Am. 38, 196–208 (1948).

    Article  ADS  Google Scholar 

  29. A. Rose, Vision: Human and Electronic, Plenum Press, New York (1973).

    Google Scholar 

  30. K. Rossmann, Modulation transfer function of radiographic systems using fluorescent screens, I. Opt. Soc. Am. 52, 774–777 (1962).

    Article  ADS  Google Scholar 

  31. K. Rossmann, Recording of x-ray quantum fluctuations in radiographs, I. Opt. Soc. Am. 52, 1162–1164(1962).

    Article  ADS  Google Scholar 

  32. M. Schlindwein, private communication.

    Google Scholar 

  33. H. J. Metz, S. Ruchti, and K. Seidel, Comparison of Image Quality and Information Capacity for Different Model Imaging Systems, J. Photogr. Sci. 26, 229–233 (1978).

    Google Scholar 

  34. J. W. Motz and M. Danos, Image information content and patient exposure, Med. Phys. 5 (1), 8–22 (1978).

    Article  Google Scholar 

  35. N. A. Baily, A. L. Pearlman, and E. C. Lasser, Holographic storage of Roentgenogram images. Radiology 99, 190–191 (1971).

    Google Scholar 

  36. N. A. Baily, R. L. Crepeau, and E. C. Lasser, Further developments in the use of holographic methods for the storage of Roentgenographic images. Invest. Radiol. 7 (2), 118–123 (1972).

    Article  Google Scholar 

  37. B. Hill, in Advances in Holography, Vol. 3 (N. H. Farkat, ed.). Marcel Dekker, New York (1976).

    Google Scholar 

  38. U. Killat, Holographic microfiche of picture-like information. Opt. Acta 24, 453–462 (1977).

    Article  ADS  Google Scholar 

  39. C. Clausen and U. Killat, Holographically stored x-ray images: gray tone reproduction, Med Phys. 5, 181–187 (1978).

    Article  Google Scholar 

  40. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New York (1971).

    Google Scholar 

  41. G. Groh, Holographie, Berliner Union and Kohlhammer, Stuttgart (1973).

    Google Scholar 

  42. M. Frangon, Holography, Academic Press, New York (1974).

    Google Scholar 

  43. Y. Tsunoda and Y. Takeda, High density image-storage holograms by a random phase sampling method, Appl. Opt. 13, 2046–2051 (1974).

    Article  ADS  Google Scholar 

  44. A. Iwamoto, Artificial diffuser for Fourier transform hologram recording, Appl. Opt. 19, 215–221 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  45. W. S. Colburn, R. G. Zech, and L. M. Ralston, Holographic Optical Elements, Technical Report AFAL-TR-72–409, Harris Electro-Optics Center of Radiation, Ann Arbor (1973).

    Google Scholar 

  46. K. Biedermann, Information storage materials for holography and optical data processing. Opt. Acta 22, 103–124 (1975).

    Article  ADS  Google Scholar 

  47. U. Killat and D. R. Terrell, Performance and limitations of photothermoplastic devices, Opt. Acta 24, 441–452 (1977).

    Article  ADS  Google Scholar 

  48. U. Killat and D. R. Terrell, Conventional and Self-Developing Photothermoplastic Devices: Sensitivity and Rapid Development, J. Photogr. Sci. 26, 183–188 (1978).

    Google Scholar 

  49. U. Killat, unpublished results.

    Google Scholar 

  50. H. T. Buschmann, in Optical and Acoustical Holography (E. Cametini, ed.). Plenum Publishing, New York (1970).

    Google Scholar 

  51. K. Biedermann, The scattered flux spectrum of photographic materials for holography, Optik (Stuttgart) 31, 367–389 (1970).

    Google Scholar 

  52. D. H. R. Vilkomerson, Measurements of the noise spectral power density of photosensitive materials at high spatial frequencies, Appl. Opt. 9, 2080–2087 (1970).

    Article  ADS  Google Scholar 

  53. T. L. Credelle and F. W. Spong, Thermoplastic Media for Holographic Recording, RCA Rev. 33, 206–226 (1972).

    Google Scholar 

  54. R. Orlowski, private communication.

    Google Scholar 

  55. J. C. Dainty, in Laser Speckle and Related Phenomena (J. D. Dainty, ed.). Springer-Verlag, Berlin (1975).

    Google Scholar 

  56. M. Grenot, J. Pergrale, J. Donjon, and G. Marie, New electro-optic light valve device for image storage and processing, Appl. Phys. Lett. 21, 83–85 (1975).

    Article  ADS  Google Scholar 

  57. B. Hill, U. J. Schmidt, and H. J. Schmitt, Optical Memories, J. Appl. Sci. Eng A 1, 39–48 (1975).

    Google Scholar 

  58. G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. G. Wagner, and F. Zernike, An optical disk replaces 25 mag tapes, IEEE Spectrum 16, February, 33–38 (1979).

    Google Scholar 

  59. K. Bulthuis, M. G. Carasso, J. P. J. Heemskerk, P. J. Kivits, W. J. Kleuters, and P. Zalm, Ten billion bits on a disk, IEEE Spectrum 16, August, 26–33 (1979).

    Google Scholar 

  60. D. V. McCaughan and B. R. Holeman, in Charge-Coupled Devices and Systems (M. J. Howes and D. V. Morgan, eds.), pp. 241–295, Wiley and Sons, New York (1979).

    Google Scholar 

  61. H. D. Behring, H. Busch, J. Christiansen, J. Coumans, R. Grewer, H. D. Hinz, H. Löbl, D. Meyer-Ebrecht, R. Pape, U. Rothgordt, and R. Weissel,Elektronische Bildbank, Report BMFT-FB 081 2074 (1980).

    Google Scholar 

  62. T. Okoshi, in Electronic Imaging (T. P. McLean and P. Schagen, eds.), pp. 103–144, Academic Press, New York (1979).

    Google Scholar 

  63. B. Hill and K. P. Schmidt, Fast Switchable Magneto-Optic Memory-Display Components, Philips J. Res. 33, 211–225 (1978).

    Google Scholar 

  64. S. Jyomura, I. Matsuyama, and A. Kumada, A high contrast image display device using a PLZT ceramic, Ferroelectrics 15, 51–59 (1977).

    Article  Google Scholar 

  65. B. Hill and K. P. Schmidt, Integrierte Lichtmodulationsmatrizen aus magneto-optischem Eisengranat für neuartige Datensichtgeräte und optische Drucker, NTG Fachber. 67, 106–116.

    Google Scholar 

  66. B. Hill, private communication.

    Google Scholar 

  67. C. H. Hertz and Ä. Mansson, Electronic ink jet device, Proc. IFIP Congr. 74, 185–189 (1974).

    Google Scholar 

  68. M. Nomura, Direct imaging process by magnetic ink powder transfer, presented at the 2nd International Conference on Business Graphics, Washington, November 1979.

    Google Scholar 

  69. H. D. Hinz, H. Löbl, and U. Rothgordt, Electrophoretic recording of continuous-tone images, I. Appl. Photogr. Eng 6, 69–72 (1980).

    Google Scholar 

  70. H. D. Hinz, H. Löbl, and U. Rothgordt, private communication.

    Google Scholar 

  71. M. Kunt, Source coding of x-ray pictures,IEEE Trans. Biomed. Eng. 26,121–138 (1978).

    Article  Google Scholar 

  72. P. Lux, Redundancy reduction in radiographic pictures. Opt. Acta 24, 349–366 (1977).

    Article  ADS  Google Scholar 

  73. P. Lux, A novel set of closed orthogonal functions for picture coding, AEÜ 31, 267–274 (1977).

    Google Scholar 

  74. E. G. Rawson and R. M. Metcalfe, Fibernet: multimode optical fibers for local computer networks, IEEE Trans. Commun. 26, 983–990 (1978).

    Article  Google Scholar 

  75. J. E. Midwinter and J. R. Stern, Propagation studies of 40 km of graded-index fiber installed in cable in an operational duct route, IEEE Trans. Commun. 26, 1015–1020 (1978).

    Article  Google Scholar 

  76. C. Baack, G. Elze, and G. Wolf, Feasibility of optical gigabit transmission systems, Proc. Suppl. ECOC 1978, 44–46 (1978).

    Google Scholar 

  77. D. Meyer-Ebrecht and R. Weissel, The integrated picture processing/picture base system PICASSO, NTG Fachber. 67, 245–253 (1979).

    Google Scholar 

  78. D. Meyer-Ebrecht, The management and processing of medical pictures—an architecture for systems and processing devices, presented at the Proceedings of the 2nd Workshop of Picture Data Description and Management, Asilomar, 27–28 August 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Killat, U. (1982). Modern Optical Methods for the Storage of Radiographs. In: Orton, C.G. (eds) Progress in Medical Radiation Physics. Progress in Medical Radiation Physics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7691-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7691-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7693-8

  • Online ISBN: 978-1-4615-7691-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics