Skip to main content

Specificity of Prohormone Processing

The Promise of Molecular Biology

  • Chapter
  • 43 Accesses

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Cells that use peptides as intercellular messengers employ a biosynthetic strategy that differs substantially from the biosynthesis of other chemical messengers. Most neuropeptides are initially synthesized as larger precursor proteins (prohormones) that are cleaved enzymatically to produce the bioactive peptides. The primary structures of many prohormones have been established in recent years, largely due to the advent of recombinant DNA technique (for review, see Douglas et al., 1984). In many prohormones, two or more bioactive domains will overlap, with a potential proteolytic processing site occurring within the sequence of a bioactive peptide. Differential cleavage of such internal sites can give rise to peptides with marked differences in both potency at a particular receptor and/or selectivity for various receptors, yielding products with substantial differences in biological function. Thus, a fundamental question of neuropeptide biosynthesis concerns the control of the specificity of cleavage of the precursor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnea, A., Cho, G., and Porter, J. C., 1982, Molecular-weight profiles of immunoreactive corticotropin in the hypothalamus of the aging rat, Brain Res. 232: 355–363.

    PubMed  CAS  Google Scholar 

  • Blaschko, H., Comline, R. S., Schneider, F. H., Silver, M., and Smith, A. D., 1967, Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation, Nature (Land.) 215: 58–59.

    CAS  Google Scholar 

  • Blobel, G., and Dobberstein, B., 1975, Transfer of proteins across membranes. I. Presense of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67: 835–851.

    PubMed  CAS  Google Scholar 

  • Bothwell, M. A., Wilson, W. H., and Shooter, E. M., 1979, The relationship between glandular kallikrein and growth factor-processing proteases of mouse submaxillary gland, J. Biol. Chem. 254: 7287–7294.

    PubMed  CAS  Google Scholar 

  • Bradbury, A. F., Finnie, M. D. A., and Smyth, D. B., 1982, Mechanisms of C-terminal amide formation by pituitary enzymes, Nature (Lond.) 298: 686–688.

    CAS  Google Scholar 

  • Casey, R. P., Njus, D., Radda, G. K., and Sehr, P. A., 1977, Active proton uptake by chromaffin granules: Observation by amino distribution and phosphorus-31 nuclear magnetic resonance techniques, Biochemistry 16: 972–977.

    PubMed  CAS  Google Scholar 

  • Chang, T. L., and Loh, Y. P., 1983, Characterization of proopiocortin converting activity in rat anterior pituitary secretory granules, Endocrinology 112: 1832–1838.

    PubMed  CAS  Google Scholar 

  • Chang, T. L., Gainer, H., Russell, J. T., and Loh, Y. P., 1982, Proopiocortin-converting enzyme activity in bovine neurosecretory granules, Endocrinology 111: 1607–1614

    PubMed  CAS  Google Scholar 

  • Cha;.kin c., and Goldstein, e 1981, Specific receptor for the opioid peptide dynorphin: Structure-activity relationships,1 Proc. Natl. Acad. Sci. USA 78:6543–6547.

    Google Scholar 

  • Cohn, D. V., Zangerle, R., Fischer-Colbrie, R., Chu, L-L-H., Elting, J. J., Hamiton, J. W., and Winkler, H., 1982, Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla, Proc. Natl. Acad. Sci. LISA 79: 6056–66059.

    CAS  Google Scholar 

  • Cohn, D. V., Elting, J. J., Frick, M., and Elde, R., 1984, Selective localisation of the parathyroid secretory protein-I/adrenal medulla chromogranin A protein family in a wide variety of endocrine cells of the rat, Endocrinology 114: 1963–1974.

    PubMed  CAS  Google Scholar 

  • Comb, M., Seeburg, P. H., Adelman, J., Eiden, L., and Herbert, E., 1982, Primary structure of the human met-and leu-enkephalin precursor and its mRNA, Nature (Loud.) 295: 663–666.

    CAS  Google Scholar 

  • Comb, M., Rosen, H., Seeburg, P., Adelman, J., and Herbert, E., 1983, Primary structure of the human proenkephalin gene, DNA 2: 213–229.

    PubMed  CAS  Google Scholar 

  • Corbett, A. D., Paterson, S. J., McKnight, A. T., Magnan, J., and Kosterlitz, H. W., 1982, Dynorphin 1–8 and dynorphin 1–9 are ligands for the Kappa-subtype of opiate receptor, Nature (Loud.) 299: 79–81.

    CAS  Google Scholar 

  • Crine, P., Seidah, N. G., Gossard, F., Lis, M., and Chretien, M., 1979, Processing of the two forms of the common precursor for a a-melanotropin and 13-endorphin in the rat pars intermedia, Biol. Cell. 36: 119–125.

    CAS  Google Scholar 

  • Daniels, A. J., Williams, R. J. P., and Wright, P.. E., 1978, The character of the stored molecules in chromaffin granules of the adrenal medulla: A nuclear magnetic resonance study, Neuroscience 3: 573–585.

    PubMed  CAS  Google Scholar 

  • Deakin, J. F. W., Dostrousky, O., and Smyth, D. B., 1980, Influence of N-terminal acetylation and C-terminal proteolysis on the analgesic activity of I3-endorphins, Biochem. J. 189: 501–506.

    PubMed  CAS  Google Scholar 

  • Devi, L., and Goldstein, A., 1983, Dynorphin converting enzyme with unusual specificity from rat brain, Proc. Natl. Acad. Sci. USA 81: 1892–1896.

    Google Scholar 

  • Devi, L., and Goldstein, A., 1986, Opioid and other peptides as inhibitors of leumorphin (dynorphin B-29) converting activity, Peptides 7: 87–90.

    PubMed  CAS  Google Scholar 

  • Docherty, K., and Steiner, D. F., 1982, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu. Rev. Physiol. 44: 625–638.

    PubMed  CAS  Google Scholar 

  • Docherty, K., and Hutton, J. C., 1983, Carboxypeptidase activity in the insulin secretory granule, FEBS Lett. 162: 137–141.

    PubMed  CAS  Google Scholar 

  • Doehmer, J., Barinaga, M., Vale, W., Rosenfeld, M. G., Verman, I. M., and Evans, R. M., 1982, Introduction of rat growth hormone gene into mouse fibroblasts via a retroviral DNA vector, expression and regulation, Proc. Natl. Acad. Sci. USA 79: 2268–2272

    PubMed  CAS  Google Scholar 

  • Douglass, J., Civelli, O., and Herbert E., 1984, Polyprotein gene expression: Generation of diversity of neuroendocrine peptides, Annu. Rev. Biochem. 53: 665–715.

    PubMed  CAS  Google Scholar 

  • Eipper, B. A., and Mains, R. E., 1981, Further analysis of post-translational processing of I3-endorphin in rat intermediate pituitary, J. Biol. Chem. 256: 5689–5695.

    PubMed  CAS  Google Scholar 

  • Eipper, B. A., Mains, R. E., and Glembotski, C. C., 1983, Identification in pituitary tissue of a peptide a-amidating activity, Proc. Natl. Acad. Sci. USA 80: 5144–5149.

    PubMed  CAS  Google Scholar 

  • Evangelista, R., Ray, P., and Lewis, R. V., 1982, A “trypsin-like” enzyme in adrenal chromaffin granules: A proenkephalin processing enzyme, Biochem. Biophys. Res. Com-mun. 106: 895–902.

    CAS  Google Scholar 

  • Evans, C. J., Lorenz, R., Weber, E., and Barchas, J. D., 1982, Variants of a-melanocyte stimulating hormone in rat brain and pituitary: Evidence that acetylated a-MSH exists only in the intermediate lobe of the pituitary, Biochem. Biophys. Res. Commun. 106: 910–919.

    PubMed  CAS  Google Scholar 

  • Fletcher, D. J., Noe, B. D., Bauer, G. E., and Quigley, J. P., 1980, Characterization of the conversion of a somatostatin precursor to somatostatin by islet secretory granules, Diabetes 29: 593–599.

    PubMed  CAS  Google Scholar 

  • Fletcher, D. J., Quigley, J. P., Bauer, G. E., and Noe, B. D., 1981, Characterization of proinsulin and proglucagon converting activities in isolated islet secretory granules, J. Cell Biol. 90: 312–322.

    PubMed  CAS  Google Scholar 

  • Folk, J. E., 1971, Carboxypeptidase B. in: Enzymes, 3rd ed. ( P. D. Boyer, ed.), pp. 57–59, Academic Press, New York.

    Google Scholar 

  • Frey, P., Forand, R., Maciag, T., and Shooter, E. M., 1979, The biosynthetic precursor of epidermal growth factor and the mechanism of its processing, Proc. Natl. Acad. Sci. USA 76: 6294–6298.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., and Snyder, S. H., 1982, Enkephalin convertase: Purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules, Proc. Natl. Acad. Sci. USA 79: 3886–3890.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., Supattapone, S., and Snyder, S. H., 1982, Enkephalin convertase: A specific enkephalin synthesizing carboxypeptidase in adrenal chromaffin granules, brain, and pituitary gland, Life Sci. 31: 1841–1844.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., Plummer, T. H. Jr., and Snyder, S. H., 1983, Enkephalin convertase: Potent, selective, and irreversible inhibitors, Biochem. Biophys. Res. Commun. 111: 994–1000.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., and Snyder, S. H., 1983, Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase, J. Biol. Chem. 258: 10950–10955.

    PubMed  CAS  Google Scholar 

  • Fricker, L. D., 1985, Neurpeptide biosynthesis: Focus on the carboxypeptidase processing enzyme, Trends Neurosci. 8: 210–214.

    CAS  Google Scholar 

  • Fricker, L. D., Evans, C. J., Esch, F. S., and Herbert, E., 1986, Cloning and sequence analysis of cDNA for bovine carboxypeptidase E, Nature (Loud.) 323: 461–464.

    CAS  Google Scholar 

  • Fritz, H., Tschesche, H., Greene, L. J., and Truscheit, E. (eds.), 1974, Proteinase Inhibitors,Springer-Verlag, New York.

    Google Scholar 

  • Gainer, H., Same, Y., and Brownstein, M. J., 1977, Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides, J. Cell Biol. 73: 366–381.

    PubMed  CAS  Google Scholar 

  • Gainer, H., Russell, J. T., and Loh, Y. P., 1984, An aminopeptidase activity in bovine pituitary secretory vesicles that cleaves the N-terminal arginine from ß-lipotropin 6065, FEBS Lett. 175: 135–139.

    PubMed  CAS  Google Scholar 

  • Gainer, H., Russell, J. T., and Loh, Y. P., 1985, The enzymology and intracellular organization of peptide precursor processing: The secretory vesicle hypothesis, Neuroendocrinology 40: 171–184.

    PubMed  CAS  Google Scholar 

  • Geis, R., Martin, R., and Voight, K. H., 1984, a-MSH-like peptides from the rat hypothalamus and pituitary: Differences in the degree of N-acetylation, Horm. Metab. Res. 16: 266–267.

    Google Scholar 

  • Gianoulakis, C., Sidah, N. G., Routhier, R., and Chretien, M., 1979, Biosynthesis and characterization of adrenocorticotropic hormone, a-melanocyte-stimulating hormone, and an NH2-terminal fragment of the adrenocorticotropic hormonelß-lipotropin precursor from rat pars intermedia, J. Biol. Chem. 254: 11903–11906.

    PubMed  CAS  Google Scholar 

  • Glembotski, D. B., 1982, Characterization of the peptide acetyltransferase activity in bovine and rat intermediate pituitaries responsible for the acetylation of (3-endorphin and amelanotropin, J. Biol. Chem. 257: 10501–10509.

    PubMed  CAS  Google Scholar 

  • Gorman, B., Padmanabhan, R., and Howard, B., 1983, High efficiency DNA-mediated transformation of primate cells, Science 221: 551–553.

    PubMed  CAS  Google Scholar 

  • Graham, F., and Van der Eb, A. J., 1973, A new technique for the assay of infectivity of human adenovirus DNA, Virology 52: 456–467.

    PubMed  CAS  Google Scholar 

  • Gramsch, C., Kleber, G., Hollt, V., Pasi, A., Merhaiein, P., and Herz, A., 1980, Proopiocortin fragments in human and rat brain: 0-Endorphin and a-melanotropin are the predominant peptides, Brain Res. 192: 109–119.

    PubMed  CAS  Google Scholar 

  • Gruss, P., and Khoury, G., 1981, Expression of simian virus 40-rat preproinsulin recombinants in monkey kidney cells: Use of preproinsulin RNA processing signals, Proc. Natl. Acad. Sci. USA 78: 133–137.

    PubMed  CAS  Google Scholar 

  • Gubler, U., Seeburg, P., Hoffman, B. J., Gage, L. P., and Udenfriend, S., 1982, Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides, Nature (Lond.) 295: 206–208.

    CAS  Google Scholar 

  • Helle, K. B., Read, R. K., Pihl, K. E., and Serech-Hanssen, G., 1985, Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules, Acta Physiol. Scand. 123: 21–33.

    PubMed  CAS  Google Scholar 

  • Hellerman, J. G., Cone, R. C., Potts, J. T., Rich, A., Mulligan, R. C., and Kronenberg, H. M., 1984, Secretion of human parathyroid hormone from rat pituitary cells infected with a recombinant retrovirus encoding preproparathyroid hormone, Proc. Natl. Acad. Sci. USA 81: 5340–5344.

    PubMed  CAS  Google Scholar 

  • Hogue-Angeletti, R. A., 1977, Nonidentity of chromogranin A and dopamine ß-mono oxygenase, Arch. Biochem. Biophys. 184: 364–372.

    PubMed  CAS  Google Scholar 

  • Hook, V. Y. H., and Eiden, L. E., 1984, Two peptidases that convert 125I-Lys-Arg-(Met) enkephalin and 125I-(Met) enkephalin-Arg6, respectively, to 125í-(Met) enkephalin in bovine adrenal medullary chromaffin granules, FEBS Lett. 172: 212–218.

    PubMed  CAS  Google Scholar 

  • Hook, V. Y. H., and Loh, Y. P., 1984, Carboxypeptidase B-like converting enzyme activity in secretory granules of rat pituitary, Proc. Natl. Acad. Sci. USA 81: 2776–2780.

    PubMed  CAS  Google Scholar 

  • Hook, V. Y.H., Eiden, L. E., and Brownstein, M. J., 1982, A carboxypeptidase processing enzyme for enkephalin precursors, Nature (Lond.) 295: 341–342.

    CAS  Google Scholar 

  • Hook, V. Y. H., Mezey, E., Fricker, L. D., Pruss, R. M., Siegel, R. E., and Brownstein, M. J., 1985, Immunochemical characterization of carboxypeptidase B-like peptidehormone-processing enzyme, Proc. Natl. Acad. Sci. USA 82: 4745–4749.

    PubMed  CAS  Google Scholar 

  • Hope, D. B., and Pickup, J. C., 1974, Neurophysins, in: Handbook of Physiology, Section 7: Endocrinology, Vol. IV ( E. Knobil and W. H. Sawyer, eds.), pp. 173–189, American Physiology Society, Washington, D.C.

    Google Scholar 

  • Howell, S. L., 1974, The molecular organization of the ß-granule of the islets of Langerhans, Adv. Cytopharmacol. 2: 319–327.

    PubMed  CAS  Google Scholar 

  • Iacangelo, A., Affholter, H.-U., Eiden, L. E., Herbert, E., and Grimes, M., 1986, Bovine chromogranin A sequence and the distribution of its messenger RNA in endocrine tissues, Nature (Lond.) 323: 82–86.

    CAS  Google Scholar 

  • Izant, J. G., and Weintraub, H., 1984, Inhibition of thymidine kinase gene expression by anti-sense RNA: A molecular approach to genetic analysis, Cell 36: 1007–1015.

    PubMed  CAS  Google Scholar 

  • Izant, J. G., and Weintraub, H., 1985, Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA, Science 229: 346–352.

    Google Scholar 

  • Johnson, R. G., and Scarpa, A., 1976, Internal pH of isolated chromaffin vesicles, J. Biol. Chem. 251: 2189–2191.

    PubMed  CAS  Google Scholar 

  • Kakidani, H., Furatani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for porcine a-neo-endorphin/dynorphin precursor, Nature (Lond.) 298: 245–249.

    CAS  Google Scholar 

  • Kangawa, K., Minamino, N., Chino, N., Sakokibara, S., and Matsuo, H., 1981, The complete amino acid sequence of a-neo-endorphin, Biochem. Biophys. Res. Commun. 99: 871–878.

    PubMed  CAS  Google Scholar 

  • Kim, S. K., and Wold, B. J., 1985, Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA, Cell 42: 129–138.

    PubMed  CAS  Google Scholar 

  • Kirshner, N., 1974, Molecular organization of the chromaffin vesicles of the adrenal medulla, Adv. Cytopharmacol. 2: 265–272.

    PubMed  CAS  Google Scholar 

  • Koenig, H., 1974, The soluble acidic lipoproteins (SALPs) of storage granules: Matrix constituents which may bind stored molecules, Adv. Cytopharmacol. 2: 273–301.

    PubMed  CAS  Google Scholar 

  • Kopnell, W. N., and Westhead, E. W., 1982, Osmotic pressures of solutions of ATP and catecholamines relating to storage in chromaffin granules, J. Biol. Chem. 257: 5707–5710

    Google Scholar 

  • Lagercrantz, H., 1976, On the composition and function of large dense cored vesicles in sympathetic nerves, Neuroscience 1: 81–92.

    PubMed  CAS  Google Scholar 

  • Laub, O., and Rutter, W. J., 1983, Expression of the human insulin gene and cDNA in a heterologous mammalian system, J. Biol. Chem. 258: 6043–6050.

    PubMed  CAS  Google Scholar 

  • Lindberg, I., Yang, H. Y. T., and Costa, E., 1982, An enkephalin-generating enzyme in bovine adrenal medulla, Biochem. Biophys. Res. Commun. 106: 186–193.

    PubMed  CAS  Google Scholar 

  • Lindberg, I., Yang, H. Y. T., and Costa, E., 1984, Further characterization of an enkephalingenerating enzyme from adrenal medullary chromaffin granules, J. Neurochem. 42: 1411–1419.

    PubMed  CAS  Google Scholar 

  • Liotta, A. S., and Krieger, D. T., 1983, Pro-opiomelanocortin-related and other pituitary hormones in the central nervous system, in Brain Peptides ( D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds.), pp. 613–660, Wiley, New York.

    Google Scholar 

  • Liotta, A. S., Yamaguchi, H., and Krieger, D. T., 1981, Biosynthesis and release of 13- endorphin-, N-acetyl [3-endorphin-, 13-endorphin-(1–27)-, and N-acetyl [3-endorphin(1–27)-like peptides by rat pituitary neurointermediate lobe: [3-Endorphin is not further processed by anterior lobe, J. Neurosci. 1: 585–595.

    PubMed  CAS  Google Scholar 

  • Lipscomb, W. N., 1983, Structure and catalysis of enzymes, Annu. Rev. Biochem. 52: 17–34.

    PubMed  CAS  Google Scholar 

  • Liston, D., and Rossier, J., 1984, Distribution and characterization of synenkephalin immunoreactivity in the bovine brain and pituitary, Reg. Peptides 8: 79–87.

    CAS  Google Scholar 

  • Liston, D., Vanderhaegen, J-J., and Rossier, J., 1983, Presence in brain of synenkephalin, a proenkephalin-immunoreactive protein which does not contain enkephalin, Nature (Lond.) 302: 62–65.

    CAS  Google Scholar 

  • Liston, D., Patey, G., Rossier, J., Verbanck, P., and Vanderhaegen, J-J., 1984, Processing of proenkephalin is tissue-specific, Science 225: 734–737.

    PubMed  CAS  Google Scholar 

  • Lloyd, R. V., and Wilson, B. S., 1983, Specific endocrine tissue marker defined by a monoclonal antibody, Science 222: 628–630.

    PubMed  CAS  Google Scholar 

  • Loh, Y. P., and Gainer, H., 1982, Characterization of pro-opicortin-converting activity in purified secretory granules from rat pituitary neurointermediate lobe, Proc. Natl. Acad. Sci. USA 79: 108–112.

    PubMed  CAS  Google Scholar 

  • Loh, Y. P., Eskay, R. L., and Brownstein, M. J., 1980, a-MSH-like peptides in rat brain: Identification and changes in level during development, Biochem. Biophys. Res. Commun. 94: 916–923.

    Google Scholar 

  • Loh, Y. P., Parish, D. C., and Tuteja, R., 1985, Purification and characterization of a paired basic residue-specific proopiomelanocortin converting enzyme from bovine pituitary intermediate lobe secretory vesicles, J. Biol. Chem. 260: 7194–7205.

    PubMed  CAS  Google Scholar 

  • Lomedico, P. T., 1982, Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: A rapid expression assay for cloned genes, Proc. Natl. Acad. Sci. USA 79: 5798–5802.

    PubMed  CAS  Google Scholar 

  • Lomedico, P., Rosenthal, N., Efstratiadis, A., Gilbert, W., Kolodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.

    PubMed  CAS  Google Scholar 

  • Lynch, D. R., Strittmatter, S. M., and Snyder, S. H., 1984, Enkephalin convertase localization by [3H]guanidinoethylmercaptosuccinic acid autoradiography: Selective association with enkephalin-containing neurons, Proc. Natl. Acad. Sci. USA 81: 6543–6547.

    PubMed  CAS  Google Scholar 

  • Mains, R. E., and Eipper, B. A., 1984, Secretion and regulation of two biosynthetic enzyme activities, peptidyl-glycine a-amidating monooxygenase and a carboxypeptidase, by mouse pituitary corticotropic tumor cells, Endocrinology 115: 1683–1690.

    PubMed  CAS  Google Scholar 

  • Mains, R. E., Eipper, B. A., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Natl. Acad. Sci. USA 74: 3014–3018.

    PubMed  CAS  Google Scholar 

  • Mains, R. E., Eipper, B. A., Glembotski, C. C., and Dores, R. M., 1983, Strategies for the biosynthesis of bioactive peptides, Trends Neurosci. 6: 229–235.

    CAS  Google Scholar 

  • Melton, D. A., 1985, Injected anti-sense RNAs specifically block messenger RNA translation in vivo, Proc. Natl. Acad. Sci. USA 82: 144–148.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., Ong, E. S., Rosenfeld, M. G., Verma, I. M., and Evans, R. M., 1984, Infections and selectable retrovirus containing an inducible rat growth hormone minigene, Science 225: 993–998.

    PubMed  CAS  Google Scholar 

  • Minamino, N., Kangawa, K., Chino, N., Sakakibana, S., and Matsuo, H., 1981, ß-Neoendorphin, a new hypothalamic “big” Leu-enkephalin of porcine origin: Its purification and the complete amino acid sequence, Biochem. Biophys. Res. Commun. 99: 864–870.

    PubMed  CAS  Google Scholar 

  • Mizuno, K., Miyata, A., Kangawa, K., and Matsuo, H., 1982, A unique proenkephalinconverting enzyme purified from bovine adrenal chromaffin granules, Biochem. Biophys. Res. Commun. 108: 1235–1242.

    PubMed  CAS  Google Scholar 

  • Mizuno, K., Kojima, M., and Matsuo, H., 1985, A putative prohormone processing protease in bovine adrenal medulla specifically cleaving in between Lys-Arg sequences, Biochem. Biophys. Res. Commun. 128: 884–891.

    PubMed  CAS  Google Scholar 

  • Moore, H. P. H., Walker, M. D., Lee, F., and Kelly, R. B., 1983, Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell: Intracellular storage, proteolytic processing, and secretion on stimulation, Cell 35: 531–538.

    PubMed  CAS  Google Scholar 

  • Morrissely, J. J., Shoststall, R. E., Hamilton, J. W., and Cohn, D. W., 1980, Synthesis, intracellular distribution and secretion of multiple forms of parathyroid secretory protein I, Proc. Natl. Acad. Sci. USA 77: 6406–6410.

    Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin, Nature (Lond.) 295: 202–206.

    CAS  Google Scholar 

  • O’Connor, D. T., 1983, Chromogranin: Widespread immunoreactivity in polypeptide hormone producing tissues and in serum, Reg. Peptides 6: 263–280.

    Google Scholar 

  • O’Connor, D. T., and Frigon, R. P., 1984, Chromogranin A: The major catecholamine storage vesicle soluble protein, J. Biol. Chem. 259: 3237–3247.

    PubMed  Google Scholar 

  • O’Connor, D. T., Burton, D., and Deftos, L. J., 1983, Chromogranin A: Immunohistology reveals its universal occurrence in normal polypeptide hormone producing endocrine glands, Life Sci. 33: 1657–1663.

    PubMed  Google Scholar 

  • O’Donohue, T. L., Handelmann, G. E., Chaconas, T., Miller, R. L., and Jacobowitz, D. M., 1981, Evidence that N-acetylation regulates the behavioral activity of a-MSH in the rat and human central nervous system, Peptides 2: 333–344.

    PubMed  Google Scholar 

  • O’Donohue, D. L., Handelmann, G. E., Miller, R. L., and Jacobowitz, D. M., 1982, NAcetylation regulates the behavioral activity of a-melanotropin in a multineurotransmitter neuron, Science 215: 1125–1127.

    Google Scholar 

  • Orwoll, E., Kendall, J. W., Lamorena, L., and McGilvra, R., 1979, Adrenocorticotropin and melanocyte-stimulating hormone in the brain, Endocrinology 104: 1845–1852.

    PubMed  CAS  Google Scholar 

  • Pavlakis, G. N., Hizuka, N., Gorden, P., Seeburg, P., and Hamer, D. H., 1981, Expression of two human growth hormone genes in monkey cells infected by simian virus 40 recombinants, Proc. Natl. Acad. Sci. USA 78: 7398–7402.

    PubMed  CAS  Google Scholar 

  • Pletscher, A., DaPrada, M., Berneis, K. H., Steffen, H., Lutold, B., and Weder, H. G., 1974, Molecular organization of amine storage organelles of blood platelets and adrenal medulla, Adv. Cytopharmacol. 2: 257–264.

    PubMed  CAS  Google Scholar 

  • Plummer, T. H. Jr., 1969, Isolation and sequence of peptides at the active center of bovine carboxypeptidase B, J. Biol. Chem. 244: 5246–5253.

    PubMed  CAS  Google Scholar 

  • Plummer, T. H. Jr., and Erdos, E. G., 1981, Human plasma carboxypeptidase N, Methods Enzymol. 80: 442–449.

    PubMed  CAS  Google Scholar 

  • Powers, C. A., and Nasjletti, A., 1982, A novel kinin-generating protease (kininogenase) in the porcine anterior pituitary, J. Biol. Chem. 257: 5594–5600.

    PubMed  CAS  Google Scholar 

  • Powers, C. A., and Nasjletti, A., 1983, A kininogenase resembling glandular kallikrein in the rat pituitary pars intermedia, Endocrinology 112: 1194–1200.

    PubMed  CAS  Google Scholar 

  • Roberts, J. L., Phillips, M., Rosa, P. A., and Herbert, E., 1978, Steps involved in the processing of common precursor forms of adrenocorticotropin and endorphin in cultures of mouse pituitary cells, Biochemistry 17: 3609–3618.

    PubMed  CAS  Google Scholar 

  • Robins, D. M., Pack, I., Seeburg, P. H., and Axel, R., 1982, Regulated expression of human growth hormone genes in mouse cells, Cell 29: 623–631.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., 1984, OpH, H+ diffusion potentials, and Mg+ATPase in neurosecretory vesicles isolated from bovine neurohypophyses, J. Biol. Chem. 259: 9496–9507.

    PubMed  CAS  Google Scholar 

  • Schmid, M. F., and Herriott, J. R., 1976, Structure of carboxypeptidase B at 2.8 A resolution, J. Biol. Chem. 103: 175–190.

    CAS  Google Scholar 

  • Scott, A. P., Lowry, P. J., Ratcliffe, J. G., Rees, L. H., and Landon, J., 1974, Corticotrophin-like peptides in the rat pituitary, J. Endocrinol. 61: 355–367.

    PubMed  CAS  Google Scholar 

  • Seizinger, B. R., Grimm, C., Hollt, V., and Herz, A., 1984, Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary, J. Neurochem. 42: 447–457.

    PubMed  CAS  Google Scholar 

  • Sen, R., and Sharp, R. R., 1982, Molecular mobilities and the lowered osmolarity of the chromaffin granule aqueous phase, Biochem. Biophys. Acta 721: 70–82.

    PubMed  CAS  Google Scholar 

  • Server, A. C., and Shooter, E. M., 1976, Comparison of the arginine esteropeptidases associated with the nerve and epidermal growth factors, J. Biol. Chem. 251: 165–173

    PubMed  CAS  Google Scholar 

  • Smith, A. D., and Winkler, H., 1967, Purification and properties of an acidic protein from chromaffin granules of bovine adrenal medulla, Biochem. J. 103: 483–492.

    PubMed  CAS  Google Scholar 

  • Smyth, D. G., and Zakarian, S., 1980, Selective processing of 0-endorphin in regions of porcine pituitary, Nature (Lond.) 288: 613–615.

    CAS  Google Scholar 

  • Smyth„ D. G., Massey, D. E., Zakarian, S., and Finnie, M. D. A., 1979, Endorphins are stored in biologically active and inactive forms: Isolation of a-N-acetyl peptides, Nature (Lond.) 279: 252–254.

    Google Scholar 

  • Somogyi, P., Hodgson, A. J., DePotter, R. W., Fischer-Colbrie, R., Schober, M., Winkler, H., and Chubb, I. W., 1984, Chromogranin immunoreactivity in the central nervous system: Immunochemical characterization, distribution, and relationship to catecholamine and enkephalin pathways, Brain Res. Rev. 8: 193–230.

    CAS  Google Scholar 

  • Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.

    PubMed  CAS  Google Scholar 

  • Supattapone, S., Fricker, L. D., and Snyder, S. H., 1984, Purification and characterization of a membrane-bound enkephalin-forming carboxypeptidase, “enkephalin convertase,” J. Neurochem. 42: 1017–1023.

    PubMed  CAS  Google Scholar 

  • Supowit, S. C., Potter, E., Evans, R. M., and Rosenfeld, M. G., 1984, Polypeptide hormone regulation of gene transcription: Specific 5’ genomic sequences are required for epidermal growth factor and phorbol ester regulation of prolactin gene expression, Proc. Natl. Acad. Sci. USA 81: 2975–2979.

    PubMed  CAS  Google Scholar 

  • Taylor, J. M., Cohen, S., and Mitchell, W. M., 1970, Epidermal growth factor: High and low molecular weight forms, Proc. Natl. Acad. Sci. USA 67: 164–171.

    PubMed  CAS  Google Scholar 

  • Thomas, P. S., 1980, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA 77: 5201–5205.

    PubMed  CAS  Google Scholar 

  • Titani, K., Ericsson, L. H., Kumar, S., Jakob, F., Neurath, H., and Zwillig, R., 1984, Amino acid sequence of crayfish (Astacus fluviatilis) carboxypeptidase B, Biochemistry 23: 1245–1250.

    CAS  Google Scholar 

  • Udenfriend, S., and Kilpatrick, D. L., 1983, Biochemistry of the enkephalin and enkephalin-containing peptides, Arch. Biochem. Biophys. 221: 309–323.

    PubMed  CAS  Google Scholar 

  • Vanderhaegen, J-J., Lotstra, F., Liston, D. R., and Rossier, J., 1983, Proenkephalin, [Met] enkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurons, Proc. Natl. Acad. Sci. USA 80: 5139–5143.

    Google Scholar 

  • Warren, T. G., and Shields, D., 1984, Expression of preprosomatostatin in heterologous cells: Biosynthesis, post-translational processing, and secretion of mature somatostatin, Cell 39: 547–555.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D., 1981, Acetylated and nonacetylated forms of 3-endorphin in rat brain and pituitary, Biochem. Biophys. Res. Commun. 103: 982–989.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D., 1982a, Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions, Nature (Loud.) 299: 77–79.

    CAS  Google Scholar 

  • Weber, E., Evans, C. J., Chang, J. K., and Barchas, J. D., 1982, Antibodies specific for a-N-acetyl-ß-endorphins: Radioimmunoassays and detection of acetylated 3-endorphins in pituitary extracts, J. Neurochem. 38: 436–447.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., Chang, J. K., and Barchas, J. D., 1982, Brain distributions of aneo-endorphin and ß-neo-endorphin: Evidence for regional processing differences, Biochem. Biophys. Res. Commun. 108: 81–88.

    PubMed  CAS  Google Scholar 

  • Whittaker, V. P., 1974, Molecular organization of the cholinergic vesicle, in: Advances in Cytopharmacology, Vol. 2 ( B. Ceccarelli, F. Clement, and J. Meldoles, eds.), pp. 311–317, Raven Press, New York.

    Google Scholar 

  • Winkler, H., 1976, The composition of adrenal chromaffin granules: An assessment of controversial results, Neuroscience 1: 65–80.

    PubMed  CAS  Google Scholar 

  • Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffm granules, Neuroscience 5: 1803–1823.

    PubMed  CAS  Google Scholar 

  • Zakarian, S., and Smyth, D. G., 1982, 0-endorphin is processed differently in specific regions of rat pituitary and brain, Nature (Land.) 296: 250–253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Fricker, L.D., Liston, D., Grimes, M., Herbert, E. (1987). Specificity of Prohormone Processing. In: Heinemann, S., Patrick, J. (eds) Molecular Neurobiology. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7488-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7488-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7490-3

  • Online ISBN: 978-1-4615-7488-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics