Skip to main content

Part of the book series: Cryogenic Materials Series ((CRYMS))

Abstract

Polymers for low-temperature applications have received increasing interest with the advances in space research and the technological exploitation of physical phenomena, such as superconductivity. Crosslinked polymers already find application in laminates for the construction of liquid gas tanks and pipelines. They are used for insulation of superconducting cables, impregnation of superconducting energy storing magnets, and supporting devices of optical systems in space applications. The castings have to be processed free of voids and may not release volatile compounds at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Batzer, F. Lohse, and R. Schmid, Angew. Makromol. Chem. 29/30, 347 (1973).

    Google Scholar 

  2. F. Lohse and R. Schmid, Chimia 28, 576 (1974).

    Google Scholar 

  3. F. Lohse, Prog. Colloid. Polym. Sci. 64, 1 (1978).

    Article  Google Scholar 

  4. C. Srna in: Kunststoff-Handbuch (R. Vieweg and L. Goerden, eds. ), München (1973).

    Google Scholar 

  5. R.N. Haward, The Physics of Glassy Polymers, Applied Science Publishers Ltd., London (1973).

    Book  Google Scholar 

  6. L.E. Nielsen, Mechanical Properties of Polymers and Composites, Marcel Dekker Inc., New York (1974).

    Google Scholar 

  7. N. Brown, J. Polym. Sci. Phys. 11, 2099 (1973).

    Google Scholar 

  8. A. Peterlin and H.G. Olf, J. Polym. Sci. Symp. 50, 243 (1975).

    Article  Google Scholar 

  9. J.R. Kastelic and E. Baer, J. Macromol. Sci. Phys. B7, 679 (1973).

    Article  Google Scholar 

  10. E. Plati and J.G. Williams, Polymer 16, 915 (1975).

    Article  Google Scholar 

  11. L. Bohn and H. Oberst, Acustica 9, 191 (1959).

    Google Scholar 

  12. N.G. McCrum, B.E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, John Wiley and Sons, London (1967).

    Google Scholar 

  13. M. Shen, Chem. Space Res. (1972), 319.

    Google Scholar 

  14. F. Lohse, R. Schmid, H. Batzer, and W. Fisch, Br. Polym. J. 1, 110 (1969).

    Article  Google Scholar 

  15. J. Heijboer, J. Polym. Sci. C 16, 3755 (1968).

    Google Scholar 

  16. R.F. Boyer, Polym. Eng. Sci. 8, 161 (1968).

    Article  Google Scholar 

  17. P.I. Vincent, Polymer 15, 111 (1974).

    Article  Google Scholar 

  18. J.A. Manson, R.W. Herzberg, S.L. Kin, and M. Skibo, Polymer 16, 850 (1975).

    Article  Google Scholar 

  19. J.M. Roe and R. Simha, Intern. J. Polym. Mater. 3, 193 (1974).

    Article  Google Scholar 

  20. P.S. Wilson, S. Lee, and R.F. Boyer, Macromolecules 6, 914 (1973).

    Article  Google Scholar 

  21. F.H. Müller, 0. Heybey, and G. Knispel, Kolloid.-Z. Z. Polym. 251, 932 (1973).

    Article  Google Scholar 

  22. C.L. Choy, H. Huq, and D.E. Moody, Phys. Lett. 54A, 375 (1975).

    Article  Google Scholar 

  23. Y.S. Papir, S. Kapur, C.E. Rogers, and E. Baer, J. Polym. Sci. A-2 10, 1305 (1972).

    Article  Google Scholar 

  24. J. Heijboer, Ann. N. Y. Acad. Sci. (1977), p. 104.

    Google Scholar 

  25. T.F. Schatzki, J. Polym. Sci. 57, 496 (1962).

    Article  Google Scholar 

  26. N. Hata, R. Yamanchi, and J. Kumanotani, J. Appl. Polym. Sci. 17, 2173 (1973).

    Article  Google Scholar 

  27. R. Schmid, Prog. Colloid. Polym. Sci. 64, 17 (1978).

    Article  Google Scholar 

  28. W.D. Cook and 0. Delatycki, J. Polym. Sci. Phys. 15, 1953 (1977).

    Article  Google Scholar 

  29. K.H. Illers, Makromol. Chem. 38, 168 (1960).

    Article  Google Scholar 

  30. H. Jacobs and E. Jenckel, Makromol. Chem. 43, 132 (1961).

    Article  Google Scholar 

  31. T. Kajama and W.J. MacKnight, Macromolecules 2, 254 (1969).

    Article  Google Scholar 

  32. W. Pechhold, S. Blasenbrey, and S. Woerner, Kolloid-Z. 189, 14 (1963).

    Article  Google Scholar 

  33. U.T. Kreibich and R. Schmid, Prog. Coll. Polym. Sci. 62, 106 (1977).

    Google Scholar 

  34. L.M. Soffer and R. Molho, J. Macromol. Sci.-Phys. B1, 709 (1967).

    Article  Google Scholar 

  35. M.B. Kasen, Cryogenics 15, 327 (1975).

    Article  Google Scholar 

  36. M.B. Kasen, Cryogenics 15, 701 (1975).

    Article  Google Scholar 

  37. R. Schmid, Kollogium über Adhäsion, Leoben (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Kreibich, U.T., Lohse, F., Schmid, R. (1979). Polymers in Low Temperature Technology. In: Clark, A.F., Reed, R.P., Hartwig, G. (eds) Nonmetallic Materials and Composites at Low Temperatures. Cryogenic Materials Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7522-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7522-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7524-5

  • Online ISBN: 978-1-4615-7522-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics