Skip to main content

Electrochemistry of Sulfide Minerals

  • Chapter
Modern Aspects of Electrochemistry

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 10))

Abstract

In recent years there has been an increasing interest in the electrochemical properties of metal sulfides. Our main sources of copper, lead, zinc, and nickel occur as sulfides and they are converted to the metal by pyrometallurgical processes which produce gaseous sulfur dioxide. The environmental requirements being imposed on sulfide smelters have led to a greater effort to develop hydrometallurgical routes for the treatment of sulfides in order to avoid the evolution of sulfur dioxide. These processes involve the oxidation of sulfides to sulfur or sulfate either using oxidants such as oxygen, ferric ion, or cupric ion1 or by direct anodic oxidation in an electrolyte.2 The oxidation of sulfides by an oxidant can be regarded as an electrochemical reaction with the cathodic reduction of the oxidant and the anodic oxidation of the sulfide,3 and it can consequently be studied by electrochemical techniques. Recent work4,5 has also shown that flotation, a key process in concentrating sulfide ores, can be electrochemical in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. N. Subramanian and P. H. Jennings, Can. Met. Quart. 11 (1972) 387.

    Article  CAS  Google Scholar 

  2. F. Habashi, Min. Sci. Eng. 3 3 (1971) 3.

    CAS  Google Scholar 

  3. J. T. Woodcock, Proc. Austr. Inst. Min. Met. 198 (1961) 47;

    Google Scholar 

  4. H. Majima and E. Peters, Proc. 8th Min. Process. Congr. Leningrad (1968), Volume 2, p. 5, Published by Instituta McKhansbr, Leningrad, 1969.

    Google Scholar 

  5. R. Tolun and J. A. Kitchener, Trans. Inst. Min. Met. (London) 73 (1964) 313.

    Google Scholar 

  6. R. Woods, J. Phys. Chem. 75 (1971) 354;

    Article  CAS  Google Scholar 

  7. R. Woods, Proc. Aust. Inst. Min. Met. 241 (1972) 53.

    Google Scholar 

  8. J. P. Gabano, V. Déchenaux, G. Gerbier, and J. Jammet, J. Electrochem. Soc. 119 (1972) 459.

    Article  CAS  Google Scholar 

  9. M. Sato, Econ. Geol. 55 (1960) 1202.

    Article  CAS  Google Scholar 

  10. J. E. Dutrizac, R. J. C. MacDonald, and T. R. Ingraham, Trans. Met. Soc. AIME 245 (1969) 955.

    CAS  Google Scholar 

  11. C. de Ranter and R. Breckpot, Bull. Soc. Chim. Belg. 78 (1969) 503.

    Article  Google Scholar 

  12. G. Thomas and T. R. Ingraham, Can. Met. Quart. 6 (1967) 153.

    Article  CAS  Google Scholar 

  13. G. Thomas, T. R. Ingraham, and R. J. C. MacDonald, Can. Met. Quart. 6 (1967) 281.

    Article  CAS  Google Scholar 

  14. R. Adams, R. Beaulieu, M. Vassiliadis, and A. Wold, Mat. Res. Bull. 7 (1972) 87.

    Article  CAS  Google Scholar 

  15. J. E. Dutrizac, R. J. C. MacDonald, and T. R. Ingraham, Met. Trans. 1 (1970) 3083.

    CAS  Google Scholar 

  16. J. E. Dutrizac, R. J. C. MacDonald, and T. R. Ingraham, Met. Trans. 1 (1970) 225.

    CAS  Google Scholar 

  17. A. Rabenau and H. Rau, Philips Tech. Rev. 30 (1969) 89.

    CAS  Google Scholar 

  18. Kleber, An Introduction to Crystallography, VEB Verlag Technik, Berlin, 1970, p. 203.

    Google Scholar 

  19. L. Bray and G. F. Claringbull, Crystal Structures of Minerals, G. Bell and Sons, London 1965, p. 55.

    Google Scholar 

  20. F. Jellinek, “Inorganic Chemistry,” in MTP International Review of Science, Trans. Met. Butterworths, London, 1972, Part I Ser. one, Vol. 5 part I, p. 339.

    Google Scholar 

  21. E. Franck, Nuovo Cimento 58B (1968) 407.

    Google Scholar 

  22. P. Cavalotti and G. Salvago, Electrochim. Met. 4 (1969) 181.

    Google Scholar 

  23. R. Williams, J. Chem. Phys. 32 (1960) 1505.

    Article  CAS  Google Scholar 

  24. H. Gerischer, J. Electrochem. Soc. 113 (1966) 1174.

    Article  CAS  Google Scholar 

  25. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd edition, Oxford University Press, New York, 1948, pp. 69–74.

    Google Scholar 

  26. G. Springer, Trans. Inst. Min. Met. 79 (1970) C11.

    Google Scholar 

  27. V. A. Tyagai, Elektrokhimiya 4 (1965) 387.

    Google Scholar 

  28. V. A. Tyagai and G. Ya. Kolbasov, Surf. Sci. 28 (1971) 423.

    Article  CAS  Google Scholar 

  29. H. Gerischer, Surf. Sci. 13 (1969) 265.

    Article  CAS  Google Scholar 

  30. R. Eadington and A. P. Prosser, Trans. Inst. Min. Met. 78 (1969) C74.

    CAS  Google Scholar 

  31. G. Simkovich and J. B. Wagner, J. Electrochem. Soc. 110 (1963) 513.

    Article  CAS  Google Scholar 

  32. R. W. Fox, Phil. Trans. 2 (1830) 309.

    Google Scholar 

  33. N. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria, Harper and Ross, New York, 1965.

    Google Scholar 

  34. W. Noddack and K. Wrabetz, Z. Elektrochem. 59 (1955) 96.

    CAS  Google Scholar 

  35. W. Noddack, K. Wrabetz, and W. Herbst, Z. Elektrochem. 59 (1955) 752.

    CAS  Google Scholar 

  36. W. Wrabetz, Z. Elektrochem. 60 (1956) 722.

    CAS  Google Scholar 

  37. S. Verkatachalan and R. Mallikarjunan, Trans. Inst. Min. Met. 79 (1970) C181.

    Google Scholar 

  38. M. Sato, Electrochim. Acta 11 (1966) 361.

    Article  CAS  Google Scholar 

  39. J. K. Wright, PACE ( Process Chem. Eng.) June (1973) 11.

    Google Scholar 

  40. I. Park and H. R. Skewes, unpublished data.

    Google Scholar 

  41. F. Habashi and N. Torres-Acuna, Trans. Met. Soc. AIME 242 (1968) 780.

    CAS  Google Scholar 

  42. I J. Corrans, B. Harris, and B. J. Ralph, J. S. Afr. Inst. Min. Met. 72 (1972) 221.

    CAS  Google Scholar 

  43. T. Biegler and D. A. Swift, unpublished data.

    Google Scholar 

  44. D. M. Chizikov and V. M. Kovylina, Soviet Electrochemistry, Proceedings of the Fourth Conference on Electrochemistry, Moscow, Consultants Bureau, New York, 1961.

    Google Scholar 

  45. S. Tsujiwa, N. Masuko, and T. Hisamatsu, Nikon Kogyo Kaishi 83 (1967) 597.

    Google Scholar 

  46. H. R. Skewes, Proc. Aust. Inst. Min. Met. 244 (1972) 35.

    Google Scholar 

  47. J. B. Brodie, M.Sc. Thesis, University of British Columbia, 1968.

    Google Scholar 

  48. T. R. Scott and N. F. Dyson, Trans. Met. Soc. AIME 242 (1968) 1815.

    Google Scholar 

  49. H. Sawamoto and T. Oki, J. Min. Met. Inst. Japan 81 (1965) 87.

    CAS  Google Scholar 

  50. E. Peters and H. Majima, Can. Met. Quart. 7 (1968) 111.

    Article  CAS  Google Scholar 

  51. K. W. Downes and R. Bruce, Can. Min. Met. Bull. 48 (1955) 127.

    Google Scholar 

  52. L. S. Renzoni, R. C. McQuire, and M. V. Baker, J. Metals 10 (1958) 414.

    CAS  Google Scholar 

  53. W. W. Spence and W. R. Cook, Trans. Can. Inst. Min. Met. 67 (1964) 257.

    CAS  Google Scholar 

  54. T. Popademitriou and J. R. Grasso, Engelhard Ind. Tech. Bull. 10 (1970) 121.

    Google Scholar 

  55. B. J. Scheiner, R. E. Lindstrom, and T. A. Henrie, U.S. Bur. Mines Tech. Progr. Rpt. 8 (1969).

    Google Scholar 

  56. B. J. Scheiner, R. E. Lindstrom, D. E. Shanks, and T. A. Henrie, U.S. Bur. Mines Tech. Progr. Rpt. 26 (1970).

    Google Scholar 

  57. P Kruesi, E. S. Allen, and J. L. Lake, Can. Min. Met. Bull. June (1973) 81.

    Google Scholar 

  58. A. J. Parker, Search 4 (1973) 426.

    CAS  Google Scholar 

  59. K. J. Cathro, unpublished work.

    Google Scholar 

  60. I. N. Plaksin and S. V. Bessenov, Proc. 2nd Intern. Congr. Surf. Activity 3 (1955) 361.

    Google Scholar 

  61. D. A. J. Rand, unpublished work.

    Google Scholar 

  62. J. E. Dutrizac and R. J. C. MacDonald, Mat. Res. Bull. 8 (1973) 861.

    Article  Google Scholar 

  63. A. Bither, R. J. Bouchard, W. H. Cloud, P. C. Donohue, and W. J. Siemons, Inorg. Chem. 7 (1968) 2208.

    Article  CAS  Google Scholar 

  64. A. Kowal and A. Pomianowski, J. Electroanal. Chem. 46 (1973) 411.

    Article  CAS  Google Scholar 

  65. P L. King and B. J. Welch, Proc. Aust. Inst. Min. Met. 246 (1973) 7.

    Google Scholar 

  66. G. V. Keller and F. C. Frischknecht, Electrical Methods in Geophysical Prospecting, Pergamon Press, London, 1966, p. 5.

    Google Scholar 

  67. R. W. Shewman and L. A. Clarke, Can. J. Earth Sci. 7 (1970) 67.

    Article  CAS  Google Scholar 

  68. T. W. Healy, Western Australia Conference 1973, Australasian Institute of Mining and Metallurgy, Melbourne, 1973, p. 477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Koch, D.F.A. (1975). Electrochemistry of Sulfide Minerals. In: Bockris, J.O., Conway, B.E. (eds) Modern Aspects of Electrochemistry. Modern Aspects of Electrochemistry, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7446-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7446-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7448-4

  • Online ISBN: 978-1-4615-7446-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics