Skip to main content

Treatment of Leprosy

  • Chapter
Mycobacteria

Part of the book series: Chapman & Hall Medical Microbiology Series ((CHMMS))

Abstract

Leprosy existed for thousands of years in the preantibiotic era and was treated in many different ways. Among the various treatments, chaulmoogra oil was most widely used. The clinical response, especially among lepromatous cases, to the treatment of chaulmoogra oil was inconsistent and relapse was common, indicating that its therapeutic effect was modest, and this has been confirmed by the modest activity of chaulmoogric acid against M. leprae in the mouse footpad system (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy L (1975) The activity of chaulmoogric acids against Mycobacterium leprae. Am Rev Respir Dis 111:703–705.

    PubMed  CAS  Google Scholar 

  2. Faget GH, Pogge RC, Johansen FA, Dinan JF, Prejean BM, Eccles CG (1943) The promin treatment of leprosy: a progress report. Publ Hlth Rep 58:1729–1741.

    Article  CAS  Google Scholar 

  3. Faget GH, Johansen FA, Ross H (1942) Sulfanilamide in the treatment of leprosy. Publ Hlth Rep 57:1982–1999.

    Google Scholar 

  4. Cochrane RG, Ramanujam K, Paul H, Russell D (1949) Two-and-a-half years’ experimental work on the sulfone group of drugs. Leprosy Rev 20:4–64.

    Google Scholar 

  5. Lowe J (1950) Treatment of leprosy with diamino-diphenyl sulfone by mouth. Lancet i:145–150.

    Article  Google Scholar 

  6. Browne SG, Hogerzeil LM (1962) ‘B3663’ in the treatment of leprosy: preliminary report of a pilot trial. Leprosy Rev 33:6–10.

    PubMed  CAS  Google Scholar 

  7. Levy L, Shepard CC, Fasal P (1976) The bactericidal effect of rifampicin on M. leprae in man: a) single doses of 600, 900 and 1200 mg; and b) daily doses of 300 mg. Int J Leprosy 44:183–187.

    CAS  Google Scholar 

  8. Waters MFR, Rees RJW, Pearson JMH, Laing ABG, Helmy HS, Gelber RH (1978) Rifampicin for lepromatous leprosy: nine years’ experience. Br Med J i:133–136.

    Article  Google Scholar 

  9. Pattyn SR, Colston MJ (1978) Cross-resistance amongst thiambutosine, thiacetazone, ethionamide and prothionamide with Mycobacterium leprae. Leprosy Rev. 49:324–326.

    PubMed  CAS  Google Scholar 

  10. Shepard CC (1960) The experimental disease that follows the injection of human leprosy bacilli into footpads of mice. J Exp Med 112:445–454.

    Article  PubMed  CAS  Google Scholar 

  11. World Health Organization (1977) WHO Expert Committee on Leprosy. Fifth Report. Geneva: World Health Organization.

    Google Scholar 

  12. Ji B (1985) Drug resistance in leprosy-a review. Leprosy Rev 56:265–278.

    PubMed  CAS  Google Scholar 

  13. Shepard CC, Rees RJW, Levy L, Pattyn SR, Ji B, Cruz EC (1986) Susceptibility of strains of Mycobacterium leprae isolated prior to 1977 from patients with previously untreated lepromatous leprosy. Int J Leprosy 54:11–15.

    CAS  Google Scholar 

  14. Grosset JH, Guelpa-Lauras CC, Bobin P, Brucker G, Cartel JL, Constant-Desportes M, Flaguel B, Frédéric M, Guillaume JC, Millan J (1989) Study of 39 documented relapses of multibacillary leprosy after treatment with rifampicin. Int J Leprosy 57:607–614.

    CAS  Google Scholar 

  15. WHO Study Group (1982) Chemotherapy of Leprosy for Control Programmes. Geneva: World Health Organization.

    Google Scholar 

  16. World Health Organization (1988) WHO Expert Committee on Leprosy. Sixth Report. Geneva: World Health Organization.

    Google Scholar 

  17. Shepard CC (1981) A brief review of experiences with short-term clinical trials monitored by mouse foot pad inoculation. Leprosy Rev 52:299–308.

    PubMed  CAS  Google Scholar 

  18. Pieters FAJM, Zuidema J (1987) The absolute oral bioavailability of dapsone in dogs and humans. Int J Clin Pharmacol Therap Toxicol 25:396–400.

    CAS  Google Scholar 

  19. Aquinas M, Allan WGL, Horsfall PAL, Jenkins PK, Hung-Yan W, Girling D, Tall R, Fox W (1972) Adverse reactions to daily and intermittent rifampicin regimens for pulmonary tuberculosis in Hong Kong. Br Med J 1:765–771.

    Article  PubMed  CAS  Google Scholar 

  20. Jamet P, Traore I, Husser JA, Ji B (1992) Short-term trial of clofazimine in previously untreated lepromatous leprosy. Int J Leprosy 60:542–548.

    CAS  Google Scholar 

  21. Levy L (1974) Pharmacologic studies of clofazimine. Am J Trop Med Hyg 23:1097–1109.

    PubMed  CAS  Google Scholar 

  22. Cartel JL, Millan J, Guelpa-Lauras CC, Grosset JH (1983) Hepatitis in leprosy patients treated with a daily combination of dapsone, rifampin and a thioamide. Int J Leprosy 51:461–465.

    CAS  Google Scholar 

  23. Ji B, Chen J, Wang C, Xia G (1984) Hepatotoxicity of combined therapy with rifampicin and daily prothionamide for leprosy. Leprosy Rev 55:283–289.

    PubMed  CAS  Google Scholar 

  24. Pattyn SR, Janssens L, Bourland J, Saylan T, Davies EM, Grillone S, Feracci C (1984) Hepatotoxicity of the combination of rifampin-ethionamide in the treatment of multibacillary leprosy. Int J Leprosy 52:1–6.

    CAS  Google Scholar 

  25. Cartel JL, Naudillon Y, Artus J, Grosset J (1985) Hepatotoxicity of the daily combination of 5 mg/kg prothionamide + 10 mg/kg rifampin. Int J Leprosy 53:15–18.

    CAS  Google Scholar 

  26. Ridley DS, Jopling WH (1962) A classification of leprosy for research purposes. Leprosy Rev 33:119–128.

    PubMed  CAS  Google Scholar 

  27. WHO Study Group (1994) Chemotherapy of Leprosy. Geneva: World Health Organization.

    Google Scholar 

  28. World Health Organization (1994) Progress towards eliminating leprosy as a public health problem. WHO Wkly Epidem Rec vol. 69, (20) 145–151, 153–157.

    Google Scholar 

  29. Jesudassan K, Vijayakumaran P, Pannikar VK, Christian M (1988) Impact of MDT on leprosy as measured by selective indicators. Leprosy Rev 59:215–223.

    Google Scholar 

  30. World Health Organization Leprosy Unit (1994) Risk of relapse in leprosy. WHO/ CTD/LEP/94.1.

    Google Scholar 

  31. Collaborative Effort of the U.S. Leprosy Panel (U.S.-Japan Cooperative Medical Science Programme) and the Leonard Wood Memorial (1975) Rifampin therapy of lepromatous leprosy. Am J Trop Med Hyg 24:475–484.

    Google Scholar 

  32. Gelber RH, Levy L (1987) Detection of persisting Mycobacterium leprae by inoculation of the neonatally thymectomized rat. Int J Leprosy 55:872–878.

    CAS  Google Scholar 

  33. Husser JA, Traore I, Daumerie D (1994) Activity of two doses of rifampin against Mycobacterium leprae. Int J Leprosy 62:359–364.

    CAS  Google Scholar 

  34. Ellard GA, Pannikar VK, Jesudassan K, Christian M (1988) Clofazimine and dapsone compliance in leprosy. Leprosy Rev 59:205–223.

    PubMed  CAS  Google Scholar 

  35. Ji B, Perani EG, Petinon C, Grosset JH (1992) Bactericidal activities of single and multiple doses of various combinations of new antileprosy drugs and/or rifampin against M. leprae in mice. Int J Leprosy 60:556–561.

    CAS  Google Scholar 

  36. Xiong JH, Ji B, Perani EG, Petinon C, Grosset JH (1994) Further study of the effectiveness of single doses of clarithromycin and minocycline against Mycobacterium leprae in mice. Int J Leprosy 62:37–42.

    CAS  Google Scholar 

  37. Kirchheimer WF, Storrs EE (1971) Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. Int J Leprosy 39:693–702.

    CAS  Google Scholar 

  38. Report of 5th Meeting of the Scientific Working Group of IMMLEP. Annex 4. TDR/ IMMLEP-SWG(5)/80–3.

    Google Scholar 

  39. Wheelar PR (1984) Metabolism in Mycobacterium leprae: its relation to other research on M. leprae and to aspects of metabolism in other mycobacteria and intracellular parasites. Int J Leprosy 52:208–230.

    Google Scholar 

  40. Wheelar PR (1986) Metabolism in Mycobacterium leprae: possible targets for drug action. Leprosy Rev 57(Suppl 3):171–181.

    Google Scholar 

  41. Draper P (1982) The anatomy of M. leprae. In: Ratledge C, Stanford JL, eds. The Biology of Mycobacteria, Vol. 1, pp. 9–52. London: Academic Press.

    Google Scholar 

  42. Draper P (1984) Wall biosynthesis: a possible site of action for new antimycobacterial drugs. Int J Leprosy 52:527–532.

    CAS  Google Scholar 

  43. Guelpa-Lauras CC, Perani EG, Giroir AM, Grosset JH (1987) Activities of pefloxacin and ciprofloxacin against Mycobacterium leprae in the mouse. Int J Leprosy 55:70–77.

    CAS  Google Scholar 

  44. N’Deli L, Guelpa-Lauras CC, Perani EG, Grosset JH (1990) Effectiveness of pefloxacin in the treatment of lepromatous leprosy. Int J Leprosy 58:12–18.

    Google Scholar 

  45. Grosset JH, Guelpa-Lauras CC, Perani EG, Beoletto C (1988) Activity of ofloxacin against Mycobacterium leprae in the mouse. Int J Leprosy 56:259–264.

    CAS  Google Scholar 

  46. Grosset JH, Ji B, Guelpa-Lauras CC, Perani EG, N’Deli L (1990) Clinical trial of pefloxacin and ofloxacin in the treatment of lepromatous leprosy. Int J Leprosy 58:281–295.

    CAS  Google Scholar 

  47. Tsutsumi S, Gidoh M (1989) Studies on the development of novel chemotherapeutics using nude mice with special reference to a new quinolone carboxylic acid, AT-4140. Japan Leprosy 58:250–257.

    Article  CAS  Google Scholar 

  48. Franzblau SG, Parrilla MLR, Chan GP (1993) Sparfloxacin is more bactericidal than ofloxacin against Mycobacterium leprae in mice. Int J Leprosy 61:66–69.

    CAS  Google Scholar 

  49. Chan GP, Garcia-Ignacio BY, Chavez VE, Livelo JB, Jimenez CL, Parrilla MLR, Franzblau SG (1994) Clinical trial of sparfloxacin for lepromatous leprosy. Antimicrob Agents Chemother 38:61–65.

    Article  PubMed  CAS  Google Scholar 

  50. Gelber RH (1987) Activity of minocycline in Mycobacterium leprae-infected mice. J Infect Dis 186:236–239.

    Article  Google Scholar 

  51. Gelber RH, Fukuda K, Byrd S, Murray LP, Siu P, Tsang M, Rea TH (1992) A clinical trial of minocycline in lepromatous leprosy. Br Med J 304:91–92.

    Article  CAS  Google Scholar 

  52. Ji B, Perani EG, Grosset JH (1991) Effectiveness of clarithromycin and minocycline along or in combination against experimental Mycobacterium leprae infection in mice. Antimicrob Agents Chemother 35:579–581.

    Article  PubMed  CAS  Google Scholar 

  53. Ji B, Jamet P, Perani EG, Bobin P, Grosset JH (1993) Powerful bactericidal activities of clarithromycin and minocycline against Mycobacterium leprae in lepromatous leprosy. J Infect Dis 168:188–190.

    Article  PubMed  CAS  Google Scholar 

  54. Franzblau SG, Hastings RC (1988) In vitro and in vivo activities of macrolides against Mycobacterium leprae. Antimicrob Agents Chemother 32:1758–1762.

    Article  PubMed  CAS  Google Scholar 

  55. Shepard CC, Chang YT (1962) Effect of several anti-leprosy drugs on multiplication of human leprosy bacilli in foot pads of mice. Proc Soc Exp Biol Med 109:636–638.

    PubMed  CAS  Google Scholar 

  56. Shepard CC (1967) A kinetic method for the study of activity of drugs against Mycobacterium leprae in mice. Int J Leprosy 35:429–435.

    Google Scholar 

  57. Shepard CC (1969) Further experience with the kinetic method for the study of activity of drugs against Mycobacterium leprae in mice. Activities of DDS, DFD, ethionamide, capreomycin and PAM 1392. Int J Leprosy 37:389–397.

    CAS  Google Scholar 

  58. Colston MJ, Hilson GRF, Banerjee DK (1978) The ‘proportional bactericidal test’ , a method for assessing bactericidal activity of drugs against Mycobacterium leprae in mice. Leprosy Rev 49:7–15.

    PubMed  CAS  Google Scholar 

  59. Shepard CC, van Landingham RM, Walker LL (1971) Recent studies of antileprosy drugs. Leprosy Rev 39:340–349.

    CAS  Google Scholar 

  60. Halvorson HO, Ziegler NR (1933) Application of statistics to problems in bacteriology. I. A means of determining bacterial population by the dilution method. J Bact 25:101–121.

    PubMed  CAS  Google Scholar 

  61. Taylor J (1933) The estimation of numbers of bacteria by ten-fold dilution series. J Appl Bact 25:54–68.

    Article  Google Scholar 

  62. Shepard CC (1982) Statistical analysis of results obtained by two methods for testing drug activity against Mycobacterium leprae. Int J Leprosy 50:96–101.

    CAS  Google Scholar 

  63. Ramasesh N, Krahenbuhl JL, Hastings RC (1989) In vitro effects of antimicrobial agents on Mycobacterium leprae in mouse peritoneal macrophages. Antimicrob Agents Chemother 3 3: 657–662.

    Article  Google Scholar 

  64. Ji B, Grosset JH (1990) Recent advances in the chemotherapy of leprosy. Leprosy Rev 61:313–329.

    PubMed  CAS  Google Scholar 

  65. Franzblau SG, Biswas AN, Jenner P, Colston MJ (1992) Double-blind evaluation of BACTEC and Buddemeyer-type radiorespirometric assays for in vitro screening of antileprosy agents. Leprosy Rev 63:125–133.

    PubMed  CAS  Google Scholar 

  66. Franzblau SG, White KE (1990) Comparative in vitro activities of 20 fluoroquinolones against Mycobacterium leprae. Antimicrob Agents Chemother 34:229–231.

    Article  PubMed  CAS  Google Scholar 

  67. Saito H, Tomioka H, Nagashima K (1986) In vitro and in vivo activities of ofloxacin against Mycobacterium leprae infection induced in mice. Int J Leprosy 54:560–562.

    CAS  Google Scholar 

  68. Pattyn SR (1987) Activity of ofloxacin and pefloxacin against Mycobacterium leprae in mice. Antimicrob Agents Chemother 31:671–672.

    Article  PubMed  CAS  Google Scholar 

  69. Banerjee DK, McDermott-Lancaster RD (1992) An experimental study to evaluate the bactericidal activity of ofloxacin against an established Mycobacterium leprae infection. Int J Leprosy 60:410–415.

    CAS  Google Scholar 

  70. Ji B, Perani EG, Petinom C, N’Deli L, Grosset JH (1994) Clinical trial of ofloxacin alone and in combination with dapsone plus clofazimine for treatment of lepromatous leprosy. Antimicrob Agents Chemother 38:662–667.

    Article  PubMed  CAS  Google Scholar 

  71. Gelber RH (1986) The use of rodent models in assessing antimicrobial activity against Mycobacterium leprae. Leprosy Rev 57(Suppl 3):137–148.

    PubMed  Google Scholar 

  72. Franzblau SG (1988) Oxidation of palmitic acid by Mycobacterium leprae in an axenic medium. J Clin Microbiol 26:18–21.

    PubMed  CAS  Google Scholar 

  73. Chan GP, Garcia-Ignacio BY, Chavez VE, Livelo JB, Jimenez CL, Parrilla MLR, Franzblau SG (1994) Clinical trial of clarithromycin for lepromatous leprosy. Antimicrob Agents Chemother 38:515–517.

    Article  PubMed  CAS  Google Scholar 

  74. Franzblau SG, O’Sullivan JF (1988) Structure-activity relationships of selected phenazines against Mycobacterium leprae in vitro. Antimicrob Agents Chemother 32:1583–1585.

    Article  PubMed  CAS  Google Scholar 

  75. Franzblau SG, White KE, O’Sullivan JF (1989) Structure-activity relationships of tetramethylpiperidine-substituted phenazines against Mycobacterium leprae in vitro. Antimicrob Agents Chemother 3 3: 2004–2005 .

    Article  Google Scholar 

  76. Van Landingham RM, Walker LL, O’Sullivan JF, Shinnick TM (1993) Activity of phenazine analogs against Mycobacterium leprae infections in mice. Int J Leprosy 61:406–414.

    Google Scholar 

  77. Hastings RC, Jacobson RR (1983) Activity of ansamycin against Mycobacterium leprae. Lancet 2:1079–1080.

    Article  PubMed  CAS  Google Scholar 

  78. Hastings RC, Richard VR, Jacobson RR (1984) Ansamycin activity against rifamycin-resistant Mycobacterium leprae. Lancet 1:1130.

    Article  PubMed  CAS  Google Scholar 

  79. Pattyn SR, Saerens EJ (1977) Activity of three new rifamycin derivatives on the experimental infection by Mycobacterium leprae. Ann Soc Belg Med Trop 57:169–173.

    PubMed  CAS  Google Scholar 

  80. Pattyn SR (1987) Rifabutin and rifapentine compared with rifampin against Mycobacterium leprae in mice. Antimicrob Agents Chemother 31:134.

    Article  PubMed  CAS  Google Scholar 

  81. Ji B, Chen J, Lu X, Wang S, Ni G, Hou Y, Zhou D, Tang Q (1986) Antimycobacterial activities of two newer ansamycins: R-76–1 and DL 473. Int J Leprosy 54:563–577.

    CAS  Google Scholar 

  82. Tomioka H, Saito H (1993) In vivo antileprosy activity of the newly synthesized benzoxazinorifamycin, KRM-1648. Int J Leprosy 61:255–258.

    CAS  Google Scholar 

  83. Saito H, Tomioka H, Sato K, Dekio S (1994) Therapeutic efficacy of benzoxazinorifamycin, KRM-1648, in combination with other antimicrobials against Mycobacterium leprae infection induced in nude mice. Int J Leprosy 62:43–47.

    CAS  Google Scholar 

  84. Franzblau SG, Biswas AN, Harris EB (1992) Fusidic acid is highly active against extracellular and intracellular Mycobacterium leprae. Antimicrob Agents Chemother 36:92–94.

    Article  PubMed  CAS  Google Scholar 

  85. Franzblau SG, Chan GP, Garcia-Ignacio BG, Chavez V, Livelo JB, Jimenez CL, Williams DL, Gillis TP (1994) Clinical trial of fusidic acid for lepromatous leprosy. Antimicrob Agents Chemother 3 8:1651–1654.

    Article  Google Scholar 

  86. Levy L (1987) Application of the mouse foot-pad techniques in immunologically normal mice in support of clinical drug trials, and a review of earlier clinical drug trials in lepromatous leprosy. Int J Leprosy 55:823–829.

    CAS  Google Scholar 

  87. Rees RJW (1966) Enhanced susceptibility of thymectomized and irradiated mice to infection with Mycobacterium leprae. Nature 211:657–658.

    Article  PubMed  CAS  Google Scholar 

  88. Fieldsteel AH, Levy L (1976) Neonatally thymectomized Lewis rats infected with Mycobacterium leprae: response to primary infection, secondary challenge and large inocula. Infect Immun 14:736–741.

    PubMed  CAS  Google Scholar 

  89. Colston MJ, Hilson GRF (1976) Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature 262:399–401.

    Article  PubMed  CAS  Google Scholar 

  90. Kohsaka K, Mori T, Ito T (1976) Lepromatoid lesion developed in the nude mouse inoculated with Mycobacterium leprae. La Lepro 45:177–187.

    PubMed  CAS  Google Scholar 

  91. MeCermott-Lancaster RD, Ito T, Kohsaka K, Guelpa-Lauras CC, Grosset JH (1987) Multiplication of Mycobacterium leprae in the nude mice, and some applications of nude mice to experimental leprosy. Int J Leprosy 55:889–895.

    Google Scholar 

  92. Marchoux Chemotherapy Study Group (1992) Relapses in multibacillary leprosy patients after stopping treatment with rifampin-containing combined regimens. Int J Leprosy 60:525–535.

    Google Scholar 

  93. Jamet P, Ji B (1994) Relapse after long-term follow-up of multibacillary patients treated by W.H.O. multidrug regimen. Int J Leprosy 62:662.

    Google Scholar 

  94. Waters MFR, Rees RJW (1962) Changes in the morphology of Mycobacterium leprae in patients under treatment. Int J Leprosy 30:266–277.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ji, B. (1998). Treatment of Leprosy. In: Gangadharam, P.R.J., Jenkins, P.A. (eds) Mycobacteria. Chapman & Hall Medical Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7511-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7511-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7513-9

  • Online ISBN: 978-1-4615-7511-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics