Skip to main content

Visual Phototransduction: Biochemical Aspects

  • Chapter
Molecular Electronics
  • 226 Accesses

Abstract

This paper is a brief overview of the current status of research on the molecular mechanism of visual phototransduction and does not discuss the diversified aspects of the visual process in detail, for which the reader is referred to other reviews1–4 and monographs.5–6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Chabre, Trigger and amplification mechanisms in visual phototransduction, Ann. Rev. Biophys. Biophys. Chem. 14:331 (1985).

    Article  CAS  Google Scholar 

  2. J.I. Korenbrot, Signal mechanisms of phototransduction in retinal rod, CRC Critical Rev. Biochem. 17:223 (1985).

    Article  CAS  Google Scholar 

  3. L. Stryer, Cyclic CMP cascade of vision, Ann. Rev. Neurosei. 9:87 (1986)

    Article  CAS  Google Scholar 

  4. J. Nathans, Molecular biology of visual pigments, Ann. Rev. NeuroSci. 10:163 (1987).

    Article  CAS  Google Scholar 

  5. H. Shichi, “Biochemistry of Vision,” Academic Press, New York, NY.

    Google Scholar 

  6. J.E. Dowling, “The Retina,” Harvard University Press, Cambridge, MA.

    Google Scholar 

  7. Y.A. Ovchinnikov, Rhodopsin and bacteriorhodopsin: Structure-function relationships, FEBS Lett. 148:179 (1982).

    Article  CAS  Google Scholar 

  8. P.A. Hargrave, J.H. McDowell, D.R. Curtis, J.K. Wang, E. Juszczak, S.L. Fong, J.K. Mohana Rao and P. Argos, The structure of bovine rhodopsin, Biophys. Struct. Mech. 9:235 (1983).

    CAS  Google Scholar 

  9. B.C. Findlay and D.J.C. Pappin, The opsin family of proteins, Biochem. J. 238:625 (1986).

    CAS  Google Scholar 

  10. J. Nathans and D.S. Hogness, Isolation and nucleotide sequence of the gene encoding human rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 81:4851.

    Google Scholar 

  11. J.E. O’Tousa, W. Baehr, R.L., Martin, J. Hirsh, W.L. Pak and M.L. Applebury, The Drosophila nina E gene encodes an opsin, Cell 40:839.

    Google Scholar 

  12. C.S. Zucker, A. F. Cowman and G.M. Rubin, Isolation and structure of a rhodopsin gene from D. melanogaster, Cell 40:851 (1985).

    Article  Google Scholar 

  13. Y.A. Ovchinnikov, N.G. Abdulaev, A.S. Zolotarev, I.D. Artamonov, I.A. Bespalov, A.E. Dergachev and M. Tsuda, Octopus rhodopsin: Amino acid sequence deduced from cDNA, FEBS Lett. 232:69 (1988).

    Article  CAS  Google Scholar 

  14. J. Nathans, D. Thomas and D.S. Hogness, Molecular genetics of human color vision: The genes encoding blue, green and red pigments, Science 232:193 (1986).

    Article  CAS  Google Scholar 

  15. W.A. Hagins, The visual process: Excitatory mechanisms in the primary receptor cells, Ann. Rev. Biophys. Bioeng. 1:131 (1972).

    Article  CAS  Google Scholar 

  16. E. Gesenko, S.S. Kolesnikov and A.L. Lyubarsky, Induction by the cyclic GMP cationic conductance in plasma membrane of retinal rod outer segment, Nature 313:310 (1985).

    Article  Google Scholar 

  17. D. Matesic and P.A. Liebman, cGMP-dependent cation channel of retinal rod outer segments, Nature 326:600 (1987).

    Article  CAS  Google Scholar 

  18. N.J. Cook, W. Hanke and U.B. Kaupp, Identification, purification, and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors, Proc. Natl. Acad. Sci. U.S.A. 84:585 (1987).

    Article  CAS  Google Scholar 

  19. P. Kilbride and T.G. Ebrey, Light-initiated changes of cyclic guanosine monophosphate levels in frog retina measured with quick-freezing technique, J. Gen Physiol. 74:415 (1979).

    Article  CAS  Google Scholar 

  20. V.I. Govardovski and A.L. Berman, Light-induced changes of cyclic GMP content in frog retinal rod outer segments measured with rapid freezing and microdissection, Biophys. Struct. Mech. 7:125 (1981).

    Google Scholar 

  21. P.A. Liebman and A. Sitaramayya, Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17:215 (1984).

    CAS  Google Scholar 

  22. “Inositol Lipids in Cellular Signalling” (R.H. Michell and J.W. Putney, eds.), Academic Press, Iondon and New York (1988).

    Google Scholar 

  23. J.E. Brown, L.J. Rubin, A.J. Ghalayini, A.P. Tarver, R.F. Irvine, M.J. Berridge and R.E. Anderson, myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature 311:160 (1984).

    Article  CAS  Google Scholar 

  24. A. Fein, Excitation and adaptation of Limulus photoreceptors by light and inositol 1,4,5-triphosphate, Trends NeuroSci. 9:110 (1986).

    Article  CAS  Google Scholar 

  25. O. Devary, O. Heichael, A. Blumenfeld, D. Cassel, E. Suss, S. Barash, C.T. Rubinstein, B. Minke and Z. Selinger, Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 84:6939 (1987).

    Article  CAS  Google Scholar 

  26. R.D. Shortridge, B.T. Bloomquist, S. Schneuwly, M.H. Perdew and W.L. Pak, Molecular isolation and analysis of a photoreceptor-specific phospholipase C gene, norpA. of Drosophila, Abstracts of “Molecular Physiology of Retinal Proteins,” L-32, (XXI Yamada Conference held in Kyoto, May 30-June 3, 1988).

    Google Scholar 

  27. T. Kubo„ K. Fukuda, A. Mikami, A. Maeda, H. Takahashi, M. Mishima, T. Haga, K. Haga, A. Ichiyama, K. Kanagawa, M. Kojima, H. Matsuo, T. Hirose and S. Numa, Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor, Nature 323:411 (1986).

    Article  CAS  Google Scholar 

  28. L. Marsh and I. Herskowitz, STE2 protein of Saccharomvces Kluyveri is a member of the rhodopsin/β-adrenergic receptor family and is responsible for recognition of the peptide ligand factor, Proc. Natl. Acad. Sci. U.S.A. 85:3855 (1988).

    Article  CAS  Google Scholar 

  29. D. Julins, A.B. MacDermott, R. Axel and T.M. Jessell, Molecular characterization of a functional cDNA encoding the serotonin Ic receptor. Science 241:558 (1988).

    Article  Google Scholar 

  30. J.L. Benovic, F. Mayor, R.L. Somers, M.G. Caron and R.J. Lefkowitz, Light-dependent phosphorylation of rhodopsin by y0-adrenergic receptor kinase. Nature 321:869 (1986).

    Article  CAS  Google Scholar 

  31. S.-D. Yang, Y.-L. Fong, J.L. Benovic, D.R. Sibley, M.G. Caron and R.J. Lefkowitz, Dephosphorylation of the receptor and rhodospin by latent phosphatase 2, J. Biol. Chem. 263:8856 (1988).

    CAS  Google Scholar 

  32. L. Stryer and H.R. Bourne, G proteins: a family of signal transducers, Ann. Rev. Cell Biol. 2:391 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Shichi, H. (1989). Visual Phototransduction: Biochemical Aspects. In: Hong, F.T. (eds) Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7482-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7482-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7484-2

  • Online ISBN: 978-1-4615-7482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics