Skip to main content

Holographic Memory of High Capacity with Synthesized Aperture

  • Chapter
Optical Information Processing
  • 32 Accesses

Abstract

The role of holographic memory devices for the development of computer technique is growing in importance /1/. But the capacity of holographic memory with random data access and page organization on thin holograms is restricted by dimensions of an optical system /2/. In practice, the diameter of a high-quality lens may hardly exceed 30–40 cm, and hence a limit for the holographic memory capacity is of 108–109 bit. On the other hand, the nonoptic memory on new principles, such as charge coupled devices, magnetic bubbles, and the conventional memory elements on magnetic discs can provide the same and more greater memory volume with sufficiently improved engineering and economical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G.Basov, W.H.Culver, B.Shan. “Laser Handbook”, p. 1051 (1972).

    Google Scholar 

  2. A.L.Mikaelian, V.I.Bobrinev. Radiotekhnikai, Elektronika, 12, 5, 898 (1973) (in Russian).

    Google Scholar 

  3. H.Kiemle. Appl.Opt. 12, 803 (1974).

    Article  Google Scholar 

  4. D.Pole. Appl.Opt. 12, 341 (1974).

    Google Scholar 

  5. M.A.Maiorchuk, V.V.Nikitin, V.D.Samoilov. Kvantovaya Elektronika, 1, 2, 302 (1974) (in Russian).

    Google Scholar 

  6. A.N.K.orolev. Usp.Fiz.Nauk, 26, 2 (1968). (in Russian).

    Google Scholar 

  7. W.Lukosz. JOSA, 56, 1463 (19E6).

    Google Scholar 

  8. A.Bachl, W.Lucosz. JOSA, 57, 2, 163 (1974).

    Article  Google Scholar 

  9. A.A.Verbovetsky, V.B.Fedorov. J.Techn.Fiz. 49, 10, 2203 (1972) (in Russian)

    Google Scholar 

  10. H.Kiemle. Optics Technology, May, 196 (1969).

    Google Scholar 

  11. C.P.Bovin. Appl.Opt. 11, 8, 1782 (1972).

    Article  Google Scholar 

  12. N.G.Basov, Yu.M.Popov et al. Possibility of constructing new fast-operating multi-channel optoelectron computer systems. Preprint FIAN(1973) (in Russian).

    Google Scholar 

  13. L.A.Orlov, Yu.M.Popov. Avtometry, 6, Nov.-Dec. 14 (1972 (1972)(In Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morozov, V.N. (1978). Holographic Memory of High Capacity with Synthesized Aperture. In: Barrekette, E.S., Stroke, G.W., Nesterikhin, Y.E., Kock, W.E. (eds) Optical Information Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7545-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7545-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7547-4

  • Online ISBN: 978-1-4615-7545-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics