Skip to main content

New Drugs and Strategies for Chemotherapy of Tuberculosis

  • Chapter
Mycobacteria

Part of the book series: Chapman & Hall Medical Microbiology Series ((CHMMS))

Abstract

Until the middle of this century, tuberculosis had been a serious and often lifethreatening disease. Starting from the late forties, following the introduction of specific drugs, the disease has been brought rapidly to a stage of a curable one. Even though some epidemiologists attribute this rapid success to the uplift of economic situation and improvement of living conditions in some affluent countries, by and large, availability of several powerful drugs and, more importantly, the evolution of optimal regimens and proper application of specific antituberculosis chemotherapy with these drugs should be given credit for this success. It should be stressed that all these drugs had been brought to clinical use by major inputs by the pharmaceutical industry by extensive investigations to develop the initial discovery from their own laboratories or by academic institutions. As discussed later, this sort of fortunate situation is not existing now!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloch AB, Rieder HL, Kelly GD, Canthan GM, Hayden CW, Snider DE (1989) The epidemiology of tuberculosis in the United States. Semin Respir Inform Infec. 4:159.

    Google Scholar 

  2. Infection Expanded Tuberculosis Surveillance and Tuberculosis Morbidity—United States. (1993) Morbid Mortal Wkly Rep 43:361.

    Google Scholar 

  3. Bates J (1995) Tuberculosis chemotherapy. Am J Respir Crit Care Med 151:942.

    PubMed  CAS  Google Scholar 

  4. Raghunath Rao U, Srinivas Rao S, Natarajan S, Venkataraman PR (1946) Inhibition of Mycobacterium tuberculosis by garlic extract. Nature 157:441.

    Article  PubMed  CAS  Google Scholar 

  5. Deshpande RG, Khan MB, Bhat DA, Navalkar RG (1993) Inhibition of Mycobacterium avium complex isolates from AIDS patients by garlic (allium sativum). J. Antimicrob Chemother 32:623.

    Article  PubMed  CAS  Google Scholar 

  6. Baker WR, Mitscher LA, Feng B, Cai S, Clark M, Leung T, Towell JA, Derwish I, Stover K, Kreiswirth B, Moghazeh S, Henriquez T, Resconi A, Arain T (1995) Part II. Antitubercular agents from plants: antimicrobial activity of azaindoquinazolinidiones. Novel alkaloids active against sensitive and multidrug resistant tuberculosis. Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 116.

    Google Scholar 

  7. Berlin OGW, Young LS, Brucner CA (1987) In vitro activity of six fluorinated quinolones against Mycobacterium tuberculosis. J Antimicrob Chemother 19:611.

    Article  PubMed  CAS  Google Scholar 

  8. Ji B, Truffot-Pernot C, Grosset J (1991) In vitro and in vivo activities of sparfloxacin (AT04140) against Mycobacterium tuberculosis. Tubercle 72:181.

    Article  PubMed  CAS  Google Scholar 

  9. Skinner PS, Furney SK, Kleinert DA, Orme IM (1995) Comparison of activities of fluoroquinolones in murine macrophages infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 39:750.

    Article  PubMed  CAS  Google Scholar 

  10. Tsukumura M (1985) Antituberculosis activity of ofloxacin (DL8280) on experimental tuberculosis in mice. Am Rev Respir Dis 915:144.

    Google Scholar 

  11. Sanders CC, Sanders WE, Goering RV (1987) Overview of preclinical studies with ciprofloxacin. Am J Med 82(Suppl 4A):2.

    PubMed  CAS  Google Scholar 

  12. Lalande V, Truffot-Pernot C, Paccaly-Moulin A, Grosset J, Ji B (1993) Powerful bactericidal activity of sparfloxacin (AT4140) against Mycobacterium tuberculosis in mice. Antimicrob Agents Chemother 37:407.

    Article  PubMed  CAS  Google Scholar 

  13. Ji B, Lounis N, Truffot-Pernot C, Grosset J (1995) In vitro and in vivo activities of levofloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 39:1341.

    Article  PubMed  CAS  Google Scholar 

  14. Klemens SP, Sharpe CA, Rogge MC, Cynamon MH (1994) Activity of levofloxacin in a murine model of tuberculosis. Antimicrob Agents Chemother 38:1476.

    Article  PubMed  CAS  Google Scholar 

  15. Jindani A, Aber VR, Edwards EA, Mitchison DA (1980) The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121:939.

    PubMed  CAS  Google Scholar 

  16. Kennedy N, Fox R, Kinyombe M, Aloyce O, Saruni S, Uiso LO, Ramsay AR, Ngowi FI, Gillespie SH (1993) Early bactericidal and sterlizing activities of ciprofloxacinin pulmonary tuberculosis. Am Rev Respir Dis 148:1547.

    Article  PubMed  CAS  Google Scholar 

  17. Tsukumura M, Nakamura E, Yoshii S, Amano H (1985) Therapeutic effect of a new antibacterial substance ofloxacin (DL280) on pulmonary tuberculosis. Am Rev Respir Dis 131:352.

    Google Scholar 

  18. Leysen DC, Haemers A, Pattyn SR (1989) Mycobacteria and the new quinolones, Antimicrob Agents Chemother 33:1.

    Article  PubMed  CAS  Google Scholar 

  19. Klopman G, Li JY, Wang S, Pearson AJ, Chang K, Jacobs MR, Bajaksouzian S, Ellner JJ (1994) In vitro antimycobacterium avium activities of quinolones: predicted activities structures and mechanistic considerations. Antimicrob Agents Chemother 38:1794.

    Article  PubMed  CAS  Google Scholar 

  20. Luna-Herrera J, Reddy MV, Danneluzzi D, Gangadharam PRJ (1995) Antituberculosis activity of clarithromycin Antimicrob Agents Chemother 39:2692.

    Article  CAS  Google Scholar 

  21. Burchard GD, Mirelman D (1988) Entamoeba hystolica: virulance potential and susceptibility to metronidazole. Exp Parasitol 66:231.

    Article  PubMed  CAS  Google Scholar 

  22. Wayne LG, Sramek HA (1994) Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Ag Chemother, 38:2054.

    Article  CAS  Google Scholar 

  23. Kilburn J, Glickman S, Brickner SM, Manninen P, Ulanowicz D, Lovatz K, Zurenko C (1994) In vitro antimycobacterial activity of novel multicyclic, fused ring oxazolidinones In: Programs & Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society of Microbiology.

    Google Scholar 

  24. Ashtekar DR, Costa-Periera R, Srinivasan T, Ivyer R, Vishwanathan N, Rittel W (1991) Oxazolidinones, a new class of synthetic antituberculosis. Agent Diagn Microbiol Infect Dis 14:465.

    Article  CAS  Google Scholar 

  25. Cornforth JW, Hart P, Rees R, Stock J (1951) Antituberculosis effect of certain surface active polyoxyethlene ethers in mice. Nature 168:150.

    Article  PubMed  CAS  Google Scholar 

  26. Cornforth JW, Hart P, D’Arcy Hart P, Nicholls GA, Rees RJW, Stock JA (1955) Antituberculous effects of certain surface active polyoxyethylene ethers. Br J Pharmacol 10:73.

    CAS  Google Scholar 

  27. Chinnaswamy J, Allaudeen HS, Hunter RL (1995) Activities of polaxmer CRL8131 against Mycobacterium tuberculosis in vitro and in vivo. Antimicrob Agents Chemother 39:1349.

    Article  Google Scholar 

  28. Barry VC, Belton JG, Conalty ML, Denneny JM, Edward DW, O’Sullivan JF, Twomey D, Winder F (1957) A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature 179:1013.

    Article  PubMed  CAS  Google Scholar 

  29. Barry VC, Conalty ML (1965) B663 in the treatment of leprosy: Lepr Rev 36:3–7.

    PubMed  CAS  Google Scholar 

  30. Gangadharam PRJ, Candler ER (1977) Activity of some antileprosy compounds against Mycobacterium intracellulare in vitro. Am Rev Respir Dis 115:705.

    PubMed  CAS  Google Scholar 

  31. Reddy MV, O’Sullivan JF, Gangadharam PRJ (1996) Riminophenazines (minireview). Antimicrob Agents Chemother 1997 (in press).

    Google Scholar 

  32. Reddy MV, Geeta N, Danelluzi D, O’Sullivan JF, Gangadharam PRJ (1996) Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob Agents Chemother 40:633.

    PubMed  CAS  Google Scholar 

  33. Chinnaswamy J, Reddy MV, Kailasam S, O’Sullivan JF, Gangadharam PRJ (1995) Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis: in vitro, intracellular and in vivo studies. Am Rev Respir Crit Care Med 151:1083.

    Google Scholar 

  34. Kucers A, Bennett NM (1987) Neomycin, framycetin and paromomycin. In: The Use of Antibiotics, 4th Ed., with of R.J. Kemp published Lippincott C, London: Heineman.

    Google Scholar 

  35. Kanyok TP, Reddy MV, Chinnaswamy J, Danziger LH, Gangadharam PRJ (1994) Activity of aminosidine (paramomycin) for Mycobacterium tuberculosis and Mycobacterium avium. J Antimicrob Chemother 33:323.

    Article  CAS  Google Scholar 

  36. Kanyok TP, Reddy MV, Chinnaswamy J, Danziger LH, Gangadharam PRJ (1994) In vivo activity of paramomycin against susceptible and multidrug resistant Mycobacterium tuberculosis and M. avium. Antimicrob Agents Chemother 38:170.

    Article  PubMed  CAS  Google Scholar 

  37. Gangadharam PRJ, Reddy MV (1993) Unpublished observations.

    Google Scholar 

  38. Rastogi N, Moreau B, Capmau ML, Goh KS, David HL (1988) Antibacterial action of amphipathic derivatives of isoniazid against the Mycobacterium avium complex. Zbl Bakt Hyg A268:456.

    CAS  Google Scholar 

  39. Rastogi N, Goh KS (1990) Antibacterial action of 1-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and the enhancement of its activity by m-fluoro-phenylalanine. Antimicrob Agents Chemother 34:2061.

    Article  PubMed  CAS  Google Scholar 

  40. Gaetano G, Giannola LI, Carlish B (1989) Synthesis of polymeric derivatives of isoniazid: characterisation and in vitro release from a water-soluble adduct with polysuccinamide. Chem Pharm Bull 37:1106.

    Article  Google Scholar 

  41. Barry VC (ed) (1964) In: Chemotherapy of Tuberculosis: The Development of the Chemotherapeutic Agent for Tuberculosis, p. 46. London: Buttersworth.

    Google Scholar 

  42. Tsukumura M, Mizuno S, Toyoma H (1986) In vitro antimycobacterial activity of rifapentinine (compared with rifampicin). Kakkaku 63:144.

    Google Scholar 

  43. Asondi A, Batti B, Christina T (1984) Pharmacokinetics of rifapentine, a new long lasting rifamycin in rat, the mouse and the rabbit. J Antibiot 37:1066.

    Article  Google Scholar 

  44. Lee HS, Shin HS, Han SS, Rol JK (1992) High performance liquid chriomatographic determination of rifapentine in serum using column switching. J Chromatogr 574:175.

    Article  PubMed  CAS  Google Scholar 

  45. Wylie GL, Scoging A, Lowrie DB (1986) Uptake and intracellular distribution of rifamycin DL 473 and rifampicin in mouse macrophages. Bull Int Union Against Tuberc 61:11.

    Google Scholar 

  46. Gangadharam PRJ (1988) In: Peterson PK, Verhoef J, eds. Antimycobacterial Drugs. New York: Elsevier Science Publ.

    Google Scholar 

  47. Sanfilippo A, Della Bruna C, Marsili L, Morvillo E, Pasqualucci CR, Schioppacassi G, and Ungheri D (1980) Biological activity of a new class of rifamycins, spiropiperdyl-rifamycins. J Antibiot 33:1193.

    Article  PubMed  CAS  Google Scholar 

  48. Tsukumura M, Mizuno S, Toyoma H, Ichiyama S (1986) Comparison of in vitro antimycobacterial activities of ansamycin and rifampicin. Kekkakku 61:497.

    Google Scholar 

  49. Perumal VK, Gangadharam PRJ, Heifets LB, Iseman MD (1985) Dynamic aspects of the in vitro chemotherapeutic activity of ansamycin on Mycobacterium intracellulare. Am Rev Respir Dis 132:1278.

    PubMed  CAS  Google Scholar 

  50. Perumal VK, Gangadharam PRJ, Iseman MD (1987) Effect of rifabutin on the phagocytosis and intracellular growth of Mycobacterium intracellulare in mouse resident and activated peritoneal and alveolar macrophages. Am Rev Respir Dis 136:334.

    Article  PubMed  CAS  Google Scholar 

  51. Gangadharam PRJ, Perumal VK, Jairam BT, Rao PN, Nguyen AK, Farhi DC, Iseman MD et al (1987) Activity of rifabutin alone or in combination with clofazimine or ethambutol or both against acute and chronic experimental Mycobacterium intracellulare infections. Am Rev Respir Dis 136:329.

    Article  PubMed  CAS  Google Scholar 

  52. Ji S, Truffot-Perot C, La Croix C, Raviglione MC, O’Brien R, Ofliaro P, Roscigno G, Grosser J (1993) Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 148:1541.

    Article  PubMed  CAS  Google Scholar 

  53. Luna-Herrera J, Reddy MV, Gangadharam PRJ (1995) In-vitro and intracellular activity of rifabutin on drug-susceptible and multidrug resistant (MDR) tubercle bacilli. J Antimicrob Chemother 36:355.

    Article  PubMed  CAS  Google Scholar 

  54. Reddy MV, Luna-Herrera J, Daneluzzi D, Gangadharam PRJ (1996) Chemotherapeutic activity of benzoxirifamycin KRM 1648, against Mycobacterium tuberculosis. Tubercle Lung Dis 77:154.

    Article  CAS  Google Scholar 

  55. O’Brien RJ, Lyle MA, Snider DE (1987) Rifabutin (ansamycin LM427): a new rifamycin-S derivative for the treatment of mycobacterial diseases. Rev Infect Dis 9:519–530.

    Article  PubMed  Google Scholar 

  56. Dautzenberg B, Truffot C, Mignon A, Rozenbaum W, Katlama C, Pronne C, Parroth R, Grosset J (1991) Rifabutin in combination with clofazimine, isoniazid and ethambutol in the treatment of AIDS patients with infections due to opportunistic mycobacteria. Tubercle 72:168.

    Article  PubMed  CAS  Google Scholar 

  57. Della Bruna C, Ungeri D, Sebben G, Sanfillipo A (1985) Laboratory evaluation of a new long acting 3-azinomethylrifamycin FCE22250. J Antibiot 38:779.

    Article  PubMed  Google Scholar 

  58. Vischer WA, Gowrishankar R, Ashteker DR, Costapereira R, Subramanyan D, Kump W, Traxler P (1986) Antitubercular activity in vitro and in vivo of new long acting rifamycin derivatives. Bull Int Union Against Tuberc 61:8–10.

    Google Scholar 

  59. Yamane T, Hashizume T, Yamashita K, Konishi E, Hosoe K, Hidaka T, Watanabe K, Kawaharada H, Yamamoto T, Kuze F (1993) Synthesis and biological activity of 3′ -hydroxy-5′ aminobenzoxazinorifamycin derivatives. Chem Pharm Bull41(1):148.

    Article  PubMed  CAS  Google Scholar 

  60. Tomoika H, Saito H, Sato K, Yamane T, Yamashita K, Hosoe K, Fujii K, Hidaka T (1992) Chemotherapeutic efficacy of newly synthesized benzoxirifamycin KRM1648, against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother 36:387.

    Article  Google Scholar 

  61. Saito H, Tomioka H, Sato K, et al. (1991) In vitro antimicrobial activities of newly synthesised benzoxirifamycins. Antimicrob Agents Chemother 35:542.

    Article  PubMed  CAS  Google Scholar 

  62. Saito H, Tomioka H, Sato K, Kawahara S, Hidaka T, Dekio S (1995) Therapeutic effect of KRM 1648 with various antimicrobials against Mycobacterium avium complex infection in mice. Tuberc Lung Dis 76:51.

    Article  CAS  Google Scholar 

  63. Luna-Herrera J, Reddy MV, Gangadharam PRJ (1995) In vitro activity of benzoxirifamycin KRM 1648 against drug susceptible and multidrug resistant tubercle bacilli. Antimicrob Agents Chemother 39:440.

    Article  PubMed  CAS  Google Scholar 

  64. Bermudez LE, Kolonoski P, Young LS, Inderlied CB (1994) Activity of KRM 1648 alone or in combination with ethambutol or clarithromycin against Mycobacterium avium complex. Antimicrob Agents Chemother 38:1844.

    Article  PubMed  CAS  Google Scholar 

  65. Emori M, Saito H, Sato K, Tomoika H, Setogawa T, Hidaka T (1993) Therapeutic efficacy of the benzoxazinorifamycin KRM-1648 against experimental Mycobacterium avium infection induced in rabbits. Antimicrob Agents Chemother 37:722.

    Article  PubMed  CAS  Google Scholar 

  66. Dimova V, Dobrev P, Kalfin E, Vlasov V (1994) Therapeutic effect of 3/4-cinnamyl1-piperazinyl/iminomethyl rifamycin SV on generalized tuberculosis in guinea pigs. In: Recent Advances in Chemotherapy, Proceedings of the 18th International Congress of Chemotherapy. Washington, DC: American Society for Microbiology.

    Google Scholar 

  67. Dimova V, Stefanova P, Valova N (1994) Pharmacokinetic studies in experimental animals on cinnamyl rifamycin derivative (T9). In: Recent Advances in Chemotherapy, Proceedings of the 18th International Congress of Chemotherapy. Washington, DC: American Society for Microbiology.

    Google Scholar 

  68. Reddy MV, Geeta N, Daneluzzi D, Dimova V, Gangadharam PRJ (1995) Antimycobacterial activity of a new rifamycin derivative, 3-(-4-cinnamylpiperazinyl iminomethyl) rifamycin SV (T9). Antimicrob Agents Chemother 39:2320.

    Article  PubMed  CAS  Google Scholar 

  69. Cynamon MH, Gimi R, Gyenes F, Sharpe CA, Bergmann KE, Han HJ, Gregor LB, Rapolu R, Luciano G, Welch JT (1995) Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity. J Med Chem 38:3902.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto S, Toida I, Watanabe N, Ura T (1995) In vitro antimycobacterial activities of pyrazinamide analogs. Antimicrob Agents Chemother 39:2088.

    Article  PubMed  CAS  Google Scholar 

  71. Konno L, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461.

    PubMed  CAS  Google Scholar 

  72. Kasik JE (1979) Mycobacterial beta-lactamases. In: Hamilton JMT, Smith JT, eds. Beta-lactamases, pp. 339–350. London: Academic Press.

    Google Scholar 

  73. Kasik JE (1965) The nature of mycobacterial penicillinase. Am Rev Respir Dis 91:117–119.

    PubMed  CAS  Google Scholar 

  74. Casal, M (ed) (1986) New in vitro antimicrobial possibilities in the treatment of tuberculosis. In: Mycobacteria of Clinical Interest, p. 155. Amsterdam: Elsevier Science Publishers, B.V.

    Google Scholar 

  75. Cynamon MH, Palmer GS (1983) In vitro activity of amoxicillin in combination with clavulinic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother 24:429.

    Article  PubMed  CAS  Google Scholar 

  76. Casal MJ, Rodriguez FC, Luna MD, Benavente MC (1987) In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum and Mycobacterium chelonae to Ticarcillin in combination with clavulinic acid. Antimicrob Agents Chemother 31:132–133.

    Article  PubMed  CAS  Google Scholar 

  77. Reddy, MV, Luna-Herrera J, Gangadharam PRJ (1995) Unpublished observations.

    Google Scholar 

  78. Nadler JP, Berger J, Nord JA, Cofsky R, Saxena M (1991) Amoxicillin-clavulinc acid for treating drug-resistant Mycobacterium tuberculosis. Chest 99:1025.

    Article  PubMed  CAS  Google Scholar 

  79. Hoffner SE, Svenson SB, Kallenius G (1987) Synergistic effects of antimycobacterial drug combinations on Mycobacterium avium complex determined radiometrically in liquid medium. Eur J Clin Microbiol 6:530.S.

    Article  PubMed  CAS  Google Scholar 

  80. Takayama K, Armstrong EL, Kunugi KA, Kilburn JO (1979) Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother 16:240.

    Article  PubMed  CAS  Google Scholar 

  81. Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33:1493.

    Article  PubMed  CAS  Google Scholar 

  82. Rastogi N, Potar MC, David HL (1987) Intracellular growth of pathogenic mycobacteria in the continuous macrophage cell line J-774: ultrastructure and drug susceptibility studies. Curr Microbiol 16:79.

    Article  CAS  Google Scholar 

  83. Chinnaswamy J, Reddy MV, Gangadharam PRJ (1995) Enhancement of drug susceptibility of multidrug resistant strains of Mycobacterium tuberculosis by ethambutol and dimethylsulfoxide. J Antimicrob Chemother 35:381.

    Article  Google Scholar 

  84. Reddy MV, Gangadharam PRJ. Unpublished.

    Google Scholar 

  85. Jacobs S, Bishel M, Herschler RJ (1964) Dimethylsulfoxide (DMSO): a new concept in pharmacotherapy. Curr Therap Res 66:134.

    Google Scholar 

  86. Szydlowska T, Pawlowska I (1974) In vivo studies on reversion to sensitivity of INH-resistant tubercle bacilli under the influence of dimethylsulfoxide (DMSO). Arch Immunol Therap Exp (Warszawa) 22:559.

    CAS  Google Scholar 

  87. Szydlowska T (1972) Studies on the role of dimethylsulfoxide in resensibilisation of antibiotic resistant bacterial strains. Arch Immunol Therap. Exp (Warezawa) 20:193.

    CAS  Google Scholar 

  88. Muller U, Urbanczik R (1979) Influence of dimethylsulfoxide (DMSO) on restoring sensitivity of mycobacterial strains resistant to chemotherapeutic compounds. J Antimicrob Chemother 5:326.

    Article  PubMed  CAS  Google Scholar 

  89. Wheeler PR, Besra GS, Minnikin DE, Ratledge C (1993) Inhibition of mycolic acid biosynthesis in a cell wall preparation from Mycobacterium smegmatis by methyl 4-(2-octadecylcyclopropen-1-yl) butanoate, a structural analogue of a key precursor. Lett Appl Microbiol 17:33.

    Article  CAS  Google Scholar 

  90. Gangadharam PRJ, Pratt PF, Damle PB, Porter TR, Folkers K (1978) Inhibition of Mycobacterium intracellure by some vitamin K and ubiquinone analogues. Am Rev Respir Dis 118:467.

    PubMed  CAS  Google Scholar 

  91. Gangadharam PRJ (1994) The antimycobacterial activity of gangamicin, a potential drug. In: Global Congress on Lung Health 28th World Conference of IUATLD.

    Google Scholar 

  92. Falah AMS, Bhatnagar R, Bhatnager N, Singh Y, Sidhu GS, Murthy PS, et al. (1988) On the presence of calmodulin like protein in mycobacteria. FEMS Microbiol Lett 56:89.

    Article  CAS  Google Scholar 

  93. Ratnaker P, Murthy PS (1992) Antitubercular activity of trifluoperazine, a calmodulin antagonist. FEMS Microbiol Lett 76:73.

    Article  Google Scholar 

  94. Reddy MV, Geeta N, Gangadharam PRJ (1996) In vitro and intracellulare antimycobacterial activity of trifluoperazine. J Antimicrob Chemother 37:196.

    Article  PubMed  CAS  Google Scholar 

  95. Baselt RC, Cravey RH (1989) Disposition of Toxic Drugs and Chemicals in man. Chicago, IL: Year Book Publishers Inc.

    Google Scholar 

  96. Ganapathi R, Kuo T, Teeter L, Grabowski D, Ford J (1991) Relationship between expression of p-glycoprotein and efficacy of trifluoperazine in multidrug resistant cells. Molec Pharmacol 39:1.

    CAS  Google Scholar 

  97. Gollapudi S, Reddy MV, Gangadharam PRJ, Tsuruo T, Gupta S (1994) Mycobacterium tuberculosis induces expression of p-glycoprotein in pro-monocytic U1 cells chronically infected with HIV type, 1. Biochem Biophys Res Commun 199:1181.

    Google Scholar 

  98. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591.

    Article  PubMed  CAS  Google Scholar 

  99. Banerjee A, Dubnau E, Qumard A, Balasubramanian V, Um KS, Wilson T, de Lisle G, Jacobs WR (1994) inha, a gene encoding a target for isoniazid and ethionamide resistance in Mycobacterium tuberculosis Science 263:227.

    Article  PubMed  CAS  Google Scholar 

  100. Williams DL, Waguespack C, Eisenach K, Crawford JT, Portaels F, Salfinger M, Nolan CM, Abe C, Sticht-Groh V, Gillis TP (1994) Characterisation of rifampin resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 38:2380.

    Article  PubMed  CAS  Google Scholar 

  101. Honroe’ N, Cole ST (1994) Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother 3 8: 23 8.

    Google Scholar 

  102. Takiff H, Salazar C, Phillip W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38:773.

    Article  PubMed  CAS  Google Scholar 

  103. Peloquin CA, Macphee AA, Berning SE (1993) Malabsorption of mycobacterial medications. N Engl J Med 329:1122.

    Article  PubMed  CAS  Google Scholar 

  104. Rao KVN, Mitchison DA, Nair NGK, Prema K, Tripathy SP (1970) Sulphadimidine acetylation test for classification of patients as slow or rapid inactivators of isoniazid. Br Med J 3:495.

    Article  PubMed  CAS  Google Scholar 

  105. Gangadharam PRJ, Bautista EM (1972) Competitive acetylation between sulfamethazine and isoniazid in slow and rapid inactivators of isoniazid. In: Proceedings of Fifth International Congress on Pharmacology.

    Google Scholar 

  106. Ellard GA, Gammon PT, Lakshminarayan S, Fox W, Aber VR, Mitchison DA, Citron KM, Tall R (1972) Pharmacology of some slow release preparations of isoniazid of potential use in intermittent treatment of tuberculosis. Lancet 3 40.

    Google Scholar 

  107. Düzgunes N, Perumal VK, Debs RJ, Gangadharam PRJ (1988) Enhanced effect of liposome-encapsulated amikacin on Mycobacterium avium-intracellulare complex infection in biege mice. Antimicrob Agents Chemother 32:1404.

    Article  PubMed  Google Scholar 

  108. Kesavalu L, Goldstein JA, Debs RJ, Düzgunes N, Gangadharam PRJ (1990) Differential effects of free and liposome encapsulated amikacin on the survival of Mycobacterium avium complex in mouse peritoneal macrophages. Tuberc Lung Dis 71:215–218.

    CAS  Google Scholar 

  109. Düzgunes N, Ashtekar DR, Flasher DL, Ghori N, Debs RJ, Friend DS, Gangadharam PRJ (1991) Treatment of Mycobacterium avium-intracellulare complex infection in beige mice with free and liposome encapsulated streptomycin. Role of liposome type and duration of treatment. J Infect Dis 164:143.

    Article  PubMed  Google Scholar 

  110. Gangadharam PRJ, Ashtekar DR, Ghori N, Goldstein JA, Debs RJ, Düzgunes N (1991) Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother 28:425.

    Article  PubMed  CAS  Google Scholar 

  111. Ostro MJ (1992) Drug delivery via liposomes. Drug Therap vol. 22(4):61.

    Google Scholar 

  112. Allen TM (1989) Stealth TM liposomes: avoiding reticuloendothelial uptake. In: Liposomes in the Therapy of Infectious Diseases and Cancer, p. 405, New York: Alan R. Liss, Inc.

    Google Scholar 

  113. Irma AJM, Woudenberg B, Lokerse AF, Marian T, ten Kate, Storm G (1992) Enhanced localisation of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta 1138:318.

    Article  Google Scholar 

  114. Evans L, Spelman M (1983) The problem of non-compliance with drug therapy. Drugs 25:63.

    Article  PubMed  CAS  Google Scholar 

  115. Fox W (1962) Self administration of medicaments Bull Int Union Against Tuberc 32:307–331.

    CAS  Google Scholar 

  116. Fox W (1983) Compliance of patients and physicians; experience and lessons from tuberculosis. Br Med J 287:33.

    Article  CAS  Google Scholar 

  117. Sumartojo E (1993) When tuberculosis treatment fails. A social behaviour account of patient’s adherence. Am Rev Respir Dis 147:1311–1320.

    PubMed  CAS  Google Scholar 

  118. Tuberculosis Chemotherapy Center, Madras (1964) A controlled comparison of intermittent (twice-weekly) isoniazid plus streptomycin and daily isoniazid plus PAS in the domiciliary treatment of pulmonary tuberculosis. Bull WHO 31:247.

    Google Scholar 

  119. Sbarbaro JA, Johnson S (1968) Tuberculosis chemotherapy of recalcitrant outpatients administered directly twice-weekly. Am Rev Respir Dis 97:895.

    Google Scholar 

  120. World Health Organization Collaborating Center for Tuberculosis Chemotherapy, Prague (1971) A comparative study of daily and twice-weekly combination regimens of tuberculosis chemotherapy, including a comparison of two durations of sanatorium treatment. 1. First report: the results of 12 weeks. Bull WHO 45:573.

    Google Scholar 

  121. Pamra SP (1980) Problems of tuberculosis in developing countries. In: Stead WW, Dutt AK, eds., p. 265. Clinics in Chest Medicine. W.B. Saunders Co.

    Google Scholar 

  122. Tuberculosis Chemotherapy Center, Madras (1970) A controlled comparison of a twice-weekly and three once-weekly regimens in the initial treatment of pulmonary tuberculosis. Bull WHO 43:143.

    Google Scholar 

  123. Frieden TR, Fujiwara PL, Washko RM (1995) Tuberculosis in New York City-turning the tide. N Engl J Med 333:229.

    Article  PubMed  CAS  Google Scholar 

  124. Weis SE, Slocum PC, Blais FX, King B, Num M, Malney GB, Gomez E, Foresman BK (1994) The effect of directly observed therapy on the rates of drug resistance and relapse in tuberculosis. N Engl J Med 330:1179.

    Article  PubMed  CAS  Google Scholar 

  125. Iseman MD, Cohn DL, Sbarbaro JA (1993) Directly observed treatment of tuberculosis: we can’t afford not to try it (editorial). N Engl J Med 328(8):576.

    Article  PubMed  CAS  Google Scholar 

  126. Gangadharam PRJ (1994) Chemotherapy of tuberculosis under program conditions, with special relevance to India (editorial). Tuberc Lung Dis 75:241.

    Article  CAS  Google Scholar 

  127. Olle-Goig JE (1995) Noncompliance with tuberculosis treatment: patients and physicians. Tubercle 76:277.

    CAS  Google Scholar 

  128. Gangadharam PRJ, Ashtekar DR, Farhi DC, Wise DL (1991) Sustained release of isoniazid in vivo from a single implant of a biodegradable polymer. Tubercle 72:115.

    Article  PubMed  CAS  Google Scholar 

  129. Kailasam S, Daneluzzi D, Gangadharam PRJ (1994) Bio-availability of rifampin after a single implant of a biodegradable polymer. Poster presented at the 93rd ASM General Meeting.

    Google Scholar 

  130. Kailasam S, Daneluzzi D, Reddy MV, Gangadharam PRJ (1994) Bioavailability and chemotherapeutic activity against experimental tuberculosis of streptomycin in mice after a single subcutaneous biodegradable polymer implant. Poster presented at the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC).

    Google Scholar 

  131. Gangadharam PRJ, Kailasam S (1993) Sustained release of pyrazinamide in mice from a single implant of a biodegradable polymer. Poster presented at the 8th International Congress of Chemotherapy.

    Google Scholar 

  132. Conalty ML (1964) Methods of preclinical evaluation of antituberculosis drugs. In: Barry VC, ed. Chemotherapy of Tuberculosis, p. 150. London: Butterworths.

    Google Scholar 

  133. Kailasam S, Daneluzzi D, Gangadharam PRJ (1994) Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tuberc Lung Dis 75:361.

    Article  CAS  Google Scholar 

  134. Gangadharam PRJ, Kailasam S, Srinivasan S, Wise DL (1994) Experimental chemotherapy of tuberculosis using single dose treatment with isoniazid in a biodegradable polymer. J Antimicrob Chemother 33:265.

    Article  PubMed  CAS  Google Scholar 

  135. Gangadharam PRJ, Geeta N, Danelluzzi D (1996) Unpublished.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gangadharam, P.R.J. (1998). New Drugs and Strategies for Chemotherapy of Tuberculosis. In: Gangadharam, P.R.J., Jenkins, P.A. (eds) Mycobacteria. Chapman & Hall Medical Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7511-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7511-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7513-9

  • Online ISBN: 978-1-4615-7511-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics