Skip to main content

Incorporation of Ion Channels in Polymerized Membranes and Fabrication of a Biosensor

  • Chapter
Molecular Electronics

Abstract

A receptor-based biosensor uses biomolecules with specific molecule- recognition capability to detect chemicals. For this proposed receptor-based biosensor, proteins composed of binding sites and ion channels are embedded in a lipid bilayer. The protein-lipid membrane is deposited onto a transducing electrode.1,2 When a chemical of interest binds to the receptor site, the ion channel opens to permit an ionic current to flow through the membrane. The lipid bilayer has two purposes: first, it serves as the medium to support the proteins, and, second, it acts as an insulating membrane on the transducing electrode. The presence of the chemical of interest may thus be detected by the ion current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. T. Jarvis, “Biosensors: Today’s Technology, Tomorrow’s Products,” pp. 55, SEAI Technical Publications, Madison, GA (1986).

    Google Scholar 

  2. A. P. F. Turner, I. Karube, and G. S. Wilson, “Biosensors: Fundamentals and Applications,” pp. 770, Oxford University Press, New York (1987).

    Google Scholar 

  3. A. W. Dalziel, J. Georger, R. Price, A. Singh, P. Yager, Progress report on the fabrication of an acetylcholine receptor-based biosensor, in: “Membrane Proteins: Proceedings Membrane Protein Symposium”, S. C. Goheen, ed., pp. 643–673, Bio-Rad Publishing Co., New York (1987).

    Google Scholar 

  4. R. Latorre and O. Alvarez, Voltage-dependent channels in planar lipid bilayer membranes, Physiol. Rev. 61:77–149 (1981).

    CAS  Google Scholar 

  5. R. Coronado and R. Latorre, Phospholipid bilayers made from monolayers on patch-clamp pipettes, BioPhys. J. 43:231–236 (1983).

    CAS  Google Scholar 

  6. M. Borsotto, J. Barhanin, M. Fosset, and M. Lazdvnski, The 1,4 dihydro- pyridine receptor associated with the skeletal muscle voltage-dependent Ca++ channel, J. Biol. Chem. 260:14255–14263 (1985).

    CAS  Google Scholar 

  7. M. C. Nowycky, A. P. Fox, and R. W. Tsien, Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443 (1985).

    Article  CAS  Google Scholar 

  8. M. Takahashi and W. A. Catterall, Identification of an alpha subunit of dihydropyridine-sensitive brain calcium channels. Science 236:88–91 (1987).

    Article  CAS  Google Scholar 

  9. B. Hille, “Ionic Channels of Excitable Membranes,” pp. 426, Sinauer Associates, Inc., Sunderland, MA (1984).

    Google Scholar 

  10. S.L. Regen, A. Singh, G. Oehme, and M. Singh, Polymerized phosphatidyl choline vesicles. Synthesis and characterization, J. Amer. Chem. Soc. 104:791–795 (1982).

    Article  CAS  Google Scholar 

  11. A. Singh and J. M. Schnur, A general method for the synthesis of diacety-lenic acids, Synthe. Commun. 16:847–852 (1986).

    Article  CAS  Google Scholar 

  12. P. Yager, Patch clamping of bacteriorhodopsin and its reconstitution in a polymerizable lecithin, Biophys. J. 47:899–906 (1985).

    Article  Google Scholar 

  13. G. L. Gaines Jr., “Insoluble Monolayers at Liquid-Gas Interfaces,” pp 326–346, Interscience Publishers, New York (1966).

    Google Scholar 

  14. H. Schindler, Exchange and interaction between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta 555:316–336 (1979).

    Article  CAS  Google Scholar 

  15. I. Vodyanoy, J. E. Hall, and T. M. Balasubramanian, Alamethicin-induced current-voltage curve asymmetry in lipid bilayers, Biophys. J. 42:71–82 (1983).

    Article  CAS  Google Scholar 

  16. B.A. Suarez-Isla, K. Wan, J. Lindstrom, and M. Montal, Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipette. Biochemistry 22:2319–2323.

    Google Scholar 

  17. M. I. J. Beale, J.D. Benjamin, M. J. Urenn, N. G. Chew, and A. G. Cullis, An experimental and theoretical study of the formation and microstructure of porous silicon, J. Cryst. Growth. 73:622–636 (1985).

    Article  CAS  Google Scholar 

  18. H. Arwin and I. Lundstrom, Adsorption of a tripeptide on platinum electrodes, I. AC admittance measurements. Surface Science. 140:321–338.

    Google Scholar 

  19. B. G. Streetman, “Solid State Electronic Devices,” pp. 463, Prentice Hall, Inc., Englewood Cliff, NJ (1972).

    Google Scholar 

  20. J. Millman, “Microelectronics: Digital and Analog Circuits and Systems,” pp. 881, McGraw-Hill, New York (1979).

    Google Scholar 

  21. P. Yager, Functional reconstitution of a membrane protein in diacetylenic polymerizable lecithin, Biosensors 2:363–373 (1986).

    Article  CAS  Google Scholar 

  22. J. Ma and R. Coronado, Heterogeneity of conductance states in calcium channels of skeletal muscle, Biophys. J. 53:387–395 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Fare, T.L. et al. (1989). Incorporation of Ion Channels in Polymerized Membranes and Fabrication of a Biosensor. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics