Skip to main content

Nanoelectronics and Scanning Tunneling Engineering

  • Chapter
Molecular Electronics

Abstract

Carter (1983) noted that projected trends in microelectronic fabrication would intersect the molecular-nanometer (“nano”-10-9; nanometer-10-9 meter) level around 2020 AD. Why not simply charge ahead on this rather straightforward path to molecular scale devices and nanotechnology---which shows no sign of significantly slowing down and which is also extremely well funded and profitable---and then branch out to more sophisticated types of molecular electronics when new “industrial strength” infrastructures would then make it simpler, easier, and much more efficient to take such innovative steps? Considering the rate of progress this decade alone, will current approaches to molecular devices be rendered obsolete because they are evolving too slowly relative to integrated circuit microelectronics and nanoelectronics? (See Yamamura, Fujisawa and Namba, 1984; Haddon and Lamola, 1985; Bandyopadhyay, 1986; Gray and Campisi, 1986; Howard, Jackel and Skocpol, 1985; Kratschmer et al., 1985; Whitehead, Isaacson and Wolfe, 1985.) Given the enormous lead times and costs for research, development, production learning curves, and gaining substantial market share, does the development of molecular electronic devices for computers make sense? Guided by such questions, we will suggest some hybrid possibilities below.

It is difficult to suppress one’s enthusiasm for the development of a viable molecular technological base when one recognizes the possible scientific, industrial and economic spin-off opportunities.

Forrest L. Carter, 1981

In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.

---Richard P. Feynman, 1960

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariadne, 1966a,b,c, Daedalus, New Scientist. 21 July, 153; 3 Nov., 245, 15 Dec., 641.

    Google Scholar 

  • Ariadne, 1972, Daedalus, New Scientist. 13 April, 104.

    Google Scholar 

  • Bandyopadhyay, S., M. R. Melloch, S. Datta, B. Das, J. A. Cooper Jr. and M. S. Lundstrom, 1986, A Novel Quantum Interference Transistor (QUIT) with Extremely Low Power-Delay Product and Very High Transconductance, IEEE I.E.P.M., 86:76–79.

    Google Scholar 

  • Becker, R. S., J. A. Golovchenko and B. S. Swartzentruber, 1987, Atomic-Scale Surface Modifications Using a Tunneling Microscope, Nature. 325:419–421.

    Article  CAS  Google Scholar 

  • Binnig, G., Ch. Gerber, H. Rohrer and E. Weibel, 1985a, Sputter Tip, IBM Tech. Disci. Bul., 27:4890.

    Google Scholar 

  • Binnig, G., Ch. Gerber, H. Rohrer and E. Weibel, 1985b, Nano-Aperture, IBM Tech. Disclosure Bui., 27(8):4893.

    Google Scholar 

  • Binnig, G. and H. Rohrer, 1987, Scanning Tunneling Microscopy From Birth to Adolescence, Rev. Mod. Phys., 59(3):615–625.

    Article  CAS  Google Scholar 

  • Bocko, M. F., K. A. Stephenson and R. H. Koch, 1988, Vacuum Tunneling Probe: A Nonreciprocal, Reduced-Back-Action Transducer, Phys. Rev. Lett., 61(6):726–729.

    Article  Google Scholar 

  • Boyes, E. D., 1984, High Resolution at Low Voltage: The SEM Philosopher’s Stone? in: “Proceedings of the 42nd Annual Meeting of the Electron Microscopy Society of America,” G. W. Bailey, ed., San Francisco Press, San Francisco, pp. 446–449.

    Google Scholar 

  • Buck, D. A. and K. R. Shoulders, 1958, An Approach to Microminiature Printed Systems, in: “Proc. Eastern Joint Computer Conference,” American Institute of Electrical Engineers, New York, pp. 55–59.

    Google Scholar 

  • Carter, F. L., 1979, Problems and Prospects of Future Electroactive Polymers and ‘Molecular’ Electronic Devices, in: “the NRL Program on Electroactive Polymers, First Annual Report,” L. D. Lockhart, Jr., ed., NRL Memorandum Report 3960, p. 121.

    Google Scholar 

  • Carter, F. L., 1980, Further Considerations on ‘Molecular’ Electronic Devices, Second Annual Report, R. B. Fox, ed., NRL Memorandum Report 4335, 35.

    Google Scholar 

  • Carter, F. L., 1983, Molecular Level Fabrication Techniques and Molecular Electronic Devices, J. Vac. Sci. Technol. B. 1(4):959–968.

    Article  CAS  Google Scholar 

  • Carter, F. L., 1986, Chemistry and Microstructures: Fabrication at the Molecular Size Level, Superlattices and Microstructures. 2(2):113–128.

    Article  CAS  Google Scholar 

  • Craighead, H. G., 1984, 10-nm Resolution Electron-Beam Lithography, J. Appl. Phys., 55(12):4430–4435.

    Article  CAS  Google Scholar 

  • Craighead, H. G. and P. M. Mankiewich, 1982, Ultra-Small Metal Particle Arrays Produced by High Resolution Electron-Beam Lithography, J. Appl. Phys., 53(11):7186–7188.

    Article  CAS  Google Scholar 

  • Crewe, A. V., 1976, Very Low Voltage Electron Microscopy, Ultramicroscopy, 1:267–269.

    Article  CAS  Google Scholar 

  • Csepregi, L., 1985, Micromechanics: A Silicon Microfabrication Technology, Microelectronic Engineering. 3:221–234.

    Article  Google Scholar 

  • De Brabander, M., R. Nuydens, G. Geuens, M. Moeremans, J. De Mey and C. Hopkins, 1988, Nanovid Ultramicroscopy: A New Non-Destructive Approach Providing New Insights in Subcellular Motility, in: “Microtubules and Microtubule Inhibitors 1985,” M. De Brabander and J. De Mey, eds., Elsevier Science Publishers, North-Holland, pp. 187–196.

    Google Scholar 

  • Deckman, H. W., B. Abeles, J. H. Dunsmuir and C. B. Roxlo, 1987, Microfabrication of Molecular Scale Microstructures, Appl. Phys. Lett., 50(9):504–506.

    Article  CAS  Google Scholar 

  • Dietrich, H. P., M. Lanz and D. F. Moore, 1984, Ion Beam Machining of Very Sharp Points, IBM Tech. Disci. Bui., 27:3039–3040.

    Google Scholar 

  • Douglas, K. and N. A. Clark, 1986, Nanometer Molecular Lithography, Appl. Phys. Lett., 48(10):676–678.

    Article  CAS  Google Scholar 

  • Feynman, R. P., 1960a, There’s Plenty of Room at the Bottom, Engrg. and Sci. (Cal. Inst, of Tech.), Feb., 22–36, and in: Miniaturization,” H. D. Gilbert, ed., Reinhold, New York, 1961, pp. 282–296, and in: Schneiker, 1986b.

    Google Scholar 

  • Feynman, R. P., 1960b, The Wonders that Await a Micro-Microscope, Saturday Review. 43, 2 April, 45–47.

    Google Scholar 

  • Feynman, R. P., 1984, 1985, 1986, Personal communication.

    Google Scholar 

  • Feynman, R. P., 1986, Quantum Mechanical Computers, Foundations of Physics. 16(6):507–531.

    Article  Google Scholar 

  • Fink, H.-W., 1986, Mono-Atomic Tips for Scanning Tunneling Microscopy, IBM J. Res. Develop., 30(5):460–465.

    Article  CAS  Google Scholar 

  • Fink, H.-W., 1988, Point Source for Ions and Electrons, Physica Scripta. 38:260–263.

    Article  CAS  Google Scholar 

  • Fischer, U. Ch., U. T. Durig and D. W. Pohl, 1988, Near-field Optical Scanning Microscopy in Reflection, Appl. Phys. Lett., 52(4):249–251.

    Article  Google Scholar 

  • Foster, J. S., J. E. Frommer and P. C. Arnett, 1988, Molecular Manipulation Using a Tunneling Microscope, Nature. 331:324–326.

    Article  CAS  Google Scholar 

  • Franks, A., 1987, Nanotechnology, J. Phys. E: Sci. Instrum., Dec., 1442–1451.

    Google Scholar 

  • Fulton, T. A. and G. J. Dolan, 1987, Observations of Single-Electron Charging Effects in Small Tunnel Junctions, Phys. Rev. Lett., 59(1):109–112.

    Article  Google Scholar 

  • Gabriel, J. K., M. M. Mehragany and W. S. N. Trimmer, 1987, Micro Mechanical Components, in: “Modeling and Control of Robotic Manipulators and Manufacturing Process,” Winter Annual Meeting of the American Society of Mechanical Engineers, December, pp. 397–401.

    Google Scholar 

  • Gobrecht, J. and J. B. Pethica, 1986, The Potential of Mechanical Microlithography for Submicron Patterning, Microelectronic Engineering. 5:471–475.

    Article  CAS  Google Scholar 

  • Godin, T. J. and R. Haydock, 1986, Quantum Circuit Theory, Superlattices and Microstructures. 2(6):597–600.

    Article  Google Scholar 

  • Golvochenko, J. A., 1986, The Tunneling Microscope: A New Look at the Atomic World, Science. 232:48–53.

    Article  Google Scholar 

  • Gomer, R., 1986, Possible Mechanisms of Atom Transfer in Scanning Tunneling Microscopy, IBM J. Res. Develop., 30(4):428–430.

    Article  CAS  Google Scholar 

  • Gomez, J., L. Vazquez, A. M. Baro, N. Garcia, C. L. Perdriel, W. E. Triaca and A. J. Arvia, 1986, Surface Topography of (100)-type Electro- Faceted Platinum From Scanning Tunneling Microscopy and Electrochemistry, Nature. 323:612–614.

    Article  CAS  Google Scholar 

  • Gould, S., O. Marti, B. Drake, L. Hellemans, C. E. Bracker, P. K. Hansma, N. L. Keder, M. M. Eddy and G. D. Stucky, 1988, Molecular Resolution Images of Amino Acid Crystals with the Atomic Force Microscope, Nature. 332:332–334.

    Article  CAS  Google Scholar 

  • Granqvist, C. G. and R. A. Buhrman, 1976, Ultrafine Metal Particles, J. Appl. Phys., 47(5):2200–2219.

    Article  CAS  Google Scholar 

  • Gray, H. F. and G. J. Campisi, 1986, A Silicon Field Emitter Array Planar Vacuum FET Fabricated with Microfabrication Techniques, in: “Science and Technology of Microfabrication,” Materials Research Society Symposia Proceedings, R. E. Howard, E. L. Hu, S. Namba and S. Pang, eds., pp. 25–30.

    Google Scholar 

  • Haddon, R. C. and A. A. Lamola, 1985, The Molecular Electronic Device and the Biochip Computer: Present Status, Proc. Nat. Acad. Sci. USA. 82:1874–1878.

    Article  CAS  Google Scholar 

  • Hameroff, S. R., 1987, Ultimate Computing: Biomolecular Consciousness and Nanotechnology, Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Hansma, P. K. and J. Tersoff, 1987, Scanning Tunneling Microscopy, J. Appl. Phys., 61(2):R1-R23.

    Article  CAS  Google Scholar 

  • Hansma, P. K., V. B. Elings, O. Marti and C. E. Bracker, 1988, Scanning Tunneling Microscopy and Atomic Force Microscopy: Application to Biology and Technology, Science. 242:209–216.

    Article  CAS  Google Scholar 

  • Howard, R. E., L. D. Jackel and W. J. Skocpol, 1985, Nanostructures: Fabrication and Applications, Microelectronic Engineering. 3:3–16.

    Article  CAS  Google Scholar 

  • Joy, D. C., 1987, Low Voltage Scanning Electron Microscopy, in: “Electron Microscopy and Analysis 1987,” L. M. Brown, ed., Institute of Physics Conference Series, Bristol, pp. 175–180.

    Google Scholar 

  • Kaiser, W. J. and L. D. Bell, 1988, Direct Investigation of Subsurface Interface Electronic Structure by Ballistic-Electron-Emission Microscopy, Phys. Rev. Lett., 60(14):1406–1409.

    Article  CAS  Google Scholar 

  • Kaminsky, G., 1985, Micromachining of Silicon Mechanical Structures, J. Vac. Sci. Technol. B. 3(4):1015–1024.

    Article  CAS  Google Scholar 

  • Kiewit, D. A., 1973, Microtool Fabrication by Etch Pit Replication, Rev. Sci. Instrum., 44(12):1741–1742.

    Article  Google Scholar 

  • Kratschmer, E., and M. Isaacson, 1986, Nanostructure Fabrication in Metals, Insulators, and Semiconductors using Self-Developing Metal Inorganic Resist, J. Vac. Sci. Technol. B. 4(1):361–364.

    Article  CAS  Google Scholar 

  • Kuhn, H., 1983, Functionalized Monolayer Assembly Manipulation, Thin Solid Films, 99:1–16.

    Article  CAS  Google Scholar 

  • Lehn, J. M., 1988, Supramolecular Chemistry Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angewandte Chemie. 27(1):89–112.

    Article  Google Scholar 

  • Likharev, K. K., 1987, Single-Electron Transistors: Electrostatic Analogs of the DC Squids, IEEE Transactions on Magnetics. 23(2):1142–1145.

    Article  Google Scholar 

  • Lin, C. W., F.-R. F. Fan and A. J. Bard, 1987, High Resolution Photoelectro- chemical Etching of n-GaAs with the Scanning Electrochemical and Tunneling Microscope, J. Electrochem. Soc., 134:1038–1039.

    Article  CAS  Google Scholar 

  • McCord, M. A., and R. F. W. Pease, 1985, High Resolution, Low-Voltage Probes From a Field Emission Source Close to the Target Plane, J. Vac. Sci. Technol. B, 3(1):198–201.

    Article  Google Scholar 

  • McCord, M. A. and R. F. W. Pease, 1986, Lithography with the Scanning Tunneling Microscope, J. Vac. Sci. Technol. B. 4(l):86–88.

    Article  Google Scholar 

  • McCord, M. A. and R. F. W. Pease, 1987, Exposure of Calcium Fluoride Resist with the Scanning Tunneling Microscope, J. Vac. Sci. Technol. B. 5(1):430–433.

    Article  CAS  Google Scholar 

  • Mead, C. A., 1961, Operation of Tunnel-Emission Devices, J. Appl. Phys., 32(4):646–652.

    Article  Google Scholar 

  • Panitz, J. A., 1986, Immunologic Layer Formation on Metal Microelectrodes, J. Colloid and Interface Science. 111(2):516–528.

    Article  CAS  Google Scholar 

  • Pethica, J. B., 1988, Atomic-Scale Engineering, Nature. 331:301.

    Article  CAS  Google Scholar 

  • Pohl, D. W., 1986, Silicon MicroMechanical STM, IBM patent application.

    Google Scholar 

  • Quate, C. F., 1986, Method and Means for Data Storage using Tunnel Current Data Readout, US Patent 4,575,822, 11 March.

    Google Scholar 

  • Schneiker, C. W. and S. R. Hameroff, 1988, NanoTechnology Workstation Based on Scanning Tunneling/Optical Microscopy: Applications to Molecular Scale Devices, in: “Molecular Electronic Devices, Proceedings of the Third International Workshop on Molecular Electronic Devices, October, 1986,” F. L. Carter, R. E. Siatkowski, and H. Wohltjen, Elsevier North-Holland, Amsterdam, pp. 69–90.

    Google Scholar 

  • Schneiker, C. W., 1988, NanoTechnology with Feynman Machines: Scanning Tunneling Engineering and Artificial Life, in: “Artificial Life, Sante Fe Institute Studies in the Sciences of Complexity,” C. Langton, ed., Addison-Wesley, pp. 443–500.

    Google Scholar 

  • Schneiker, C. W., S. R. Hameroff, M. A. Voelker, J. He, E. Dereniak and R. McCuskey, 1988, Scanning Tunneling Engineering, J. Microscopy, 152(2):585–596.

    Article  Google Scholar 

  • Serena, P. A., L. Escapa, J. J. Saenz, N. Garcia and H. Rohrer, 1988, Coherent Electron Emission from Point Sources, J. Microscopy. 152(1):43–51.

    Article  Google Scholar 

  • Shoulders, K. R., 1960, On Microelectronic Components, Interconnections, and System Fabrication, Proc. Western Joint Computer Conference, 251–258.

    Google Scholar 

  • Shoulders, K. R., 1961, Microelectronics Using Electron-Beam-Activated Machining Techniques, in: “Advances in Computers,” Franz Alt, ed., Academic Press, New York, pp. 135–293.

    Google Scholar 

  • Shoulders, K. R., 1962, On Microelectronic Components, Interconnections, and System Fabrication, in: “Aspects of the Theory of Artificial Intelligence,” C. A. Muses, ed., Plenum Press, New York, pp. 217–235.

    Google Scholar 

  • Shoulders, K. R., 1965, Toward Complex Systems, in: “Microelectronics and Large Systems,” Spartan Books, pp. 97–128. Shoulders, K. R., 1985, 1986, Personal Communication.

    Google Scholar 

  • Simpson, M., P. Smith and G. A. Dederski, 1987, Atomic Layer Epitaxy, Surface Enginnering, 3(4):343–348

    CAS  Google Scholar 

  • Sonnenfeld, R. and B. C. Schardt, 1986, Tunneling Microscopy in an Electrochemical Cell: Images of Ag Plating, Appl. Phys. Lett., 49(18):1172–1174.

    Article  CAS  Google Scholar 

  • Spindt, C. A., C. E. Holland and R. D. Stowell, 1984, Recent Progress in Low- Voltage Field-Emission Cathode Development, J. De Physique. Supplement. Dec., C9–269--C9–278.

    Google Scholar 

  • Staufer, U., R. Wiesendanger, L. Eng, L. Rosenthaler, H. R. Hidber, H.-J. Güntherodt and N. Garcia, 1987, Nanometer Scale Structure Fabrication with the Scanning Tunneling Microscope, Appl. Phys. Lett., 51(4):244–246.

    Article  CAS  Google Scholar 

  • Stroscio, M. A., 1986a, Quantum-Based Electronic Devices, Superlattices and Microstructures. 2(l):45–47.

    Article  Google Scholar 

  • Taniguchi, N., 1974, On the Basic Concept of Nanotechnology, in: “Proc. Int. Conf. Prod. Eng. Tokyo,” Part 2, JSPE, Tokyo, pp. 18–23.

    Google Scholar 

  • Taniguchi, N., 1983, Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing, Ann. CIRP. 32:1–10.

    Article  Google Scholar 

  • Taniguchi, N., 1985, Atomic Bit Machining by Energy Beam Processes. Prec. Engr., 4:145–155.

    Article  Google Scholar 

  • Teague, E. C., 1978, Vacuum Tunneling, in: “Proc. NSF Workshop on Opportunities for Microstructure Science, Engineering and Technology, Nov. 19–22,” Airlie House, Airlie, VA, p. 129.

    Google Scholar 

  • Teague, E. C., 1986, Room Temperature Gold-Vacuum-Gold Tunneling Experiments, J. of Research of the National Bureau of Standards. 91(4):171–233.

    CAS  Google Scholar 

  • Whitehead, M. Isaacson and E. Wolf, 1985, Nanometer Scale Metal Wire Fabrication, Microelectronic Engineering. 3:25–32.

    Article  Google Scholar 

  • Yamamura, Y., T. Fujisawa and S. Namba, 1984, Nanometer Structure Electronics, An Investigation of the Future of Microelectronics, in: “Proc. of the International Symposium on Nanometer Structure Electronics, April 16–18,” Osaka University, Toyonaka, Japan.

    Google Scholar 

  • Yates, F. E., 1984, Report on Conference on Chemically-Based Computer Designs, Crump Institute for Medical Engineering Report CIME TR/84/1, University of California, Los Angeles, CA.

    Google Scholar 

  • Young, R. D., 1966, Field Emission Ultramicrometer, Rev, of Sci. Instruments, 37(3):275–278.

    Article  CAS  Google Scholar 

  • Young, R. D., J. Ward and F. Scire, 1971, Observation of Metal-Vacuum-Metal Tunneling, Field Emission, and the Transition Region, Phys. Rev. Lett., 27:922.

    Article  CAS  Google Scholar 

  • Young, R. D., J. Ward and F. Scire, 1972, The Topografiner: An Instrument for Measuring Surface Microtopography, Rev. Sci. Instrum., 43(7):999–1011.

    Article  Google Scholar 

  • Zingsheim, H. P., 1978, Molecular Engineering Using Nanometer Surface Micro- structures, in: “Proceedings: NSF Workshop on Opportunities for Micro- structure Science, Engineering and Technology in Cooperation with the NRC Panel on Thin Film Microstructure Science and Technology, November 19–22, 1978,” Airlie House, Airlie, VA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to a pioneer of electronic NanoComputing

Forrest L. Carter (29 April 1930---20 December 1987)

and also to the godfather of NanoTechnology, Richard P. Feynman (11 May 1918---15 February 1988).

[Consider] the final questions as to whether, ultimately… we can arrange the atoms the way we want, the very atoms, all the way down!.,. Ultimately, we can do chemical synthesis…. When we get to the very, very small world---say circuits of seven atoms---we have a lot of new things that would happen that represent completely new opportunities for design.… We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins, etc.…

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Schneiker, C., Hameroff, S., Voelker, M., He, J., Dereniak, E., McCuskey, R. (1989). Nanoelectronics and Scanning Tunneling Engineering. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics