Skip to main content

Preparation and Characterization of Highly Dispersed Electrocatalytic Materials

  • Chapter
Modern Aspects of Electrochemistry

Abstract

Catalysis can be defined as the science of maximizing chemical reaction rates for the formation of preferred products. Catalysis is achieved by using high-surface-area materials that may have specific surface features (i.e., preferred reaction sites). A secondary area is the study of adsorbed species on the catalytic surface, catalyst deactivation by poisoning, and loss of surface area due to sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Kobosev and W. Monblanova, Acta Physicochim. URSS 1 (1934) 611.

    Google Scholar 

  2. J. O’M. Bockris and H. Wroblowa, J. Electroanal. Chem. 7 (1964) 428.

    Google Scholar 

  3. S. Srinivasan, H. Wroblowa, and J. O’M. Bockris, in Advances in Catalysis, Ed. by D. D. Eley, H. Pines, and P. B. Weisz, Academic Press, New York, 1967, Vol. 17, p. 351.

    Google Scholar 

  4. A. J. Appelby, Catal. Rev. 4 (1970) 221.

    Google Scholar 

  5. Y. Okamoto and W. Brenner, Organic Semiconductors, Reinhold Publishing, New York, 1964, p. 82.

    Google Scholar 

  6. M. H. Polley and B. B. S. T. Boonstra, Rubber Chem. Technol. 30 (1957) 170.

    Google Scholar 

  7. W. R. Smith, in Encyclopedia of Chemical Technology, 2nd Ed., Interscience, New York, 1964, Vol. 4, p. 243.

    Google Scholar 

  8. H. P. Boehm, in Advances in Catalysis, Ed. by D. D. Eley, H. Pines, and P. B. Weisz, Academic Press, New York, 1966, Vol. 16, p. 179.

    Google Scholar 

  9. J. B. Donnet, Carbon 6 (1968) 161.

    CAS  Google Scholar 

  10. D. Rivin, Rubber Chem. Technol. 44 (1971) 307.

    CAS  Google Scholar 

  11. H. B. Puri, in Chemistry and Physics of Carbon, Ed. by P. L. Walker, Marcel Dekker, New York, 1970, Vol. 6, p. 191.

    Google Scholar 

  12. B. A. Puri and R. C. Bansal, Carbon 1 (1964) 457.

    Google Scholar 

  13. K. Kinoshita and J. A. S. Bett, Carbon 11 (1973) 237.

    CAS  Google Scholar 

  14. K. Kinoshita and J. A. S. Bett, in Corrosion Problems in Energy Conversion and Generation, Ed. by C. S. Tedmon, Electrochemical Society, Princeton, N.J., 1974, p. 43.

    Google Scholar 

  15. H. Binder, A. Kohling, K. Richter, and G. Sandstede, Electrochim. Acta 9 (1964) 255.

    CAS  Google Scholar 

  16. C. A. Hampel, Ed., Encyclopedia of Electrochemistry, Reinhold Publishing, New York, 1964, p. 151.

    Google Scholar 

  17. Thorpe’s Dictionary of Applied Chemistry, Longmans Green, 1957, Vol. 6, p. 284.

    Google Scholar 

  18. K. Kinoshita and J. A. S. Bett, Carbon 11 (1973) 403.

    CAS  Google Scholar 

  19. W. G. Berl, Trans. Electrochem. Soc. 83 (1943) 253.

    Google Scholar 

  20. M. O. Davies, M. Clark, E. Yeager, and F. Hovorka, J. Electrochem. Soc. 106 (1959) 56.

    CAS  Google Scholar 

  21. P. Stonehart, Ph.D. thesis, University of Cambridge, England, 1962.

    Google Scholar 

  22. R. J. Bowen and H. B. Urbach, J. Chem. Phys. 49 (1968) 1206.

    CAS  Google Scholar 

  23. H. B. Urbach and R. J. Bowen, Electrochim. Acta 14 (1969) 927.

    CAS  Google Scholar 

  24. E. Yeager and A. Kozawa, Tech. Rept. 17, Office of Naval Res. Contr. Nonr. 2391 (00) Project NR 359–277, Jan. 15, 1974.

    Google Scholar 

  25. J. Mrha, Collect Czech. Chem. Commun. 32 (1967) 708.

    CAS  Google Scholar 

  26. M. Brezina, J. Jinda, and J. Mrha, Collect. Czech. Chem. Commun. 33 (1968) 2363.

    CAS  Google Scholar 

  27. J. P. Hoare, Energy Convers. 8 (1968) 155.

    CAS  Google Scholar 

  28. J. Mrha, W. Vielstich, and U. Vogel, Z. Phys. Chem. (Frankfurt) 52 (1967) 215.

    CAS  Google Scholar 

  29. G. Luft, K. Mund, G. Richter, R. Schulte, and F. von Sturm, Siemens Forsch. Entwicklungs ber. 3 (1974) 177.

    CAS  Google Scholar 

  30. S. G. Meilbuhr, Nature, London 210 (1966) 409.

    Google Scholar 

  31. L. W. Niedrach and D. W. McKee, in Proceedings of the 21st Annual Power Sources Conference, May 16–18, 1967, PSC Publications Committee, Red Bank, N.J. p. 6.

    Google Scholar 

  32. W. T. Grubb and D. W. McKee, Nature, London 210 (1966) 192.

    CAS  Google Scholar 

  33. Hydrocarbon-Air Fuel Cells, Semi-Annual Technical Summary, Report No. 12, July I-December 31, 1967, Contr. DAAK-02–67-C-0080, General Electric Co., Lynn,Mass.

    Google Scholar 

  34. H. A. Laitinen, C. A. Vincent and T. M. Bednarski, J. Electrochem. Soc. 115 (1968) 1024

    CAS  Google Scholar 

  35. D. Elliott, D. L. Zellmer, and H. A. Laitinen, J. Electrochem. Soc. 117 (1970) 1343.

    CAS  Google Scholar 

  36. A. C. C. Tseung and S. C. Dhara, Electrochim. Acta 19 (1974) 845.

    CAS  Google Scholar 

  37. C. A. Vincent and D. G. C. Weston, J. Electrochem. Soc. 119 (1972) 518.

    CAS  Google Scholar 

  38. R. D. Armstrong, A. F. Douglas, and D. E. Williams, Energy Convers. 11 (1971) 7.

    CAS  Google Scholar 

  39. J. Mchardy and P. Stonehart, Electrochemistry of transition metal oxide bronzes and related compounds in International Review of Science, Physical Chemistry, Series 2, Ed. by J. O’M. Bockris, Butterworths, London, 1975 p. 171.

    Google Scholar 

  40. L. W. Niedrach and H. I. Zeliger, J. Electrochem. Soc. 116 (1969) 152.

    CAS  Google Scholar 

  41. B. Broyde, J. Catal. 10 (1968) 13.

    CAS  Google Scholar 

  42. A. C. C. Tseung and H. L. Bevan, J. Electroanal. Chem. 45 (1973) 429.

    CAS  Google Scholar 

  43. D. B. Meadowcroft, Nature, London 266 (1970) 847.

    Google Scholar 

  44. C. Pinnington, International Symposium on Fuel Cells, Antwerp, Belgium, October 2–3, 1972, fourth paper.

    Google Scholar 

  45. ESSO Research and Engineering Company, Hydrocarbon-Air Fuel Cell Report No. 7, Semi-Annual Report No. 3 (January 1, 1965-June 30, 1965), Contract No. DA 36039 AMC-03743(E).

    Google Scholar 

  46. L. J. Hillenbrand and J. W. Lacksonen, J. Electrochem. Soc. 112 (1965) 249.

    CAS  Google Scholar 

  47. C. S. Nicolau, H. G. Thom, and E. Pobitschka, Trans. Faraday Soc. 55(1959) 1430.

    CAS  Google Scholar 

  48. C. S. Nicolau and H. G. Thom, Z. Anorg. Allgem. Chem. 303 (1960) 133.

    CAS  Google Scholar 

  49. P. N. Ross, K. Kinoshita, and P. Stonehart, J. Catal. 32 (1974) 163.

    CAS  Google Scholar 

  50. V. A. Garten and D. E. Weiss, Aust. J. Chem. 8 (1955) 68.

    CAS  Google Scholar 

  51. F. Solymosi, Catal. Rev. 1 (1967) 233.

    CAS  Google Scholar 

  52. N. H. Sagert and R. M. L. Pouteau, Platinum Met. Rev. 19 (1975) 16.

    CAS  Google Scholar 

  53. B. R. Arora, Chem. Age India 25 (1974) 375.

    Google Scholar 

  54. B. S. Hobbs and A. C. C. Tseung, Nature, London 222 (1969) 556.

    CAS  Google Scholar 

  55. B. S. Hobbs and A. C. C. Tseung, J. Electrochem. Soc. 119 (1972) 580.

    CAS  Google Scholar 

  56. B. S. Hobbs and A. C. C. Tseung, J. Electrochem. Soc. 120 (1973) 766.

    CAS  Google Scholar 

  57. A. C. C. Tseung and B. S. Hobbs, Platinum Met. Rev. 13 (1969) 146.

    CAS  Google Scholar 

  58. J. E. Benson, H. W. Kohn, and M. Boudart, J. Catal. 5 (1966) 307.

    CAS  Google Scholar 

  59. R. B. Levy and M. Boudart, J. Catal. 32 (1974) 304.

    CAS  Google Scholar 

  60. P A. Sermon and G. C. Bond, Catal. Rev. 8 (1973) 211.

    CAS  Google Scholar 

  61. J. O’M. Bockris and J. McHardy, J. Electrochem. Soc. 120 (1973) 61.

    Google Scholar 

  62. A. J. Robell, E. V. Ballon, and M. Boudart, J. Phys. Chem. 68 (1964) 2748.

    CAS  Google Scholar 

  63. M. Boudart, A. W. Aldag, and M. A. Vannice, J. Catal. 18 (1970) 46.

    CAS  Google Scholar 

  64. V. S. Bagotzky, L. D. Kanevsky, and V. S. Palanker, Electrochim. Acta 18 (1973) 471

    Google Scholar 

  65. T. V. Balashova, V. S. Bagotskii, A. M. Skundin, and L. G. Gindin, Electrokhimiya 8 (1972) 1600.

    CAS  Google Scholar 

  66. L. S. Kanevskii, V. V. Emel’yanenko, and V. S. Bagotskii, Electrokhimiya 8 (1972) 288.

    Google Scholar 

  67. L. S. Kanevskii, V. S. Palanker, and V. S. Bagotskii, Electrokhimiya 6 (1970) 271.

    CAS  Google Scholar 

  68. J. Bett, K. Kinoshita, K. Routsis, and P. Stonehart, J. Catal. 29 (1973) 160.

    CAS  Google Scholar 

  69. K. Kinoshita, J. Lundquist, and P. Stonehart, J. Catal. 31 (1973) 325.

    CAS  Google Scholar 

  70. W. Vogel, J. Lundquist, P. Ross, and P. Stonehart, Electrochim Acta 20 (1975) 79.

    CAS  Google Scholar 

  71. D. E. Fornwalt and K. Kinoshita, Micron 4 (1973) 99.

    Google Scholar 

  72. J. Sinfelt, in Annual Reviews of Material Science, Ed. by R. Huggins, R. H. Bebe, and R. W. Roberts, Addison-Wesley, Palo Alto, Calif., 1972, Vol. 2, p. 641.

    Google Scholar 

  73. K. Morikawa, T. Shirasaki, and M. Okada, in Advances in Catalysis, Ed. by D. D. Eley, H. Pines. and P. B. Weisz, Academic Press, New York, 1960, Vol. 20, p. 97.

    Google Scholar 

  74. F. G. Ciapetta and C. J. Plank, in Catalysis, Vol. I, Fundamental Principles (Part 1), Ed. by P. H. Emmett, Reinhold Publishing, New York, 1954, p. 315.

    Google Scholar 

  75. C. R. Adams, H. A. Benesi, R. M. Curtis, and R. G. Meisenheimer, J. Catal. 1 (1962) 336.

    CAS  Google Scholar 

  76. H. A. Benesi, R. M. Curtis, and H. P. Studer, J. Catal. 10 (1968) 328.

    CAS  Google Scholar 

  77. T. A. Dorling, B. W. J. Lynch, and R. L. Moss, J. Catal. 20 (1971) 190.

    CAS  Google Scholar 

  78. T. A. Dorling and R. L. Moss, J. Catal. 5 (1966) 111.

    CAS  Google Scholar 

  79. T. A. Darling and R. L. Moss, J. Catal. 7 (1967) 378.

    Google Scholar 

  80. O. M. Poltorak and V. S. Boronin, Zh. Fiz. Khim. SSSR 39 (1965) 1476.

    CAS  Google Scholar 

  81. R. A. Herrmann, S. F. Adler, M. S. Goldstein, and R. M. DeBaun, J. Phys. Chem. 65 (1961) 2189.

    CAS  Google Scholar 

  82. N. M. Zaidman, V. S. Dzis’ko, A. P. Karnaukhov, N. P. Kradilenko, N. G. Koroleva, and G. P. Vishnyakova, Kinet. Katal. 9 (1968) 863.

    CAS  Google Scholar 

  83. N. M. Zaidman, V. S. Dzis’ko, A. P. Karnaukhov, L. M. Kefeli, N. P. Krasilenko, N. G. Koroleva, and L D. Ratner, Kinet. Katal. 10 (1969) 386.

    CAS  Google Scholar 

  84. N. M. Zaidman, N. P. Krasilenko, L. M. Kefeli, and I. D. Ratner, Kinet. Katal. 11 (1970) 741.

    CAS  Google Scholar 

  85. L. J. Hillenbrand and J. Lacksonen, J. Electrochem. Soc. 112 (1965) 245.

    CAS  Google Scholar 

  86. D. M. Drazic and R. R. Adzic, Electrochim. Acta 14 (1969) 405.

    CAS  Google Scholar 

  87. R. W. Maatman and C. D. Prater, Ind. Eng. Chem. 49 (1957) 253.

    CAS  Google Scholar 

  88. K. Kinoshita, unpublished results.

    Google Scholar 

  89. F. S. Kemp and M. A. George, U.S. Patent 3,857,737, December 31, 1974.

    Google Scholar 

  90. W. T. Grubb, H. A. Liebhafsky, and E. J. Cairns, in Fuel Cells and Fuel Batteries, A Guide to Their Research and Development, John Wiley, New York, 1968, p. 392.

    Google Scholar 

  91. G. C. Bond, P. A. Sermon, G. Webb, and D. A. Buchanan, J. Chem. Soc. Chem. Commun. (1973) 444.

    Google Scholar 

  92. R. B. Clarkson and A. C. Cirillo, J. Catal. 33 (1974) 392.

    CAS  Google Scholar 

  93. J. M. Cece and R. D. Gonzalez, J. Catal. 28 (1973) 254.

    CAS  Google Scholar 

  94. J. H. Sinfelt and D. J. C. Yates, J. Catal. 8 (1967) 82.

    CAS  Google Scholar 

  95. G. W. Higginson, Chem. Eng. (1974) 98.

    Google Scholar 

  96. Z. Sulcek, M. Vasak, and J. Dolezal, Microchem. J. 16 (1971) 210.

    CAS  Google Scholar 

  97. J. Furuoya, T. Shirasaki, E. Echigoya, and K. Morikawa, Kagyo Kagaku Zasshi. 72 (1969) 1431.

    CAS  Google Scholar 

  98. A. Tomita and Y. Tamai, J. Phys. Chem. 75 (1971) 649.

    CAS  Google Scholar 

  99. V. A. Alekseenko, N. M. Vasil’ev, M. M. Senyairn, D. N. Strazhesko, and J. A. Tarsovskaya, Zh. Fiz. Khim. SSSR 45 (1971) 57.

    Google Scholar 

  100. V. A. Garten and D. E. Weiss, Proceedings of the Third Conference on Carbon, held at the University of Buffalo, New York, June 17–21, 1957.

    Google Scholar 

  101. H. P. Boehm, E. Diehl, W. Heck, and R. Sappok, Angew. Chem. Int. Ed. Engl. 3 (1964) 669.

    Google Scholar 

  102. K. F. Blurton, Carbon 10 (1972) 305.

    Google Scholar 

  103. B. J. Cooper, U.S. Patent 3,793,224 (February 19, 1974 ).

    Google Scholar 

  104. G. J. K. Acres and B. J. Cooper, J. Appt Chem. Biotechnol. 22 (1972) 769.

    CAS  Google Scholar 

  105. B. J. Cooper and D. L. Trimm, Paper presented at the Third International Carbon and Graphite Conference (S.C.I.), London, 1970.

    Google Scholar 

  106. L. Schmitt and P. L. Walker, Carbon 9 (1971) 791.

    CAS  Google Scholar 

  107. J. L. Schmitt and P. L. Walker, Carbon 10 (1972) 87.

    CAS  Google Scholar 

  108. J. L. Schmitt, Ph.D. thesis, Pennsylvania State University, 1970.

    Google Scholar 

  109. L. G. Christner, Ph.D. thesis, Pennsylvania State University, 1972.

    Google Scholar 

  110. G. C. Bond, Trans. Faraday Soc. 52 (1956) 1235.

    Google Scholar 

  111. R. M. Wilenzick, D. C. Russell, R. H. Morriss, and S. W. Marshall, J. Chem. Phys. 47 (1967) 533.

    CAS  Google Scholar 

  112. K. V. Kordesch and R. F. Scarr, Low Cost Oxygen Electrodes, Contract No. DAAK02–71-C-0297, July 1972, Union Carbide Corp., Cleveland, Ohio.

    Google Scholar 

  113. J. Giner, J. M. Parry, and S. M. Smith, in American Chemical Society Symposium on Fuel Cells, Chicago (September, 1967), Advances in Chemistry Series 90, American Chemical Society, Washington, D. C., 1969, p. 151.

    Google Scholar 

  114. N. M. Kagan, G. F. Muchnik, Y. N. Pisarev, Y. A. Kaller, and V. A. Panchenko, Elektrokhimiya 9 (1973) 1498.

    CAS  Google Scholar 

  115. German Patent 2,264,592 (May 9, 1974 ); British Patent 1,357,494 (June 19, 1974 ).

    Google Scholar 

  116. J. Turkevich and G. Kim, Science 169 (1970) 873.

    CAS  Google Scholar 

  117. Y Chiang and J. Turkevich, J. Colloid Sci. 18 (1973) 772.

    Google Scholar 

  118. B. V. Enustun and J. Turkevich, J. Am. Chem. Soc. 85 (1965) 3317.

    Google Scholar 

  119. G. Frens, Nature London Phys. Sci. 241 (1973) 20;

    Google Scholar 

  120. J. Turkevich, P. C. Stevenson, and J. Hiller, Discuss. Faraday Soc. 11 (1951) 55.

    Google Scholar 

  121. D. J. Booth, D. Bryce-Smith, and A. Gilbert, Chem. Ind. 17 (1972) 688.

    Google Scholar 

  122. P. F. Casella, Chem. Technol. 4 (1974) 64.

    CAS  Google Scholar 

  123. J. A. Cusamano, Nature, London 247 (1974) 456.

    Google Scholar 

  124. H. I. Zeliger, J. Catal. 7 (1967) 198.

    Google Scholar 

  125. R. Adams and R. L. Shriner, J. Am. Chem. Soc. 45 (1923) 2171.

    CAS  Google Scholar 

  126. S. Nichimura, T. Onoda, and A. Nakamura, Bull. Chem. Soc. Jpn. 33 (1960) 1356.

    Google Scholar 

  127. D. W. McKee, J. Catal. 8 (1967) 240.

    Google Scholar 

  128. D. W. McKee, L. W. Niedrach, J. Paynter, and I. F. Danzig, Electrochem. Technol. 5 (1967) 419.

    CAS  Google Scholar 

  129. L. W. Niedrach, D. W. McKee, J. Paynter, and I. F. Danzig, Electrochem. Technol. 5 (1967) 318.

    CAS  Google Scholar 

  130. M. Kobayashi and T. Shirasaki, J. Catal. 28 (1973) 289.

    CAS  Google Scholar 

  131. A. P. Gorokhov, A. B. Fasman, and D. V. Sokol’skii, Kinet. Katal. 12 (1971) 690.

    CAS  Google Scholar 

  132. D. W. McKee and M. S. Pak, J. Electrochem. Soc. 116 (1969) 516.

    CAS  Google Scholar 

  133. C. W. Keenan, B. W. Giesemann, and H. A. Smith, J. Am. Chem. Soc. 76 (1954) 229.

    CAS  Google Scholar 

  134. D. Cahan and J. G. Ibers, J. Catal. 31 (1973) 369.

    Google Scholar 

  135. M. Raney, U.S. Patents 1,563,787 (December,1925), 1,628,191 (May, 1927), 1,915,473 (June, 1933 ).

    Google Scholar 

  136. E. Lieber and F. L. Morritz, in Advances in Catalysis, Ed. by W. G. Frankenburg, V. I. Komarewsky, and E. K. Rideal, Academic Press, New York, Vol. 5, 1953, p. 417.

    Google Scholar 

  137. A. R. Despic, D. M. Drazic, C. B. Petrovic, and V. L. Vujcic, J. Electrochem. Soc. 111 (1964) 1109.

    Google Scholar 

  138. M. Jung and H. H. Von Dohren, in Power Sources 1966, Ed. by D. H. Collins, Pergamon, Oxford, 1967, p. 497.

    Google Scholar 

  139. A. D. Semenova, N. V. Kropotova, and G. D. Vovchenko, Dokl. Akad. Nauk SSSR (Phys. Chem.) 212 (1973) 1162.

    CAS  Google Scholar 

  140. T. M. Grishina, L. I. Logacheva, V. I. Fedeeva, V. I. Strat’ev, and G. D. Vovchenko, Vestn. Mosk. Univ. Khim. 14 (1973) 586; Chem. Abstr. 80 (1974) 52654n.

    Google Scholar 

  141. H. Binder, A. Kohling, and G. Sandstede, in From Electrocatalysis to Fuel Cells, Ed. by G. Sandstede, University of Washington Press, Seattle, 1972, p. 43.

    Google Scholar 

  142. H. Binder, A. Kohling, and G. Sandstede, in Hydrocarbon Fuel Cell Technology, Ed. by B. S. Baker, Academic Press, New York, 1965, p. 91.

    Google Scholar 

  143. K. I. Yankovskii, A. D. Sevenova, G. D. Vovchenko, and S. V. Smykova, Vestn. Mosk. Univ. Khim. 14 (1973) 83; Chem. Abstr. 78 (1973) 164508h.

    Google Scholar 

  144. H. Krupp, H. Rabenhorst, G. Sandstede, G. Walter, and R. McJones, J. Electrochem. Soc. 109 (1962) 533.

    Google Scholar 

  145. H. A. Smith, W. C. Bedoit, and J. F. Fuzek, J. Am. Chem. Soc. 71 (1949) 3769.

    CAS  Google Scholar 

  146. R. C. Burshtein, A. G. Pshenichnikov, and F. Z. Sabirov, in Fuel Cell Systems II, Advances in Chemistry Series 90, Ed. by R. E. Gould, American Chemical Society, 1969, p. 71.

    Google Scholar 

  147. H. Binder, A. Kohling, and G. Sandstede, in From Electrocatalysis to Fuel Cells, Ed. by G. Sandstede, University of Washington Press, Seattle, 1972, p. 15.

    Google Scholar 

  148. M. R. Tarasevich, K. A. Radyushkina, and R. K. Bushtein, Elektrokhimiya 3 (1967)455.

    Google Scholar 

  149. A. E. Newkirk and D. W. McKee, J. Catal. 11 (1968) 370.

    CAS  Google Scholar 

  150. K. Kinoshita, K. Routsis, and J. A. S. Bett, Thermochim. Acta 10 (1974) 109.

    Google Scholar 

  151. S. D. Robertson, B. D. McNicol, J. H. deBaas, S. C. Kloet, and J. W. Jenkins, J. Catal. 37 (1975) 424.

    CAS  Google Scholar 

  152. M. Yamano and H. Ikeda, in Hydrocarbon Fuel Cell Technology, Ed. by B. S. Baker, Academic Press, New York, 1965, p. 169.

    Google Scholar 

  153. J. E. Schroeder, D. Pouli, and H. J. Seim, in Fuel Cell Systems II, Advances in Chemistry Series 90, Ed. by R. E. Gould, American Chemical Society, 1969, p. 93.

    Google Scholar 

  154. D. W. McKee, J. Phys. Chem. 67 (1963) 841.

    Google Scholar 

  155. A. C. C. Tseung, B. S. Hobbs, and A. D. S. Tantram, Electrochim. Acta 15 (1970) 473.

    CAS  Google Scholar 

  156. A. C. C. Tseung and H. L. Bevan, J. Mater Sci. 5 (1970) 604.

    CAS  Google Scholar 

  157. L. W. Niedrach and I. B. Weinstock, Electrochem. Technol. 3 (1965) 270.

    CAS  Google Scholar 

  158. P. G. Dickens and M. S. Whittingham, Trans. Faraday Soc. 61 (1965) 1226.

    CAS  Google Scholar 

  159. K. Mund, G. Richter, and M. Wenzel, German Patent 2,108,396 (September 7, 1962 ).

    Google Scholar 

  160. G. Schulz-Elkoff, D. Baresel, and W. Sarholz, preprint of paper in Proceedings of the Fifth International Congress on Catalysis, Miami Beach, 1972.

    Google Scholar 

  161. K. Von Benda, H. Binder, A. Kohling, and G. Sandstede, in From Electrocatalysis to Fuel Cells, Ed. by G. Sandstede, University of Washington Press, Seattle, 1972, p. 87.

    Google Scholar 

  162. H. Boehm, Electrochim. Acta 15 (1970) 1273.

    CAS  Google Scholar 

  163. M. Svata and Z. Zabransky, Collect Czech. Chem. Commun. 39 (1974) 1015.

    CAS  Google Scholar 

  164. K. Roehrig and T. R. Smith, J. Am. Ceram. Soc. 55 (1972) 58.

    CAS  Google Scholar 

  165. S. F. Exell, R. Roggen, J. Gillot, and B. Lux, in Fine Particles Second International Conference, Ed. by W. E. Kuhn and J. Ehretsmann, Electrochemical Soc., Princeton, N.J., 1974, p. 165.

    Google Scholar 

  166. P. N. Ross and P. Stonehart, J. Catal. 39 (1975) 298.

    CAS  Google Scholar 

  167. D. R. Rhodes, U.S. Patent 3,449,169 (June 10. 1969 ).

    Google Scholar 

  168. Y S. Kim and F. R. Monforte, Ceram. Bull. 50 (1971) 532.

    CAS  Google Scholar 

  169. D. W. Johnson and P. K. Gallagher, J. Am. Ceram. Soc. 54 (1971) 461.

    CAS  Google Scholar 

  170. V. V. Mirkovich and T. A. Wheat, Ceram. Bull. 49 (1970) 724.

    Google Scholar 

  171. S. H. Gelles and F. K. Roehrig, J. Met. (1972) 23.

    Google Scholar 

  172. New Scientist, July 6, 1972, p. 6.

    Google Scholar 

  173. A. Landsberg and T. T. Campbell, J. Met. (1965) 856.

    Google Scholar 

  174. R. Kusay, Metall. Met. Form. (1972) 377.

    Google Scholar 

  175. M. J. Ferrante, R. R. Lowery, and G. B. Robidart, Report of Investigations 7485, U.S. Bureau of Mines, 1971.

    Google Scholar 

  176. J. Rowbottom, British Patent 992,655 (September 16, 1963 ).

    Google Scholar 

  177. Y Trambouze, Bull. Inst. Int. Froid, Annexe(1969) 13.

    Google Scholar 

  178. A. C. C. Tseung, German Patent 2,119,702 (November 4, 1971 ).

    Google Scholar 

  179. T. Kudo, M. Yeshida, and O. Okamoto, U.S. Patent 3,804,674 (April 16, 1974 ).

    Google Scholar 

  180. F. J. Schnettler, F. R. Monforte, and W. W. Rhodes, in Science of Ceramics, Ed. By G. H. Stewart, British Ceramic Soc., Stoke-on-Trent, U.K., 1968, Vol. 4, p. 179.

    Google Scholar 

  181. D. W. Johnson and F. J. Schnettler, J. Am. Ceram. Soc. 53 (1970) 440.

    CAS  Google Scholar 

  182. H. L. Bevan and A. C. C. Tseung, Electrochim. Acta 9 (1974) 201.

    Google Scholar 

  183. W. J. King and A. C. C. Tseung, Electrochim. Acta 19 (1974) 485.

    CAS  Google Scholar 

  184. A. C. C. Tseung and L. L. Wong, J. Mater. Sci. 2 (1972) 211.

    CAS  Google Scholar 

  185. P N. Rylander, L. Hasbrouck, S. G. Hindin, I. Karpenko, G. Pond, and S. Stanick, paper presented at 153rd National Meeting of the American Chemical Society, Miami Beach, April 13, 1962.

    Google Scholar 

  186. P. N. Rylander, L. Hasbrouck, S. G. Hindin, R. Iverson, I. Karpenko, and G. Pond, Engelhard Ind. Tech. Bull. 8 (1967) 93.

    CAS  Google Scholar 

  187. T. M. Grishina, L. I. Logacheva, and G. D. Vovchenko, Elektrokhimiya 9 (1973) 1247.

    CAS  Google Scholar 

  188. E. L. Holt, Nature, London 203 (1964) 857.

    Google Scholar 

  189. D. W. McKee, J. Catal. 14 (1969) 355.

    Google Scholar 

  190. J. Forten and E. F. Rissman, U.S. Patent 3,467,554 (September 16, 1969 ).

    Google Scholar 

  191. J. H. Fishman and M. Yarish, Electrochim. Acta 12 (1967) 579.

    CAS  Google Scholar 

  192. L. C. Hoffman, British Patent 1,091,347 (November 15, 1967 ).

    Google Scholar 

  193. D. W. McKee and F. J. Norton, J. Catal. 3 (1964) 252.

    CAS  Google Scholar 

  194. K. A. Radyushkina and M. R. Tarasevich, Elektrokhimiya 6 (1970) 1703.

    CAS  Google Scholar 

  195. A. Metcalfe and M. W. Rowden, J. Catal. 22 (1971) 30.

    CAS  Google Scholar 

  196. D. W. McKee and F. J. Norton, J. Catal. 4 (1965) 510.

    CAS  Google Scholar 

  197. J. H. Anderson, P. J. Conn, and S. G. Brandenberger, J. Catal. 16 (1970) 404.

    CAS  Google Scholar 

  198. C. H. Bartholomew and M. Boudart, J. Catal. 25 (1972) 173.

    CAS  Google Scholar 

  199. D. Cormack, D. H. Thomas, and R. L. Moss, J. Catal. 32 (1974). 492.

    CAS  Google Scholar 

  200. P. N. Ross, K. Kinoshita, A. J. Scarpellino, and P. Stonehart, J. Electroanal. Chem. 59 (1975) 177.

    CAS  Google Scholar 

  201. J. H. Sinfelt, J. Catal. 29 (1973) 308.

    Google Scholar 

  202. D. W. McKee and A. J. Scarpellino, Electrochem. Technol. 6 (1963) 101.

    Google Scholar 

  203. G. T. Pott, British Patent Application 7429/74 (see also British Patent 1,106,708; U.S. Patent 3, 340, 097 ).

    Google Scholar 

  204. P. H. Emmett, in Advances in Catalysis, Ed. by W. G. Frankenburg, V. I. Komarewsky, and E. K. Rideal, Academic Press, New York, 1948, Vol. 1, p. 65.

    Google Scholar 

  205. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, New York, 1967, Chapt. 4, p. 180.

    Google Scholar 

  206. W. B. Innes, in Experimental Methods in Catalytic Research, Ed. by R. B. Anderson, Academic Press, New York, 1968, p. 44.

    Google Scholar 

  207. T. W. Whyte, Catal. Rev. 8 (1973) 117.

    Google Scholar 

  208. R. J. Farranto, presented at the 77th National Meeting of the A.I.Ch.E., June 2–5, 1974, Pittsburgh, Pa., Paper No. 12C; Chem. Eng. Prog. 71 (1975) 37.

    Google Scholar 

  209. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60 (1938) 309.

    CAS  Google Scholar 

  210. I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361.

    Google Scholar 

  211. P H. Emmett and S. Brunauer, J. Am. Chem. Soc. 59 (1937) 1553.

    Google Scholar 

  212. A. L. McClellan and H. F. Harnsberger, J. Colloid Sci. 23 (1967) 577.

    CAS  Google Scholar 

  213. B. Genot, J. Colloid Sci. 50 (1975) 413.

    Google Scholar 

  214. D H. Everett, G. D. Parfitt, K. S. W. Sing, and R. Wilson, J. Appl. Chem. Biotechnol. 24 (1974) 199.

    CAS  Google Scholar 

  215. P. H. Emmett and M. Cines, J. Phys. Colloid Chem. 51 (1974) 1329.

    Google Scholar 

  216. P. A. Sermon, J. Catal. 24 (1972) 467.

    CAS  Google Scholar 

  217. M. A. Vannice, J. E. Benson, and M. Boudart, J. Catal. 16 (1970) 348.

    CAS  Google Scholar 

  218. F F. Nelson and F. T. Eggertsen, Anal. Chem. 30 (1958) 1387.

    Google Scholar 

  219. H. W. Daeschner and F. H. Stross, Anal. Chem. 34 (1962) 1150.

    CAS  Google Scholar 

  220. K. Kinoshita, K. Routsis, J. A. S. Bett, and C. S. Brooks, Electrochim. Acta 18 (1973) 953.

    CAS  Google Scholar 

  221. H. P. Boehm, U. Hofmann, and A. Clauss, in Proceedings of the Third Conference on Carbon, University of Buffalo, N. Y., June 17–21 1957, Pergamon Press, New York, 1959, p. 241.

    Google Scholar 

  222. C. H. Giles and H. P. D’Silva, Trans. Faraday Soc. 65 (1969) 1943.

    CAS  Google Scholar 

  223. H. A. Smith and R. B. Hurley, J. Phys. Colloid Chem. 53 (1948) 1409.

    Google Scholar 

  224. J. M. Dalla Valle, P. T. Bankston, and C. Orr, paper presented at the Southwest Chemical Conference held under the joint auspices of the American Chemical Society, local sections in the Southeast and the Southern Association of Science and Industry, Wilson Dam, Ala., October 20, 1951.

    Google Scholar 

  225. J.H. deBoer, B. C. Lippens, B. G. Linsen, J. C. P. Broekhoff, A. van den Heuvel, and T. J. Osinga, J. Colloid Sci. 21 (1966) 405.

    CAS  Google Scholar 

  226. W. R. Smith and G. A. Kasten, Rubber Chem. Technol. 43 (1970) 960.

    CAS  Google Scholar 

  227. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.

    CAS  Google Scholar 

  228. H. Atkins, Carbon 3 (1965) 299.

    CAS  Google Scholar 

  229. B. Viswanathan and M. V. C. Sastri, J. Catal. 8 (1967) 312.

    CAS  Google Scholar 

  230. E. W. Lard and S. M. Brown, J. Catal. 25 (1972) 451; see also G. R. Lester, J. Catal. 8 (1967) 243.

    Google Scholar 

  231. J. Medema and A. Compagner, J. Catal. 8 (1967) 120.

    CAS  Google Scholar 

  232. A. A Adamson, Physical Chemistry of Surfaces, Wiley-Interscience, New York, 1964, p. 449.

    Google Scholar 

  233. R. R. Paxton, J. F. Demendi, G. J. Young, and R. B. Rozelle, J. Electrochem. Soc. 110 (1963) 932.

    CAS  Google Scholar 

  234. H. A. Benesi, R. U. Bonner, and C. F. Lee, Anal. Chem. 27 (1955) 1963.

    CAS  Google Scholar 

  235. J. Freel, J. Catal. 25 (1972) 139.

    CAS  Google Scholar 

  236. C. E. Hunt, J. Catal. 23 (1971) 93.

    Google Scholar 

  237. H. A. Benesi, L. T. Atkins, and R. B. Mosely, J. Catal. 23 (1971) 211.

    CAS  Google Scholar 

  238. H. L. Gruber, Abal. Chem. 34 (1962) 1828.

    Google Scholar 

  239. H. L. Gruber, J. Phys. Chem. 66 (1962) 48.

    Google Scholar 

  240. J. A. Cusamano, G. W. Dembinskii, and J. H. Sinfelt, J. Catal. 5 (1966) 471.

    Google Scholar 

  241. G. R. Wilson and W. K. Hall, J. Catal. 17 (1970) 190.

    CAS  Google Scholar 

  242. D. J. C. Yates and J. H. Sinfelt, J. Catal. 8 (1967) 348.

    CAS  Google Scholar 

  243. C. S. Brooks, J. Colloid Sci. 34 (1970) 419.

    Google Scholar 

  244. R. A. Dalla Betta, J. Catal. 34 (1974) 57.

    Google Scholar 

  245. K. C. Taylor, R. M. Sinkevitch, and R. L. Klimisch, J. Catal. 35 (1974) 34.

    CAS  Google Scholar 

  246. P. C. Aben, J. Catal. 10 (1968) 224.

    CAS  Google Scholar 

  247. S. E. Wanke and N. A. Dougharty, J. Catal. 24 (1972) 367.

    CAS  Google Scholar 

  248. K. C. Taylor, J. Catal. 38 (1975) 299.

    CAS  Google Scholar 

  249. G. R. Wilson and W. K. Hall, J. Catal. 24 (1972) 306.

    CAS  Google Scholar 

  250. E. Kikuchi, P. Flynn, and S. E. Wanke, J. Catal. 34 (1974) 132.

    CAS  Google Scholar 

  251. D. E. Mears and R. C. Hansford, J. Catal. 9 (1967) 125.

    CAS  Google Scholar 

  252. P. Wentrcek, K. Kimoto, and H. Wise, J. Catal. 33 (1973) 273.

    Google Scholar 

  253. J. E. Benson, H. S. Hwang, and M. Boudart, J. Catal. 30 (1973) 146.

    CAS  Google Scholar 

  254. P. A. Sermon, J. Catal. 24 (1972) 460.

    CAS  Google Scholar 

  255. G. W. Sears, Anal. Chem. 28 (1956) 1981.

    Google Scholar 

  256. A. Kozawa, J. Inorg. Nucl. Chem. 21 (1961) 315.

    CAS  Google Scholar 

  257. W. O’Grady, C. Iwakura, J. Huang, and E. Yeager, in Proceedings of the Symposium on Electrocatalysis, Ed. by M. W. Breiter, Electrochemical Soc., Princeton, N.J., 1974, p. 286.

    Google Scholar 

  258. A. Kozawa, J. Electrochem. Soc. 106 (1959) 552.

    CAS  Google Scholar 

  259. M. L. Kronenberg, J. Electroanal. Chem. 24 (1970) 357.

    Google Scholar 

  260. A. J. Groszek and G. I. Andrews, in Third Conference on Industrial Carbons and Graphite, Society of Chemical Industry, London, 1971, p. 156.

    Google Scholar 

  261. F. G. Will and C. A. Knorr, Z. Electrochem. 64 (1960) 258.

    CAS  Google Scholar 

  262. S. Srinivasan and E. Gileadi, Electrochim. Acta 11 (1966) 321.

    CAS  Google Scholar 

  263. S. Gilman, J. Phys. Chem. 67 (1963) 78.

    CAS  Google Scholar 

  264. S. Gilman, J. Electroanal. Chem. 7 (1964) 382.

    CAS  Google Scholar 

  265. F. G. Will, J. Electrochem. Soc. 112 (1965) 451.

    Google Scholar 

  266. R. Woods, J. Electroanal. Chem. 49 (1974) 217.

    CAS  Google Scholar 

  267. A. N. Frumkin, in Advances in Electrochemistry and Electrochemical Engineering, Ed. by P. Delahay, Wiley-Interscience, New York, 1963, Vol. 3, p. 287.

    Google Scholar 

  268. P Stonehart, in Power Sources 1966, Ed. by D. H. Collins, Oriel Press, Newcastle-upon-Tyne, 1967, p. 509.

    Google Scholar 

  269. K. F. Blurton, P. Greenberg, H. G. Oswin, and D. R. Rutt, J. Electrochem. Soc. 119 (1972) 559.

    CAS  Google Scholar 

  270. J. F. Connolly, R. J. Flannery, and G. Aronowitz, J. Electrochem. Soc. 113 (1966) 577

    Google Scholar 

  271. J. F. Connolly, R. J. Flannery, and B. L. Meyers, J. Electrochem. Soc. 114 (1967) 241.

    CAS  Google Scholar 

  272. M. W. Breiter, J. Phys. Chem. 72 (1968) 1305.

    Google Scholar 

  273. N. A. Urisson, L. N. Mokrousov, G. V. Shteinberg, Z. I. Kudryavtseva, I. I. Askakhov, and V. S. Bagotskii, Kinet. Katal. 15 (1974) 1000.

    Google Scholar 

  274. A. P. Zabotina, T. I. Yakovleva, and D. V. Sokol’skii, Dokl. Akad. Nauk SSSR 197 (1971) 621.

    CAS  Google Scholar 

  275. M. W. Breiter, Electrochemical Processes in Fuel Cells, Springer-Verlag, New York, 1969, p. 51.

    Google Scholar 

  276. S. K. Burshtein, M. R. Tarasevich, and V. S. Vilinskaya, Elektrokhimiya 3 (1967) 349.

    CAS  Google Scholar 

  277. V. A. Gromyko, Elektrokhimiya 7 (1971) 885.

    Google Scholar 

  278. D. A. J. Rand and R. Woods, J. Electroanal. Chem. 31 (1971) 29.

    CAS  Google Scholar 

  279. S. H. Cadle and S. Bruckenstein, Anal. Chem. 43 (1971) 1858.

    CAS  Google Scholar 

  280. G. W. Tindall and S. Bruckenstein, Anal. Chem. 40 (1968) 1051.

    CAS  Google Scholar 

  281. G. W. Tindall and S. Bruckenstein, Anal. Chem. 40 (1968) 1637.

    CAS  Google Scholar 

  282. M. W. Breiter, J. Electroanal. Chem. 23 (1969)173

    Google Scholar 

  283. B. J. Bowles, Electrochim. Acta 15 (1970) 589.

    Google Scholar 

  284. S. B. Brummer and M. J. Turner, in Proceedings Twenty-Third Annual Power Sources Conference, PSC Publications Committee, 1969, PSC Publications Committee, Red Bank, N.J. p. 26.

    Google Scholar 

  285. G. W. Tindall and S. Bruckenstein, Electrochim. Acta 16 (1971) 245.

    CAS  Google Scholar 

  286. G. Raspi and F. Malatesta, J. Electroanal. Chem. 27 (1970) 283; F. Malatesta and G. Raspi, J. Electroanal. Chem. 27 (1970) 295.

    Google Scholar 

  287. D. Sandroz, R. M. Peekema, H. Freund, and C. F. Morrison, J. Electroanal. Chem. 24 (1970) 165.

    Google Scholar 

  288. B. J. Bowles, Electrochim. Acta 10 (1965) 717; 10 (1965) 731.

    Google Scholar 

  289. B J. Bowles, Electrochim. Acta 15 (1970) 737.

    Google Scholar 

  290. D. M. Kolb, M. Przasnyski, and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.

    CAS  Google Scholar 

  291. J. Gerischer, D. M. Kolb, and M. Przasnyski, Surface Sci. 43 (1974) 662; see also D. M. Kolb and H. Gerischer, Surface Sci. 51 (1975) 323.

    Google Scholar 

  292. H. Klug and L. Alexander, X-Ray Diffraction Procedures, Wiley, New York, 1962, p. 491.

    Google Scholar 

  293. A. L. Patterson, Phys. Rev. 56 (1939) 972.

    Google Scholar 

  294. L. V. Azaroff, Elements of X-ray Crystallography, McGraw-Hill, New York, 1968, p. 556.

    Google Scholar 

  295. R. L. Moss and H. R. Gibbens, Catal. 24 (1972) 48.

    CAS  Google Scholar 

  296. R. L. Moss, H. R. Gibbens, and D. H. Thomas, J. Catal 16 (1970) 117.

    CAS  Google Scholar 

  297. L.V. Azaroff, Elements of X-ray Crystallography, McGraw-Hill, New York, 1968, p. 480.

    Google Scholar 

  298. A. Guinier and G. Fournet, Small Angle Scattering of X-rays, Wiley, New York, 1955.

    Google Scholar 

  299. H. Brumberger, Small Angle X-ray Scattering, Gordon and Breach, New York, 1967.

    Google Scholar 

  300. A. Guinier, X-ray Crystallographic Technology, Ed. by K. Lonsdale, Hilger and Watts, London, 1952, p. 268.

    Google Scholar 

  301. G. A. Somorjai, Ph.D. thesis, University of California, Berkeley, 1960.

    Google Scholar 

  302. G. M. Plavnik, B. Parlits, and M. M. Dubinin, Dokl. Akad. Nauk SSSR 206 (1972) 399.

    CAS  Google Scholar 

  303. T. E. Whyte, P. W. Kirklin, R. W. Gould, and H. Heinemann, J. Catal 25 (1972) 407.

    CAS  Google Scholar 

  304. E. L. Gunn, J. Phys. Chem. 62 (1958) 928.

    Google Scholar 

  305. S. D. Harkness, R. W. Gould, and J. J. Hren, Philos. Mag. 19 (1969) 115.

    CAS  Google Scholar 

  306. A. Renouprez, C. Hoang-van, and P. A. Compagnon, J. Catal. 34 (1974) 411.

    CAS  Google Scholar 

  307. G. F. Neilson, J. Appl. Crystallogr. 6 (1973) 386.

    Google Scholar 

  308. P. C. Flynn, S. E. Wanke, and P. S. Turner, J. Catal. 33 (1974) 233.

    CAS  Google Scholar 

  309. C. E. Hall, J. Appl. Phys. 19 (1948) 198.

    Google Scholar 

  310. C. E. Hall, J. Appl Phys. 19 (1948) 271.

    Google Scholar 

  311. W. M. Hess and L. L. Ban, Norelco Reporter 13 (1966) 102; presented at the Sixth International Congress for Electron Microscopy, Kyoto, Japan, August 28-September 6, 1966.

    Google Scholar 

  312. G. Terriera, A. Oberlin, and J. Mering, Carbon 5 (1967) 431.

    Google Scholar 

  313. N. H. Sagert and R. M. L. Pouteau, Can. J. Chem. 52 (1974) 2960.

    CAS  Google Scholar 

  314. J. S. May ell and W. A. Barber, J. Electrochem. Soc. 116 (1969) 1333.

    CAS  Google Scholar 

  315. J. D. Voorhies, J. S. Mayell, and H. P. Landi, in Hydrocarbon Fuel Cell Technology, Ed. by B. S. Baker, Academic Press, New York, 1965, p. 455.

    Google Scholar 

  316. J. A. Shropshire, E. H. Okrent, and H. H. Horowitz, in Hydrocarbon Fuel Cell Technology, Ed. by B. S. Baker, Academic Press, New York, 1965, p. 539.

    Google Scholar 

  317. W. Vogel, J. Lundquist, and A. Bradford, Electrochim. Acta 17 (1972) 1735.

    CAS  Google Scholar 

  318. L. G. Austin and H. Lerner, Electrochim. Acta 9 (1964) 1469.

    CAS  Google Scholar 

  319. J. Giner and C. Hunter, J. Electrochem. Soc. 116 (1969) 1124.

    CAS  Google Scholar 

  320. W. Thiele, Ind. Eng. Chem. 31 (1939) 916; see also A. Wheeler, Adv. Catal. 3 (1951) 249.

    Google Scholar 

  321. P. Stonehart and P. N. Ross, Electrochim. Acta 21 (1976) 441.

    CAS  Google Scholar 

  322. P. N. Ross, K. Kinoshita, A. J. Scarpellino, and P. Stonehart, J. Electroanal. Chem. 63 (1975) 97.

    CAS  Google Scholar 

  323. V. Ponec, Catal. Rev. Sei. Eng. 11 (1975) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Kinoshita, K., Stonehart, P. (1977). Preparation and Characterization of Highly Dispersed Electrocatalytic Materials. In: Bockris, J.O., Conway, B.E. (eds) Modern Aspects of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7452-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7452-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7454-5

  • Online ISBN: 978-1-4615-7452-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics