Skip to main content

Mathematical Problems Arising in Molecular Electronics: Global Geometry and Dynamics of the Double-Well Potential

  • Chapter
  • 226 Accesses

Abstract

In a demonstration that no physical limitations to computers arise from quantum mechanics and the uncertainty principle, Feynman 1 constructed Hamiltonians for spin systems which performed any desired sequence of logical operations. Although this work showed that there are no intrinsic reasons circuits could not be built at the molecular scale, numerous problems remain in constructing molecular analogs to the standard electronics building blocks: transmission lines, amplifiers, gates and switches. Numerous molecules or molecular systems have been proposed to serve these functions, but such questions such as interconnections, noise isolation, and immunity to thermal and quantum fluctuations remain unanswered. As with the engineering of computers in bulk matter, the engineering of computers in molecular systems requires attention to the detailed dynamics of the system. Part of the problem is at the foundations. Aside from numerical calculations, which are presently beyond the bounds of computer technology, and are likely to remain so for some time hence, the dynamics of large molecules are inaccessible to precise quantitative prediction. On the other hand, an analytical theory of molecular dynamics presents some serious technical challenges and conceptual difficulties. Rapid progress toward a science of information processing at the molecular level awaits the resolution of these fundamental difficulties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Feynman, “Quantum Mechanical Computers,” Foundations of Physics 16: 507 (1986).

    Article  Google Scholar 

  2. R. R. Birge, “The Photophysics of Light Transduction in Rhodopsin and Bacteriorhodopsin,” Ann. Rev. Biophys. Bioeng., 10: 315 (1981).

    Article  CAS  Google Scholar 

  3. B. W. Kobilka, T. S. Kobilka, K. Daniel, J. W. Regan, M. G. Caron and R. J. Lcfkowüz Science, 240: 1310 (1988).

    Article  CAS  Google Scholar 

  4. R. R. Birge, L. A. Findsen and B. M. Pierce, “Molecular dynamics of the Primary Photochemical Event in Bacteriorhodopsin: Theoretical Evidence for an Excited State Assignment for the J Intermediate,” J. Am. Chem. Soc., 109: 5041 (1987).

    Article  CAS  Google Scholar 

  5. S. Pnevmatikos, “Soliton Dynamics of Hydrogen-Bonded Networks: A Mechanism for Proton Conductivity,” Phys. Rev. Lett., 60: 1534 (1988).

    Article  CAS  Google Scholar 

  6. A. J. Legett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, “Dynamics of the Dissipative Two-State System,” Rev. Mod. Phys., 59: 1 (1987).

    Article  Google Scholar 

  7. C. DeWitt-Morette, A. Maheshwari, and B. Nelson, “Path Integration in Non- Relativistic Quantum Mechanics,” Physics Reports, 50: 255 (1979).

    Article  Google Scholar 

  8. B. Simon, “Semiclassical Analysis of Low Lying Eigenvalues I. Non-Degenerate Minima: Asymptotic Expansions,” Ann. Inst. Henri Poincare, A38: 295 (1983).

    Google Scholar 

  9. B. Simon, “Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling,” Annals of Mathematics, 120: 89 (1984).

    Article  Google Scholar 

  10. J. N. L. Connor, “Catastrophes and Molecular Collisions.” Molecular Physics, 31: 33 (1976).

    Article  CAS  Google Scholar 

  11. B. Simon, “Large Orders and Summability of Eigenvalue Perturbation Theory: A Mathematical Overview,” International journal of Quantum Chemistry, 21: 3 (1982).

    Article  Google Scholar 

  12. V. I. Arnold, “Remarks on the Stationary Phase Method and Coexter Numbers,” Uspekhi Mat. Nauk., 28: 17 (1973).

    Google Scholar 

  13. J. J. Duistermaat, “Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities,” Communications on Pure and Applied Mathematics, 27: 207 (1974).

    Article  Google Scholar 

  14. A. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin (1986)

    Google Scholar 

  15. H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer-Verlag, New York. (1987).

    Google Scholar 

  16. R. R. Birge and A. F. Lawrence, “Optical Random Access Memory Based on Bacteriorhodopsin,” These Proceedings.

    Google Scholar 

  17. W. H. Miller and T. F. George, “Semiclassical Theory of Electronic Transitions in Low Energy Atomic and Molecular Collisions Involving Several Nuclear Degrees of Freedom,” J. Chem. Phys., 56: 5637 (1972).

    Article  CAS  Google Scholar 

  18. I. M. Sigal and A. Soffer, “The N-Particle Scattering Problem: Asymptotic Completeness for Short-Range Systems,” Annals of Mathematics, 126: 35(1987).

    Google Scholar 

  19. G. A. Hagedorn, “High Order Corrections to the Time-Dependent Bom-Oppenheimer Approximation I: Smooth Potentials,” Annals of Mathematics, 124: 571 (1986).

    Article  Google Scholar 

  20. R. Bott, “Lectures on Morse Theory, Old and New,” Bulletin American Math. Soc., 7:2 331 (1982).

    Article  Google Scholar 

  21. J. B. Keller and D. W. McLaughlin, “The Feynman Integral,” American Math. Monthly, 82: 457 (1975).

    Article  Google Scholar 

  22. L. S. Schulman, Techniques and Applications of Path Integration, John Wiley and Sons, New York. (1981).

    Google Scholar 

  23. S. Albeverio and R. Höegh-Krohn, “Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with Applications to the Classical Limit of Quantum Mechanics I.,” Inventiones Math., 40: 59 (1977).

    Article  Google Scholar 

  24. E. Merzbacher, Quantum Mechanics, (2nd Edition), John Wiley & Sons, Inc., New York (1970).

    Google Scholar 

  25. B. C. Eu, “Quantum Theory of Large Amplitude Vibrational Motions in a One- Dimensional Morse Chain,” J. Chem. Phys., 73: 2405 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Lawrence, A.F., Birge, R.R. (1989). Mathematical Problems Arising in Molecular Electronics: Global Geometry and Dynamics of the Double-Well Potential. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics