Skip to main content

Localized Auger States in Polyethylene

  • Chapter
Physicochemical Aspects of Polymer Surfaces

Abstract

The final states of a core-valence-valence Auger decay involve two valence level holes which may remain localized on one atomic site or functional group or move as independent particles through the system. The x-ray excited Auger spectrum of polyethylene indicates the existence of both localized and independent particle-like Auger final states. A comparison of the polyethylene Auger spectrum to those of the gas phase normal alkanes shows that certain spectral features have a final state binding energy which is independent of chain length, indicating the presence of localized states. A broadening of the alkane spectra with increasing chain length indicates, however, that some final states exhibit independent particle behavior. The width of the polyethylene Auger spectrum is significantly wider than the self-fold of the valence band density of states, demonstrating the partial breakdown of the independent particle model and providing additional evidence for the existence of localized states in polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. R. Rye, T. E. Madey, J. E. Houston and P. H. Holloway, J. Chem. Phys., 69, 1504 (1978);

    Article  CAS  Google Scholar 

  2. R. R. Rye, J. E. Houston, D. R. Jennison, T. E. Madey and P. H. Holloway, Ind. Eng. Chem. Prod. Res. Dev., 18, 2 (1978).

    Google Scholar 

  3. D. R. Jennison, Phys. Rev., A23, 1215 (1981)

    Google Scholar 

  4. D. R. Jennison, Chem. Phys. Lett., 69, 435 (1981).

    Google Scholar 

  5. J. A. Kelber, R. R. Rye and G. C. Nelson, J. Vac. Sci. Tech., 18, 712 (1981).

    Article  Google Scholar 

  6. D. Bloor, Chem. Phys. Lett., 40, 323 (1976).

    Article  CAS  Google Scholar 

  7. J. A. Kelber, R. R. Rye, G. C. Nelson and J. E. Houston, Surf. Sci., 116, 148 (1982).

    Article  CAS  Google Scholar 

  8. The experimental work referred to in this paper was first presented at the International Symposium on Physicochemical Aspects of Polymer Surfaces (New York, August, 1981). A paper which includes a brief account of this experimental work plus a theoretical explanation has subsequently been published;

    Google Scholar 

  9. J. A. Kelber and D. R. Jennison, J. Vac. Sci. and Tech., 20, 848 (1982).

    Article  CAS  Google Scholar 

  10. D. R. Jennison, J. Vac. Sci. Tech., 17, 172 (1980).

    CAS  Google Scholar 

  11. A. D. Baker, D. Betteridge, N. R. Kemp and R.E. Kirby, J. Mol. Structure, 8, 75 (1971).

    Article  CAS  Google Scholar 

  12. J. J. Pireaux, R. Caudano, S. Svensson, E. Basilier, P. A. Malquist, V. Gelius and K. Siegbahn, J. de Physique, 38, 1221 (1977);

    Article  CAS  Google Scholar 

  13. J. N. Murrel and W. Schmidt, Faraday Trans. II, 68, 1709 (1972).

    Google Scholar 

  14. R. R. Rye, D. R. Jennison and J. E. Houston, J. Chem. Phys., 73, 4867 (1980).

    Article  CAS  Google Scholar 

  15. H. H. Madden and J. E. Houston, J. Appl. Phys., 44, 3071 (1976).

    Article  Google Scholar 

  16. J. J. Lander, Phys. Rev., 91, 1382 (1953).

    Article  CAS  Google Scholar 

  17. P. J. Feibelman, E. J. McGuire and K. C. Pandey, Phys. Rev., B15, 2202 (1977);

    CAS  Google Scholar 

  18. D. R. Jennison, Phys. Rev., 818, 6865 (1978).

    Google Scholar 

  19. D. R. Jennison, H. H. Madden and D. M. Zehner, Phys. Rev., B21, 430 (1980).

    Article  CAS  Google Scholar 

  20. M. Cini, Surf. Sci., 87, 483 (1979):

    Google Scholar 

  21. M. Cini, Sol. State Commun., 24, 681 (1977);

    Article  CAS  Google Scholar 

  22. M. Cini, Sol. State Commun., 20, 605 (1978).

    Article  Google Scholar 

  23. G. A. Sawatzky, Phys. Rev. Lett., 39, 504 (1977);

    Article  CAS  Google Scholar 

  24. G. A. Sawatzky and A. Lenselink, Phys. Rev., B21, 1790 (1980).

    Article  CAS  Google Scholar 

  25. The number of two-hole final states increases rapidly with alkane chain length. See Ref. 9.

    Google Scholar 

  26. J. Delhalle, J. M. Andre, S. Delhalle, J. J. Pireaux, R. Caudano and J. J. Verbist, J. Chem. Phys. 60, 595 (1974).

    Article  CAS  Google Scholar 

  27. M. H. Wood, M. Barber, I. H. Hillier and J. M. Thomas, 56, 1788 (1972).

    Google Scholar 

  28. K. Seki, S. Hashimoto, N. Sato, Y. Harada, K. Ishii, H. Inokuchi and J. Kanbe, J. Chem. Phys., 66, 3644 (1977).

    Article  CAS  Google Scholar 

  29. D. R. Jennison, Phys. Rev., B18, 6865 (1978).

    Article  CAS  Google Scholar 

  30. M. L. Knotek and P. J. Feibelman, Surf. Sci., 90, 78 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Kelber, J.A., Rye, R.R., Jennison, D.R., Houston, J.C. (1983). Localized Auger States in Polyethylene. In: Mittal, K.L. (eds) Physicochemical Aspects of Polymer Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7584-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7584-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7586-3

  • Online ISBN: 978-1-4615-7584-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics