Skip to main content

A Correlation between Photocycle and Photoelectric Response of Bacteriorhodopsin Monomers

  • Chapter
Molecular Electronics

Abstract

The bacteriorhodopsin (BR) molecules in the purple membrane (PM) are organized into a two-dimensional hexagonal lattice of trimers which are surrounded by about 30 lipid molecules. The protein-protein and proteinlipid interactions may affect their structure and function. It is therefore interesting to solubilize the PM into BR monomers and to investigate its functional characteristics. The BR monomers were reconstituted with dimyristoylphosphatidylcholine (DMPC) to form vesicles. We studied the pH dependence of the photoelectric response in a bilayer lipid membrane (BLM) system and of the kinetics of the M412 and the 0640 photocycle intermediates both in PM fragments and in BR monomer vesicles. The results show that the conformation of BR in monomeric state is more readily affected by the pH of the medium. Especially in pH higher than 9.4 the M412 slow-decaying component becomes very slow and even the polarity of the photovoltage signal is reversed. It appears that BR has two different conformational forms and their distribution depends on the pH of the medium. The two forms have different photocycle intermediates with different lifetimes and even the direction of proton pumping is reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Stoeckenius, R. H. Lozier and R. A. Bogomolni, Bacteriorhodopsin and the purple membrane of Halohacteria, Biochim. Biophys. Acta 505:215–278 (1979).

    CAS  Google Scholar 

  2. H. G. Khorana, Bacteriorhodopsin, a membrane protein that uses light to translocate protons, J. Biol. Chem. 263:7439–7422 (1988).

    CAS  Google Scholar 

  3. R. Henderson, and P. N. T. Unwin, Three-dimensional model of purple membrane obtained by electron microscopy, Nature (London) 257:28–32 (1975).

    Article  CAS  Google Scholar 

  4. N. A. Dencher, and M. P. Heyn, Preparation and properties of monomeric Bacteriorhodopsin, Meth. Enzvmol. 88:5–10 (1982).

    Article  CAS  Google Scholar 

  5. Q.-G. Li, R. Govindjee, and T. G. Ebrey, A correlation between proton pumping and the bacteriorhodopsin photocycle, Proc. Natl. Acad. Sci. USA 81:7079–7082 (1984).

    Article  CAS  Google Scholar 

  6. J. H. Hanamoto, P. Dupuis, and M. A. El-Sayed, On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 81:7083–7087 (1984).

    Article  CAS  Google Scholar 

  7. R. H. Lozier, W. Niederberger, R. A. Bogomolni, S.-B. Hwang, and W. Stoeckenius. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium Halobi- um cell envelopes, and phospholipid vesicles containing oriented purple membrane, Biochim. Bioophys. Acta 440:545–556 (1976).

    Article  CAS  Google Scholar 

  8. R. Govindjee, T. G. Ebrey, and A. R. Crofts, The quantum efficiency of proton pumping by the purple membrane of Halobacterium Halobium, Biophys. J. 30:231–242 (1980).

    Article  CAS  Google Scholar 

  9. L. Keszthelyi, Intramolecular charge shifts during the photoreaction cycle of bacteriorhodopsin, in: “Information and Energy Transduction in Biological Membranes,” C.L. Bolis, E. J. M. Helmreich, and H. Passow, eds., pp. 51–71, Alan R. Liss, Inc., New York (1984).

    Google Scholar 

  10. H.-W. Trissl, Primary electrogenic processes in bacteriorhodopsin probed by photoelectric measurements with capacitative metal electrodes, Biochim. BioPhys. Acta 806:124–135 (1985).

    Article  CAS  Google Scholar 

  11. F. T. Hong, and T. L. Okajima, Electrical double layers in pigment-containing biomembranes, In:“Electrical Double Layers in Biology,” M. Blank, ed., pp. 129–147, Plenum, New York (1986).

    Chapter  Google Scholar 

  12. F. T. Hong, The bacteriorhodopsin model membrane system as prototype molecular computing element, BioSvstems. 19:223–236 (1986).

    Article  CAS  Google Scholar 

  13. K.-S. Hu, L.-L. Shen, W.-Q. Sun, andM.-Q. Tan, The effect of pH on photoelectric response signal in different states of bacteriorhodopsin, Kexue Tongbao (Science Bulletin) (in Chinese) 32:1895–1898.

    Google Scholar 

  14. D. Oesterhelt, and W. Stoeckenius, Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Meth. Enzvmol. 31:667–678 (1974).

    Article  CAS  Google Scholar 

  15. B. Becher, and H. Y. Cassim. Improved isolation procedures for the purple membrane of Halobacterium Halobium, Prep1. Biochemistry 5:161–178 (1975).

    Article  CAS  Google Scholar 

  16. M. P. Heyn, and N. A. Dencher, Reconstitution of monomeric bacteriorhodopsin into phospholipid vesicles, Meth. Enzvmol. 88:31–35 (1982).

    Article  CAS  Google Scholar 

  17. R. J. Cherry, U. Muller, R. Henderson, and M. P. Heyn, Temperature-dependent aggregation of bacteriorhodopsin in Dipalmitoyl- and Dimyrist- oylphosphatidylcholine vesicles, J. Mol. Biol. 121:283–298 (1978).

    Article  CAS  Google Scholar 

  18. H. T. Tien, “Bilayer Lipid Membranes (BLM); Theory and practice,”: sssMarcel Dekker (1974).

    Google Scholar 

  19. K.-S. Hu, M.-Q. Tan, D.-H. Wang, W.-Q. Sun, and T.-Z. Zhang, The effect of pH on the rotational diffusion and photoelectrical response of bacteriorhodopsin, Acta Biophysica Sinica (in Chinese) 4:221–226.

    Google Scholar 

  20. K.-S. Hu, and M.-Q. Tan, The effect of temperature on the structure and photoelectric response signal in bacteriorhodopsin. Acta Biophysica Sinica, in press.

    Google Scholar 

  21. X.-M. Gu, The pH dependence of photocycle intermediates in two states of bacteriorhodopsin, Thesis (in Chinese) (1988).

    Google Scholar 

  22. T. L. Okajima, and F. T. Hong, Kinetic analysis of displacement photocurrents elicited in two types of bacteriorhodopsin model membranes, Biophys. J. 50:901–912 (1986).

    Article  CAS  Google Scholar 

  23. D. Dancshazy, R. Govindjee, B. Nelson, and T. G. Ebrey, A new intermedi ate in the photocycle of bacteriorhodopsin, FEBS Lett. 209:44–48 (1986).

    Article  CAS  Google Scholar 

  24. Q.-G. Li, R. Govindjee, and T. G. Ebrey, A proton release site on the C-terminal side of bacteriorhodopsin, Photochem. Photobiol. 44:515–518 (1986).

    Article  CAS  Google Scholar 

  25. G. I. Groma, F. Raski, G. Szabo, and G. Varo, Picosecond and nanosecond components in bacteriorhodopsin light-induced electric response signal, Biophys. J. 54:77–80 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Tan, MQ., Gu, X., Hu, KS. (1989). A Correlation between Photocycle and Photoelectric Response of Bacteriorhodopsin Monomers. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics