Skip to main content

Molecular Biology of the Neural and Muscle Nicotinic Acetylcholine Receptors

  • Chapter
Molecular Neurobiology

Abstract

Most theories of nervous system function depend heavily on the existence and properties of the synapse. For this reason, this structure has been a focal point for neuroscience research for many decades. The best understood synapse is the neuromuscular junction because of its accessibility to biochemical and electrophysiological techniques and because of its elegant, well-defined structure. The nicotinic acetylcholine (ACh) receptor found in the postsynaptic membrane binds ACh released from the nerve. The binding of ACh results in a conformational change in the receptor that opens a channel permeable to cations. The resulting ion flux depolarizes the muscle and ultimately leads to muscle contraction. Thus the ACh receptor contains both a ligand-binding domain as well as a channel domain. Biological and structural studies have shown that the muscle nicotinic ACh receptor is a glycoprotein made up of five subunits with the stoichiometry α2βγδ; each of these subunits has a molecular weight between 40,000 and 60,000, and is encoded by a separate gene. This complex has been shown in reconstitution experiments to be a functional receptor containing both a ligand-binding site and a ligand-gated channel (for recent reviews, see Conti-Tronconi and Raftery, 1982; Popot and Changeux, 1984; Stroud and Finer-Moore, 1985; Karlin et al., 1986; McCarthy et al.,1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. J., and Blobel, G., 1981, In vitro synthesis, glycosylation, and membrane insertion of the four subunits of Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 78: 5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. J., Walter, P., and Blobel, G. 1982, Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93: 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Ballivet, M., Patrick, J., Lee, J., and Heinemann, S., 1982, Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 79: 4466–4470.

    Article  PubMed  CAS  Google Scholar 

  • Ballivet, M., Nef, P., Stalder, R., and Fulpius, B., 1983, Genomic sequences encoding the alpha-subunit of acetylcholine receptor are conserved in evolution, Cold Spring Harbor Symp. Quant. Biol. 48: 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, E. A., Miledi, R., and Sumikawa, K., 1982, Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes, Proc. R. Soc. Lond. B 215: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Berg, D. K., and Hall, Z. W., 1974, Fate of alpha-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle, Science 184: 473–474.

    Article  PubMed  CAS  Google Scholar 

  • Berg, D. K., and Hall, Z. W., 1975, Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptor in rat diaphragm muscle in vivo and in organ culture, J. Physiol. (Lond.) 252: 771–789.

    CAS  Google Scholar 

  • Bevan, S., and Steinbach, J. H., 1977, The distribution of alpha-bungarotoxin binding sites on mammalian skeletal muscle developing in vivo, J. Physiol. (Lond.) 267: 195–213.

    CAS  Google Scholar 

  • Boulter, J., and Patrick, J., 1977, Purification of an acetylcholine receptor from a nonfusing muscle cell line, Biochemistry 16: 4900–4908.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, J., Luyten, W., Evans, K., Mason, P., Ballivet, M., Goldman, D., Stengeln, S., Martin, G., Heinemann, S., and Patrick, J., 1985, Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor, J, Neurosci. 5: 2545–2552.

    CAS  Google Scholar 

  • Boulter, J., Evans, K., Mason, P., Martin, G., Heinemann, S., and Patrick, J., 1986a, Isolation of a clone coding for the precursors to the beta-subunit of mouse muscle nicotinic acetylcholine receptor (manuscript in preparation).

    Google Scholar 

  • Boulter, J., Evans, K., Martin, G., Mason, P., Stengelin, S., Goldman, D., Heinemann, S., and Patrick, J., 1986b, Isolation and sequence of cDNA clones coding for the precursor to the ry-subunit of mouse muscle nicotinic acetylcholine receptor, J. Neurosci. Res. 16: 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J., 1986c, Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit, Nature (Loud.) 319: 368–374.

    Article  CAS  Google Scholar 

  • Brisson, A., and Unwin, P. N. T., 1985, Quaternary structure of the acetylcholine receptor, Nature (Lond.) 315: 474–477.

    Article  CAS  Google Scholar 

  • Brockes, J. P., and Hall, Z. W., 1975a, Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors, Biochemistry 14: 2100–2106.

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P., and Hall, Z. W., 1975b, Synthesis of acetylcholine receptor by denervated rat diaphragm muscle, Proc. Natl. Acad. Sci. U.S.A. 72: 1368–1372.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. R., 1976, Structural origins of mammalian albumin, Fed. Proc. 32: 2141–2144.

    Google Scholar 

  • Chang, C. C., and Huang, M. C., 1975, Turnover of junctional and extrajunctional acetylcholine receptors of the rat diaphragm, Nature (Lond.) 253: 643–644.

    Article  CAS  Google Scholar 

  • Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B., and Pert, A., 1985, Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H] nicotine, and [125I]-alpha-bungarotoxin, J. Neurosci. 5: 1307–1315.

    PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma-subunit, Proc. Natl. Acad. Sci. U.S.A. 80: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. A., and Fischbach, G. D., 1973, Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture, Science 181: 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Ann. Rev. Biochem. 51: 491–530.

    Article  PubMed  CAS  Google Scholar 

  • Cox, K., DeLeon, D., Angerer, L., and Angerer, R., 1984, Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes, Dev. Biol. 101: 485–502.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M., Hochschwender, S., Virender, S., Fox, J. L., and Lindstrom, J., 1985, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. U.S.A. 82: 2004–2008.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.-P., 1983, Complete mRNA coding sequence of the acetylcholine binding a-subunit of Torpedo mormorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80: 2067–2071.

    Article  PubMed  CAS  Google Scholar 

  • Fayhey, R. C., Hunt, J. S., and Windham, G. C., 1977, On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins, J. Mol. Evol. 10: 155–160.

    Article  Google Scholar 

  • Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible conformation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D., Boulter, J., Heinemann, S., and Patrick, J., 1985, Muscle denervation increases the levels of two mRNAs coding for the acetylcholine receptor alpha-subunit, J. Neurosci. 5: 2553–2558.

    PubMed  CAS  Google Scholar 

  • Goldman, D., Simmons, D., Swanson, L., Patrick, J., and Heinemann, S., 1986, Mapping brain areas expressing RNA homologous to two different acetylcholine receptor alpha subunit cDNAs, Proc. Natl. Acad. Sci. U.S.A. 83: 4076–4080.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A., Davis, C., Milfay, D., and Diamond, I., 1977, Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica, Nature (Lond.) 267: 539–540.

    Article  CAS  Google Scholar 

  • Guy, H. R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys. J. 45: 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Hall, Z. W., and Reiness, C. G., 1977, Electrical stimulation of denervated muscles reduces incorporation of methionine into the ACh receptor, Nature (Lond.) 268: 655–657.

    Article  CAS  Google Scholar 

  • Hall, Z. W., Roisin, M. P., Gu, Y., and Gorin, P. D., 1983, A developmental change in the immunological properties of acetylcholine receptors at the rat neuromuscular junction, Cold Spring Harbor Symp. Quant. Biol. 48: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, S., Merlie, J., and Lindstrom, J., 1978, Modulation of acetylcholine receptor in rat diaphragm by anti-receptor sera, Nature (Lond.) 274: 65–68.

    Article  CAS  Google Scholar 

  • Huganir, R. L., Miles, K., and Greengard, P., 1984, Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Biochemistry 81: 6968–6972.

    CAS  Google Scholar 

  • Jackson, R. C., and Blobel, G., 1977, Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity, Proc. Natl. Acad. Sci. U.S.A. 74: 5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Kao, P. N., and Karlin, A., 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues, J. Biol. Chem. 261: 8085–8088.

    PubMed  CAS  Google Scholar 

  • Kao, P. N., Dwork, A. J., Kaldany, R. J., Silver, M. L., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of two alpha-subunit half-cystines specifically labeled by an affinity reagent for the acetylcholine binding site, J. Biol. Chem. 259: 1162–1165.

    Google Scholar 

  • Karlin, A., DiPaola, M., Kao, P. N., and Lobel, P., 1986, Functional sites and transient states of the nicotinic acetylcholine receptor, in: Proteins of Excitable Membrane (B. Hille and D. M. Fambrough, eds.), in press, Wiley, New York.

    Google Scholar 

  • Karlin, A., Weill, C. L., McNamee, M. G., and Valderrama, R., 1976, Facets of the structures of acetylcholine receptors from Electrophorus and Torpedo, Cold Spring Harbor Symp. Quant. Biol. 40: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Klarsfeld, A., and Changeux, J-P., 1985, Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes, Proc. Natl. Acad. Sci. U.S.A. 82: 4558–4562.

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky, M. W., and Stroud, R. M., 1979, Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica, J. Mol. Biol. 128: 319–334.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    Article  PubMed  CAS  Google Scholar 

  • La Polla, R. J., Mixter-Mayne, K., and Davidson, N., 1984, Isolation and characterization of a cDNA clone for the complete protein coding region of the delta-subunit of the mouse acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81: 7970–7974.

    Article  Google Scholar 

  • La Rochelle, W. J., Wray, B. E., Sealock, R., and Froehner, S. C., 1985, ímmunochemical demonstration that amino acids 360–377 of the acetylcholine receptor gamma-subunit are cytoplasmic, J. Cell Biol. 100: 684–691.

    Google Scholar 

  • Legase, L., Chandra, T., Woo, S. L. C., and Means, A. R., 1983, Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA, J. Biol. Chem. 258: 1684–1688.

    Google Scholar 

  • Lomo, T., and Westgaard, R. H., 1975, Further studies on the control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 252: 603–626.

    CAS  Google Scholar 

  • Luyten, W., Kellaris, K., Kyte, J., Heinemann, S., and Patrick, J., 1983, A model for the acetylcholine binding site of the acetylcholine receptor, Neurosci. Abst. 10: 734.

    Google Scholar 

  • McCarthy, M. P., Earnest, J. P., Young, E. F., Choe, S., and Stroud, R. M., 1986, The molecular neurobiology of the acetylcholine receptor. Annu. Rev. Neurosci. 9: 383–413.

    Article  PubMed  CAS  Google Scholar 

  • Merle, J. P., Isenberg, K. E., Russell, S. D., and Sanes, J. R., 1984, Denervation super-sensitivity in skeletal muscle: Analysis with a cloned cDNA probe, J. Cell Biol. 99: 332–335.

    Article  Google Scholar 

  • Miledi, R., 1960a, The acetylcholine sensitivity of frog muscle fibers after complete or partial denervation, J. Physiol. (Lond.) 151: 1–23.

    CAS  Google Scholar 

  • Miledi, R., 1960b, Junctional and extrajunctional receptors in skeletal muscle fibers, J. Physiol. (Lond.) 151: 24–30.

    CAS  Google Scholar 

  • Miledi, R., Parker, I., and Sumikawa, K., 1982, Synthesis of chick brain GABA receptors by frog oocytes, Proc. R. Soc. (Lond.) 216: 509–515.

    Article  CAS  Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature (Lond.) 307: 604–608.

    Article  CAS  Google Scholar 

  • Nef, P., Mauron, A., Stalder, R., Alliod, C., and Ballivet, M., 1984, Structure, linkage and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81: 7975–7979.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1976, Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers, J. Physiol. (Lond.) 258: 705–729.

    CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature (Lond.) 299: 793–797.

    Article  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S. 1983, Primary structures of beta-and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences, Nature (Lond.) 301: 251–255.

    Article  CAS  Google Scholar 

  • Okayama, H., and Berg, P., 1982, High efficiency cloning of full length cDNA, Mol. Cell. Biol. 2: 161–170.

    PubMed  CAS  Google Scholar 

  • Parues, J. R., Robinson, R. R., and Seidman, J. B., 1983, Multiple mRNA species with distinct 3’ termini are transcribed from the beta2-microglobulin gene, Nature (Lond.) 302: 449–452.

    Article  Google Scholar 

  • Patrick, J., and Stallcup, W., 1977a, Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons, Proc. Natl. Acad. Sci. U.S.A. 74: 4689–4692.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J., and Stallcup, W., 1977b, Alpha-bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line, J. Biol. Chem. 252: 8629–8633.

    PubMed  CAS  Google Scholar 

  • Patrick, J., Heinemann, S. F., Lindstrom, J., Schubert, D., and Steinback, J. H., 1972, Appearance of acetylcholine receptors during differentiation of a myogenic cell line, Proc. Natl. Acad. Sci., USA 69: 2762–2766.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J., Ballivet, M., Boas, L., Claudio, T., Forrest, J., Ingraham, H., Mason, P., Stengelin, S., Ueno, S., and Heinemann, S., 1983, Molecular cloning of the acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Popot, J.-L., and Changeux, J-P., 1984, The nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.

    PubMed  CAS  Google Scholar 

  • Porter, S., and Froehner, S., 1983, Characterization and localization of the Mr = 43,000 proteins associated with acetylcholine receptor-rich membranes, J. Biol. Chem. 258: 10034–10040.

    PubMed  CAS  Google Scholar 

  • Porter, S., and Froehner, S., 1985, Interaction of the 43K protein with components of Torpedo postsynaptic membranes, Biochemistry 24: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208: 1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam, M., and Lindstrom, J., 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122: 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Ross, M. J., Klymkowsky, M. W., Agard, D. A., and Stroud, R. M., 1977, Structural studies of a membrane-bound acetylcholine receptor from Torpedo california, J. Mol. Biol. 116: 635–659.

    Article  PubMed  CAS  Google Scholar 

  • Sakmann, B., 1978, Acetylcholine-induced ionic channels in rat skeletal muscle, Fed. Proc. 37: 2654–2659.

    PubMed  CAS  Google Scholar 

  • Schiffer, M., and Edmundson, A. B., 1967, Use of helical wheels to represent the structures

    Google Scholar 

  • of proteins and to identify segments with helical potentials, Biophys. J. 7: 121–135.

    Google Scholar 

  • Schubert, D., Harris, D. J., Devine, C., and Heinemann, S., 1974, Characterization of a unique muscle cell line, J. Cell Biol. 61: 398–413.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, G. E., and Schirmer, R. H., 1979, Principles of Protein Structure, Springer-Verlag, New York.

    Book  Google Scholar 

  • Shibahara, S., Kubo, T., Perski, H. J., Takahashi, H., Noda, M., and Numa, S., 1985, Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine receptor, Eur. J. Biochem. 146: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Sine, S., and Taylor, P., 1980, The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra alpha-toxin, J. Biol. Chem. 255: 10144–10156.

    PubMed  CAS  Google Scholar 

  • Sine, S. M., and Steinbach, J. H., 1984a, Activation of a nicotinic acetylcholine receptor, Biophys. J. 45: 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Sine, S. M., and Steinbach,J. H., 1984b, Agonists block currents through acetylcholine receptor channels, Biophys. J. 46: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Sine, S. M., and Steinbach, J.H., 1985, Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by low concentrations of agonist, J. Physiol. (Lond.) 358: 91–108.

    Google Scholar 

  • Sine, S. M., and Steinbach, J. H., 1986, Acetylcholine receptor activation by a site-selective ligand: Nature of brief open and closed states in BC3H-1 cells, J. Physiol. 370: 357–379.

    PubMed  CAS  Google Scholar 

  • Sobel, A., Heidmann, T., Hofler, J., and Changeux, J-P., 1978, Distinct protein components from Torpedo marniorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin, Proc. Natl. Acad. Sci. U.S.A. 75: 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Steinbach, J. H., 1981, Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions, Dey. Biol. 84: 267–276.

    Article  CAS  Google Scholar 

  • Steinbach, J. H., Merlie, J., Heinemann, S., and Bloch, R., 1979, Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 76: 3547–3551.

    Article  PubMed  CAS  Google Scholar 

  • Stroud, R. M., and Finer-Moore, J., 1985, Acetylcholine receptor structure, function and evolution, Annu. Rev. Cell Biol. 1: 369–401.

    Article  Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W., 1983, Organization of ovine cortiocoptropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study, Neuroendocrinology 36: 165–186.

    Article  PubMed  CAS  Google Scholar 

  • Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of gamma subunit of calf-muscle acetylcholine receptor deduced from the cDNA sequence, Eur. J. Biochem. 143: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K-I., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of beta subunit precursor of calf musde acetylcholine receptor deduced from cDNA sequence, Eur. J. Biochem. 144: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Teichberg, V., Sobel, A., and Changeux, J.-P., 1977, In vitro phosphorylation of the acetylcholine receptor, Nature (Lond.) 267: 540–542.

    CAS  Google Scholar 

  • Thornton, J. M., 1981, Disulphide bridges in globular proteins, J. Mol. Biol. 151: 261–287.

    Article  PubMed  CAS  Google Scholar 

  • Wennogle, L. P., and Changeux, J.-P., 1980, Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis, Eur. J. Biochem. 106: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Wennogle, L. P., Oswald, R., Saitoh, T., and Changeux, J-P., 1981, Dissection of the 66000-Dalton subunit of the acetylcholine receptor, Biochemistry 20: 2492–2497.

    Article  PubMed  CAS  Google Scholar 

  • White, M. M., Mayne, K. M., Lester, H. A., and Davidson, N., 1985, Mouse-Torpedo hybrid acetylcholine receptors: Functional homology does not equal sequence homology, Proc. Natl. Acad. Sci. U.S.A. 82: 4852–4856.

    PubMed  CAS  Google Scholar 

  • Wilson, P. T., Lentz, T. L., and Hawrot, E., 1985, Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha-subunit of the acetylcholine receptor for Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 82: 8790–8794.

    Article  PubMed  CAS  Google Scholar 

  • Wise, D. S., Schoenborn, B. P., and Karlin, A., 1981, Structure of acetylcholine receptor dimer determined by neutron scattering and electron microscopy, J. Biol. Chem. 256: 4124–4126.

    PubMed  CAS  Google Scholar 

  • Young, E. F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z. W., and Stroud, R. M., 1984, Topological mapping of the acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic C-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82: 622–630.

    Google Scholar 

  • Zehner, Z. E., and Paterson, B. M., 1983, Vimentin gene expression during myogenesis: Two functional transcripts from a single copy gene, Nucl. Acid Res. 23: 8317–8332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Heinemann, S. et al. (1987). Molecular Biology of the Neural and Muscle Nicotinic Acetylcholine Receptors. In: Heinemann, S., Patrick, J. (eds) Molecular Neurobiology. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7488-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7488-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7490-3

  • Online ISBN: 978-1-4615-7488-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics