Skip to main content

Radiation Preservation of Foods and Nature of Microbial Radiation Resistance

  • Chapter
Modern Food Microbiology

Part of the book series: Food Science Texts Series ((FSTS))

Abstract

Although a patent was issued in 1929 for the use of radiation as a means of preserving foods, it was not until shortly after World War II that this method of food preservation received any serious consideration. Although the application of radiation as a food preservation method has been somewhat slow in reaching its maximum potential use, the full application of this method presents some interesting challenges to food microbiologists and other food scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, L. S., D. L. Marshall, and R. M. Grodner. 1995. Radiosensitivity of Listeria monocytogenes at various temperatures and cell concentrations. J. Food Protect. 58:748–751.

    Google Scholar 

  2. Anellis, A., D. Berkowitz, and D. Kemper. 1973. Comparative resistance of nonsporogenic bacteria to low-temperature gamma irradiation. Appl. Microbiol. 25:517–523.

    CAS  Google Scholar 

  3. Anellis, A., D. Berkowitz, W. Swantak, and C. Strojan. 1972. Radiation sterilization of prototype military foods: Low-temperature irradiation of codfish cake, corned beef, and pork sausage. Appl. Microbiol. 24:453–462.

    CAS  Google Scholar 

  4. Anellis, A., E. Shattuck, D. B. Rowley, E. W. Ross Jr., D. N. Whaley, and V. R. Dowell Jr. 1975. Low-temperature irradiation of beef and methods for evaluation of a radappertization process. Appl. Microbiol. 30:811–820.

    CAS  Google Scholar 

  5. Bacq, Z. M., and P. Alexander. 1961. Fundamentals of Radiobiology, 2d ed. Oxford: Pergamon.

    Google Scholar 

  6. Brooks, B. W., and R. G. E. Murray. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. System. Bacteriol. 31:353–360.

    Article  Google Scholar 

  7. Clifford, W. J., and A. Anellis. 1975. Radiation resistance of spores of some Clostridium perfringens strains. Appl. Microbiol. 29:861–863.

    CAS  Google Scholar 

  8. Collins, M. D., and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354.

    CAS  Google Scholar 

  9. Counsell, T. J., and R. G. E. Murray. 1986. Polar lipid profiles of the genus Deinococcus. Int. J. System. Bacteriol. 36:202–206.

    Article  CAS  Google Scholar 

  10. Dickson, J. S., and R. B. Maxcy. 1984. Effect of radiolytic products on bacteria in a food system. J. Food Sci. 49:577–580.

    Article  Google Scholar 

  11. Doty, D. M. 1965. Chemical changes in irradiated meats. In Radiation Preservation of Foods, 121–25. Washington, DC: National Research Council, National Academy of Sciences.

    Google Scholar 

  12. Duggan, D. E., A. W. Anderson, and P. R. Elliker. 1963. Inactivation of the radiation-resistant spoilage bacterium Micrococcus radiodurans. II. Radiation inactivation rates as influenced by menstruum temperature, preirradiation heat treatment, and certain reducing agents. Appl. Microbiol. 11:413–417.

    CAS  Google Scholar 

  13. Ehioba, R. M., A. A. Kraft, R. A. Molins, H. W. Walker, D. G. Olson, G. Subbaraman, and R. P. Skowronski. 1988. Identification of microbial isolates from vacuum-packaged ground pork irradiated at 1 kGy. J. Food Sci. 53:278–279, 281.

    Article  Google Scholar 

  14. El-Zawahry, Y. A., and D. B. Rowley. 1979. Radiation resistance and injury of Yersinia enterocolitica. Appl. Environ. Microbiol. 37:50–54.

    CAS  Google Scholar 

  15. Fiddler, W., R. A. Gates, J. W. Pensabene, J. G. Phillips, and E. Wierbicki. 1981. Investigations on nitrosamines in irradiation-sterilized bacon. J. Agric. Food Chem. 29:551–554.

    Article  CAS  Google Scholar 

  16. Food and Agriculture Organization/IAEA/World Health Organization. 1977. Wholesomeness of Irradiated Food. Report of joint FAO/IAEA/WHO Expert Committee, WHO Technical Report Series 604.

    Google Scholar 

  17. Fu, A.-H., J. G. Sebranek, and E. A. Murano. 1995. Survival of Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli 0157:H7 and quality changes after irradiation of beef steaks and ground beef. J. Food Sci. 60:972–977.

    Article  CAS  Google Scholar 

  18. Giddings, G. G. 1984. Radiation processing of fishery products. Food Technol. 38(4):61–65, 94–97.

    Google Scholar 

  19. Goldblith, S. A. 1963. Radiation preservation of foods—Two decades of research and development. In Radiation Research, 155–167. Washington, DC: U.S. Department of Commerce, Office of Technical Services.

    Google Scholar 

  20. Goldblith, S. A. 1966. Basic principles of microwaves and recent developments. Adv. Food Res. 15:277–301.

    Article  CAS  Google Scholar 

  21. Goresline, H. E., M. Ingram, P. Macuch, G. Mocquot, D. A. A. Mossell, C. F. Niven, and F. S. Thatcher. 1964. Tentative classification of food irradiation processes with microbiological objectives. Nature 204:237–238.

    Article  Google Scholar 

  22. Grecz, N., O. P. Snyder, A. A. Walker, and A. Anellis. 1965. Effect of temperature of liquid nitrogen on radiation resistance of spores of Clostridium botulinum. Appl. Microbiol. 13:527–536.

    CAS  Google Scholar 

  23. Grecz, N., A. A. Walker, A. Anellis, and D. Berkowitz. 1971. Effects of irradiation temperature in the range -196 to 95°C on the resistance of spores of Clostridium botulinum 33A in cooked beef. Can J. Microbiol. 17:135–142.

    Article  CAS  Google Scholar 

  24. Grünewald, T. 1961. Behandlung von Lebensmitteln mit energiereichen Strahlen. Ernährungs-Umschau 8:239–244.

    Google Scholar 

  25. Hashisaka, A. E., S. D. Weagant, and F. M. Dong. 1989. Survival of Listeria monocytogenes in mozzarella cheese and ice cream exposed to gamma irradiation. J. Food Protect. 52:490–492.

    Google Scholar 

  26. Hashisaka, A. E., J. R. Matches, Y. Batters, F. P. Hungate, and F. M. Dong. 1990. Effects of gamma irradiation at -78°C on microbial populations in dairy products. J. Food Sci. 55:1284–1289.

    Article  Google Scholar 

  27. Heiligman, F. 1965. Storage stability of irradiated meats. Food Technol. 19:114–116.

    Google Scholar 

  28. Huhtanen, C. N., R. K. Jenkins, and D. W. Thayer. 1989. Gamma radiation sensitivity of Listeria monocytogenes. J. Food Protect. 52:610–613.

    Google Scholar 

  29. Johnson, B., and K. Moser. 1967. Amino acid destruction in beef by high energy electron beam irradiation. In Radiation Preservation of Foods, 171–179. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  30. Josephson, E. S., A. Brynjolfsson, and E. Wierbicki. 1975. The use of ionizing radiation for preservation of food and feed products. In Radiation ResearchBiomedical, Chemical, and Physical Perspectives, ed. O. F. Nygaard, H. I. Adler, and W. K. Sinclair, 96–117. New York: Academic Press.

    Google Scholar 

  31. Kampelmacher, E. H. 1983. Irradiation for control of Salmonella and other pathogens in poultry and fresh meats. Food Technol. 37(4): 117–119, 169.

    Google Scholar 

  32. Kempe, L. L. 1965. The potential problems of type E botulism in radiation-preserved seafoods. In Radiation Preservation of Foods, 211–215. Washington, DC: Research Council, National Academy of Science.

    Google Scholar 

  33. Kilburn, R. E., W. D. Bellamy, and S. A. Terni. 1958. Studies on a radiation-resistant pigmented Sarcina sp. Radiat Res. 9:207–215.

    Article  CAS  Google Scholar 

  34. Koch, H. W., and E. H. Eisenhower. 1965. Electron accelerators for food processing. In Radiation Preservation of Foods, 149–180. Washington, DC: National Research Council, National Academy of Science.

    Google Scholar 

  35. Krabbenhoft, K. L., A. W. Anderson, and P. R. Elliker. 1965. Ecology of Micrococcus radio-durans. Appl. Microbiol 13:1030–1037.

    CAS  Google Scholar 

  36. Lavin, M. F., A. Jenkins, and C. Kidson. 1976. Repair of ultraviolet light-induced damage in Micrococcus radiophilus, an extremely resistant microorganism. J. Bacteriol. 126:587–592.

    CAS  Google Scholar 

  37. Lee, J. S., A. W. Anderson, and P. R. Elliker. 1963. The radiation-sensitizing effects of N-ethylmaleimide and iodoacetic acid on a radiation-resistant Micrococcus. Radiat. Res. 19:593–598.

    Article  CAS  Google Scholar 

  38. Lewis, N. F., D. A. Madhavesh, and U. S. Kumta. 1974. Role of carotenoid pigments in radioresistant micrococci. Can. J. Microbiol. 20:455–459.

    Article  CAS  Google Scholar 

  39. Ley, F. J. 1983. New interest in the use of irradiation in the food industry. In Food Microbiology: Advances and Prospects, ed. T. A. Roberts and F. A. Skinner, 113–129. London: Academic Press.

    Google Scholar 

  40. Licciardello, J. J., J. T. R. Nickerson, and S. A. Goldblith. 1966. Observations on radio-pasteurized meats after 12 years of storage at refrigerator temperatures above freezing. Food Technol. 20:1232.

    Google Scholar 

  41. Liuzzo, J. S., W. B. Barone, and A. F. Novak. 1966. Stability of B-vitamins in Gulf oysters preserved by gamma radiation. Fed. Proc. 25:722.

    Google Scholar 

  42. Loaharanu, P. 1989. International trade in irradiated foods: Regional status and outlook. Food Technol. 43(7):77–80.

    Google Scholar 

  43. Losty, T., J. S. Roth, and G. Shults. 1973. Effect of irradiation and heating on proteolytic activity of meat samples. J. Agr. Food Chem. 21:275–277.

    Article  CAS  Google Scholar 

  44. Massey, L. M., Jr., and J. B. Bourke. 1967. Some radiation-induced changes in fresh fruits and vegetables. In Radiation Preservation of Foods, 1–11. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  45. Maxie, E., and N. Sommer. 1965. Irradiation of fruits and vegetables. In Radiation Preservation of Foods, 39–52. Washington, DC: National Research Council, National Academy of Science.

    Google Scholar 

  46. Midura, T. F., L. L. Kempe, J. T. Graikoski, and N. A. Milone. 1965. Resistance of Clostridium perfringens type A spores to gamma-radiation. Appl. Microbiol. 13:244–247.

    CAS  Google Scholar 

  47. Moseley, B. E. B. 1976. Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem. Photobiol. Rev. 7:223–274.

    Google Scholar 

  48. Mulder, R. W. A. W. 1984. Ionizing energy treatment of poultry. Food Technol. Aust. 36:418–420.

    Google Scholar 

  49. Mulder, R. W. A., S. Notermans, and E. H. Kampelmacher. 1977. Inactivation of salmonellae on chilled and deep frozen broiler carcasses by irradiation. J. Appl. Bacteriol. 42:179–185.

    Article  CAS  Google Scholar 

  50. Niemand, J. G., H. J. van der Linde, and W. H. Holzapfel. 1983. Shelf-life extension of minced beef through combined treatments involving radurization. J. Food Protect. 46:791–796.

    Google Scholar 

  51. Nishimura, Y., T. Ino, and H. Iizuka. 1988. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. System. BacterioL 38:290–311.

    Article  Google Scholar 

  52. Niven, C. F., Jr. 1958. Microbiological aspects of radiation preservation of food. Ann. Rev. Microbiol. 12:507–524.

    Article  Google Scholar 

  53. Novak, A. F., R. M. Grodner, and M. R. R. Rao. 1967. Radiation pasteurization of fish and shellfish, In Radiation Preservation of Foods, 142–151. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  54. Oyaizu, H., E. Stackebrandt, K. H. Schleifer, W. Ludwig, H. Pohla, H. Ito, A. Hirata, Y. Oyaizu, and K. Komagata. 1987. A radiation-resistant rod-shaped bacterium, Deinobactergrandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int. J. System. Bacteriol. 37:62–67.

    Article  CAS  Google Scholar 

  55. Palumbo, S. A., R. K. Jenkins, R. L. Buchanan, and D. W. Thayer. 1986. Determination of irradiation D-values for Aeromonas hydrophila. J. Food Protect. 49:189–191.

    Google Scholar 

  56. Patterson, M. 1989. Sensitivity of Listeria monocytogenes to irradiation on poultry meat and in phosphate-buffered saline. Lett. Appl. Microbiol. 8:181–184.

    Article  Google Scholar 

  57. Patterson, M. F. 1988. Sensitivity of bacteria to irradiation on poultry meat under various atmospheres. Lett. Appl. Microbiol. 7:55–58.

    Article  Google Scholar 

  58. Poole, S. E., P. Wilson, G. E. Mitchell, and P. A. Wills. 1990. Storage life of chilled scallops treated with low dose irradiation. J. Food Protect. 53:763–766.

    Google Scholar 

  59. Pszczola, D. 1993. Irradiated poultry makes U.S. debut in midwest and Florida markets. Food Technol. 47(11):89–96.

    Google Scholar 

  60. Radomyski, T., E. A. Murano, D. G. Olson, and P. S. Murano. 1994. Elimination of pathogens of significance in food by low-dose irradiation: A review. J. Food Protect. 57:73–86.

    Google Scholar 

  61. Restaino, L., J. J. J. Myron, L. M. Lenovich, S. Bills, and K. Tscherneff. 1984. Antimicrobial effects of ionizing radiation on artificially and naturally contaminated cacao beans. Appl. Environ. Microbiol. 47:886–887.

    CAS  Google Scholar 

  62. Roberts, T. A., and M. Ingram. 1965. The resistance of spores of Clostridium botulinum Type E to heat and radiation. J. Appl. Bacteriol. 28:125–141.

    Google Scholar 

  63. Roberts, T. A., and M. Ingram. 1965. Radiation resistance of spores of Clostridium species in aqueous suspension. J. Food Sci. 30:879–885.

    Article  Google Scholar 

  64. Rose, S. A., N. K. Modi, H. S. Tranter, N. E. Bailey, M. F. Stringer, and P. Hambleton. 1988. Studies on the irradiation of toxins of Clostridium botulinum and Staphylococcus aureus. J. Appl. Bacteriol. 65:223–229.

    Article  CAS  Google Scholar 

  65. Rowley, D. B., and A. Brynjolfsson. 1980. Potential uses of irradiation in the processing of food. Food Technol. 34(10):75–77.

    Google Scholar 

  66. . Saleh, Y. G., M. S. Mayo, and D. G. Ahearn. 1988. Resistance of some common fungi to gamma irradiation. Appl. Environ. Microbiol. 54:2134–2135.

    CAS  Google Scholar 

  67. Skala, J. H., E. L. McGown, and P. P. Waring. 1987. Wholesomeness of irradiated foods. J. Food Protect. 50:150–160.

    Google Scholar 

  68. Sullivan, R., A. C. Fassolitis, E. P. Larkin, R. B. Read Jr., and J. T. Peeler. 1971. Inactivation of thirty viruses by gamma radiation. Appl. Microbiol. 22:61–65.

    CAS  Google Scholar 

  69. Sullivan, R., P. V. Scarpino, A. C. Fassolitis, E. P. Larkin, and J. T. Peeler. 1973. Gamma radiation inactivation of coxsackievirus B-2. Appl. Microbiol. 26:14–17.

    CAS  Google Scholar 

  70. Suzuki, K.-L, M. D. Collins, E. Iigima, and K. Komagata. 1988. Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol. Lett. 52:33–40.

    Article  CAS  Google Scholar 

  71. Thayer, D. W., G. Boyd, and C. N. Huhtanen. 1995. Effects of ionizing radiation and anaerobic refrigerated storage on indigenous microflora, Salmonella, and Clostridium botulinum types A and B in vacuum-canned, mechanically deboned chicken meat. J. Food Protect. 58:752–757.

    Google Scholar 

  72. Thayer, D. W., and G. Boyd. 1995. Radiation sensitivity of Listeria monocytogenes on beef as affected by temperature. J. Food Sci. 60:237–240.

    Article  CAS  Google Scholar 

  73. Thayer, D. W., J. B. Fox Jr., and L. Lakritz. 1991. Effects of ionizing radiation on vitamins. In Food Irradiation, ed. S. Thorne, 285–325. New York: Elsevier Applied Science.

    Google Scholar 

  74. Thayer, D. W., J. P. Christopher, L. A. Campbell, D. C. Ronning, R. R. Dahlgren, G. M. Thomson, and E. Wierbicki. 1987. Toxicology studies of irradiation-sterilized chicken. J. Food Protect. 50:278–288.

    Google Scholar 

  75. Tiwari, N. P., and R. B. Maxcy. 1972. Moraxella-Acinetobacter as contaminants of beef and occurrence in radurized product. J. Food Sci. 37:901–903.

    Article  Google Scholar 

  76. Tsuji, K. 1983. Low-dose cobalt 60 irradiation for reduction of microbial contamination in raw materials for animal health products. Food Technol. 37(2):48–54.

    Google Scholar 

  77. Urbain, W. M. 1965. Radiation preservation of fresh meat and poultry. In Radiation Preservation of Foods, 87–98. Washington, DC: National Research Council, National Academy of Science.

    Google Scholar 

  78. Urbain, W. M. 1978. Food irradiation. Adv. Food Res. 24:155–227.

    Article  CAS  Google Scholar 

  79. Van den Eynde, H., Y. Van de Peer, H. Vandenabeele, M. Van Bogaert, and R. de Wachter. 1990. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int. J. System. Bacteriol. 40:399–404.

    Article  Google Scholar 

  80. Verster, A., T. A. du Plessis, and L. W. van den Heever. 1977. The eradication of tapeworms in pork and beef carcasses by irradiation. Radiat. Phys. Chem. 9:769–771.

    Google Scholar 

  81. Weisburg, W. G., S. J. Giovannoni, and C. R. Woese. 1989. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. System. Appl. Microbiol. 11:128–134.

    Article  CAS  Google Scholar 

  82. Welch, A. B., and R. B. Maxcy. 1975. Characterization of radiation-resistant vegetative bacteria in beef. Appl. Microbiol. 130:242–250.

    Google Scholar 

  83. Wick, E., E. Murray, J. Mizutani, and M. Koshika. 1967. Irradiation flavor and the volatile components of beef. In Radiation Preservation of Foods, 12–25. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  84. Wierbicki, E., M. Simon, and E. S. Josephson. 1965. Preservation of meats by sterilizing doses of ionizing radiation. In Radiation Preservation of Foods, 383–409. Washington, DC: National Research Council, National Academy of Science.

    Google Scholar 

  85. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Aspen Publishers, Inc.

About this chapter

Cite this chapter

Jay, J.M. (1998). Radiation Preservation of Foods and Nature of Microbial Radiation Resistance. In: Modern Food Microbiology. Food Science Texts Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7476-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7476-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7478-1

  • Online ISBN: 978-1-4615-7476-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics